355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Техника и вооружение Журнал » Техника и вооружение 2014 12 » Текст книги (страница 4)
Техника и вооружение 2014 12
  • Текст добавлен: 6 октября 2016, 21:58

Текст книги "Техника и вооружение 2014 12"


Автор книги: Техника и вооружение Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 7 страниц)

Не стоит забывать и о «врожденных пороках» тягача АТ-45. Достичь в те годы даже желаемых 3000 км пробега без радикального изменения конструкции траков гусеницы не представлялось возможным. Более того, в ходе проектирования корпусного тягача АТ-К, осуществлявшегося практически одновременно с проведением работ по АТ-45, были определены новые требования к долговечности гусениц машин такого класса, которые подразумевали до 20000 км пробега (о проекте тягача АТ-К будет рассказано в следующей части статьи). Историк Е.И. Прочко отмечал также, что АТ-45 имел недостаточный силовой диапазон в коробке передач, заимствованной от Т-34, – 7,37, «при слишком большом для тягача разрыве между смежными передачами (скоростная разбивка передаточных чисел)».

Как же сложилась судьба построенных тягачей? Они некоторое время проходили опытную эксплуатацию на родном заводе №75, где успешно использовались на вывозке леса, продуктов питания и разных материалов. Для этих целей по проекту и чертежам отдела главного конструктора на заводе построили специальные прицепы, позволившие перевозить грузы (с учетом загрузки кузова тягача) массой до 25 т. По состоянию на 1 февраля 1945 г., АТ-45 проработали 7000-9000 км.



22 октября 2014 г. на 82-м году ушел из жизни Александр Сергеевич Ефремов – ленинградец, блокадник, кандидат технических наук, профессор, член-корреспондент Санкт-Петербургской инженерной академии.

Почти полвека он проработал в ОАО «Спецмаш» (ранее КБ-3 Кировского завода), пройдя путь от рядового инженера до начальника научно-исследовательского отделения. Это было время напряженной работы по созданию первого в мире серийного танка с газотурбинным двигателем – танка Т-80.

Являясь высоко эрудированным, грамотным инженером, прекрасным организатором и просто творческим человеком, он внес огромный вклад в повышение характеристик и эксплуатационной надежности транспортного газотурбинного двигателя. При его непосредственном участии была создана «линейка» ГТД мощностью от 1000 до 1500 л.с.

Автор многочисленных статей, публикаций и сборников по бронетанковой технике, он был активным участником проводимых технических конференций в военных округах. Кроме того, Александр Сергеевич принимал участие в испытаниях и доводке моторно-силового отделения мощных тракторов типа К-700, серийное производство которых было освоено на Кировском заводе.

Параллельно со своей основной работой Александр Сергеевич уделял много времени обучению и воспитанию молодых специалистов, ведя курс занятий на кафедре «Колесных и гусеничных машин» Санкт-Петербургского политехнического университета и был одним из организаторов филиала этой кафедры в ОАО «Спецмаш». Долгое время он преподавал и в машиностроительном техникуме им. Ж.Я. Котина. За многолетний самоотверженный труд Александр Сергеевич был награжден орденом «Знак Почета», пятью медалями и неоднократно поощрялся руководством.

На протяжении ряда лет А.С. Ефремов являлся постоянным автором журнала «Техника и вооружение». Его публикации, посвященные боевым машинам разработки ОАО «Спецмаш» (в основном танкам Т-80 и машинам на его базе), заслужили признание широкого круга читателей.

Светлая память об Александре Сергеевиче Ефремове навсегда останется в наших сердцах.

Коллектив ОАО «Спецмаш» и редакция журнала.


Г. Рудианов, полковник запаса, доцент

Точная стрельба в любую погоду

Средства метерологического обеспечения стрельбы артиллерии Российской Армии

Одним из важнейших показателей эффективности действий артиллерии является точность стрельбы, поэтому улучшению данного показателя всегда уделялось повышенное внимание. Основная сложность при этом заключается в том, что большинство артиллерийских боеприпасов являются неуправляемыми, т.е. после выстрела снаряд подвержен дестабилизирующему влиянию порывов ветра и изменения плотности воздуха, и повлиять на траекторию снаряда в процессе полета уже невозможно.

Влияние атмосферы на полет снаряда можно разделить на следующие факторы: влияние ветра (продольной и боковой составляющей) и влияние плотности воздуха. Продольный ветер изменяет дальность падения снаряда, а боковой ветер смещает снаряд по направлению. Плотность воздуха определяет силу лобового сопротивления, а следовательно, изменяет дальность падения снаряда (плотность воздуха в наземной артиллерии учитывается через температуру воздуха и наземное давление). Вплоть до начала XX в. (а зачастую и сейчас) при подготовке к стрельбе использовался способ пристрелки, при котором не учитывались параметры атмосферы. Однако такой способ не обеспечивает скрытности огневых позиций, обуславливает повышенный расход боеприпасов, а также не применим при отсутствии видимости. Поэтому основным считается способ полной подготовки стрельбы, требующий, помимо других факторов (топографических и баллистических), учитывать параметры атмосферы.

Как известно, артиллерийские таблицы стрельбы составлены для нормальных атмосферных условий2*2
  * «Нормальные атмосферные условия" рассчитаны и предложены советским ученым Д. А. Вентцелемв 1927 г.


[Закрыть]
. Задача метеорологической подготовки – определение отклонений метеорологических условий от нормальных (табличных), необходимых для расчета установок для стрельбы. Считается, что ошибки метеоподготовки вносят основной вклад в погрешности стрельбы. Не учет метеопараметров может привести к ухудшению точности стрельбы по дальности и направлению, достигающую тысячу метров и более. Особенно сильное влияние оказывает ветер на полет реактивного снаряда на активном участке траектории (это обусловлено особенностями баллистики реактивных снарядов).


Мачта десантного метеокомплекта с датчиками ветра, температуры и влажности.


История развития

С развитием артиллерии и необходимостью повышения эффективности стрельбы перед учеными-артиллеристами встала задача учета метеопараметров при подготовке стрельбы. Для этого необходимо измерять метеопараметры в слое атмосферы, включающем траекторию снаряда. На заре развития аэрологии применялись различные методы измерения, в том числе и достаточно экзотические, например, с помощью воздушных змеев и аэростатов с установленной регистрирующей аппаратурой.

Для регистрации метеопараметров на воздушный змей устанавливались самописцы, регистрирующие температуру воздуха и скорость ветра (с помощью флюгарки) на бумажную ленту. Высота змея определялась приближенно, по длине троса и углу его наклона по отношению к горизонту. В процессе подъема змея фиксировалось текущее время и длина троса (с целью обеспечения возможности сопоставления высоты и метеопараметров). После подъема на максимальную высоту змей с помощью троса спускался на землю и производилась дешифровка метеоинформации и сопоставление ее с высотой. Направление ветра определялось по направлению троса.

При использовании аэростата в гондолу помещался метеонаблюдатель, который через определенные промежутки времени производил измерения температуры воздуха (с помощью термометра) и скорости ветра (с помощью анемометра) и передавал эти значения по телефону на наземный пункт.

Направление ветра определялось по направлению троса аэростата.

Точность измерения метеопараметров при использовании данных методов оказалась невысока. Высота подъема змея и аэростата не превышала нескольких сот метров, что было явно недостаточно при стрельбе дальнобойной артиллерией. Но самое главное – при ведении боевых действий существовала вероятность обстрела противником аэростата, что подвергало метеонаблюдателя опасности. В результате широкого распространения данные методы не получили.

Для проведения комплексного (температурно-ветрового) высотного зондирования атмосферы в 1930 г. в СССР профессор П.А. Молчанов разработал метеорологический радиозонд, который прикреплялся с помощью шнура к резиновой оболочке, наполненной легким газом (водородом), и выпускался в свободный полет. В процессе подъема радиозонд измерял температуру воздуха и передавал с помощью радиопередатчика телеметрическую информацию с помощью азбуки Морзе в эфир. Сигналы принимались оператором с помощью радиоприемника на слух, записывались вручную на бумаге, затем раскодировались и пересчитывались в температуру. Ветер определялся измерением положения шара (вертикального и горизонтального углов) в пространстве в определенные моменты времени с помощью двух теодолитов, размещенных на известном расстоянии. Измеренные углы и известное расстояние (база) между теодолитами на основе теоремы синусов пересчитывались в высоту подъема шара и ветровые характеристики. Затем рассчитанные метеопараметры сопоставлялись с высотой. При использовании данного способа значительно упростилась организация зондирования и повысилась точность метеоизмерений, поэтому он применялся в годы Великой Отечественной войны3*3
  * Большую роль сыграло метеообеспечение стрельбы артиллерии при прорыве блокады Ленинграда. Сплошная облачность, характерная для зимних месяцев, делала невозможным проведение зондирования теодолитным способом. Однако артиллерийские метеорологи дожидались редких ясных дней, проводили зондирование и передавали метеоданные в артиллерийские подразделения. Это позволяло на основе полной подготовки производить внезапную стрельбу (без пристрелки).


[Закрыть]
, а также вплоть до 1950-х гг. Высота зондирования составляла 2-3 км.

Тем не менее, данный способ требовал от операторов высокой квалификации, являлся трудоемким и дорогостоящим (вследствие высокой стоимости радиозонда). Кроме того, оптический метод (использование теодолитов) обуславливал малую высоту зондирования (2-3 км), а при плохой видимости данный способ вообще был неприменим.

Основным недостатком теодолитного способа измерения ветра, ограничивающим область его применения, являлось обязательное условие оптической видимости. Поэтому в 1950-х гг. для зондирования атмосферы применялась радиолокационная станция (РЛС) орудийной наводки СОН-2 метрового диапазона длин волн.

К оболочке, наполненной водородом, подвязывался уголковый отражатель и радиозонд. РЛС измеряла сферические координаты уголкового отражателя (т.е. его азимут, угол места и наклонную дальность), а радиозонд определял и передавал на наземную станцию информацию о температуре воздуха азбукой Морзе. Сферические координаты радиозонда снимались операторами РЛС с приборных шкал и фиксировались вручную. Сигналы от радиозонда принимались оператором с помощью радиоприемника на слух и записывались на бумаге. Путем совместной обработки координатной и телеметрической информации, а также учитывая значение наземного давления атмосферы, рассчитывался метеобюллетень, содержащий данные о состоянии атмосферы. Так же как и при использовании теодолитного способа, оператор должен был иметь высокую квалификацию, чтобы записывать на слух метеоинформацию, не допуская ошибок. Ручная запись координат обуславливала трудоемкость способа, а также вносила вероятность ошибок.

С целью повышения автоматизации и удобства выполнения трудоемких расчетов в начале 1960-х гг. разработали специализированную артиллерийскую радиотехническую метеостанцию (АРМС), включавшую радиолокационную станцию РМС-1 сантиметрового диапазона с радиозондом РКЗ-1.

В отличие от предыдущего способа, радиозонд РКЗ-1 не только измерял температуру воздуха, но и формировал ответный сигнал на зондирующий импульс передатчика РМС-1. Это обеспечило возможность измерять дальность до радиозонда и его угловые координаты, что, в свою очередь, позволило обойтись без уголкового отражателя и за счет использования радиозондового ответчика существенно снизить мощность передатчика РМС-1. В результате существенно повысилась радиолокационная скрытность РЛС, а также уменьшились массогабаритные характеристики передатчика. В РМС-1 координаты радиозонда и телеметрическая информация отпечатывались на бумажную ленту автоматически, что повысило степень автоматизации обработки информации, а также появилась объективность представления информации. Однако расчет метеобюллетеня по-прежнему осуществлялся вручную, что требовало от вычислительного отделения достаточно высокой квалификации.

Комплекс АРМС состоял на вооружении метеовзвода. Вычислительное отделение метеовзвода производило расчет метеобюллетеней «Метеосредний», «Метеоракетный», «Метеозвук»4*4
  * «Метеосредний» («Метео-11») – документ, содержащий средние значения метеопараметров в слоях от земли до стандартных высот (максимальная высота – 30 км). Meтеоракетный» («Метео-44») – документ, содержащий: температуру, направление и скорость ветра на высоте 24 км и 34 км, а также температуру на высоте 44 км, 54 км и 64 км. Метеоданные на больших высотах рассчитываются методом экстраполяции. «Метеозвук» – документ, содержащий метеопараметры, необходимые для работы комплексов звуковой разведки.


[Закрыть]
и некоторых других. Метеовзвод находился в составе мотострелковой (танковой) дивизии и обеспечивал стрельбу артиллерийских подразделений. В ракетную бригаду, вооруженную оперативно-тактическим ракетным комплексом 9К72 «Эльбрус»5*5
  * Поскольку оперативно-тактический ракетный комплекс 9К72 снят с вооружения и заменен на комплекс «Точка» 9К79, имеющий автономную инерциальную систему управления и не требующий метеоподготовки, то метео батарею из ракетной бригады изъяли.


[Закрыть]
, входила метеобатарея. Она включала три метеовзвода, осуществляющих метеообеспечение трех отдельных ракетных дивизионов. Метеобатарея также входила в состав реактивной бригады.


Измерительный блок десантного метеокомплекта.


На современном этапе

Как известно, на точность стрельбы реактивными снарядами существенное влияние оказывает ветер на активном участке траектории (АУТ). Поэтому для более точного учета ветра на АУТ в реактивной батарее организуется метеопост, на вооружении которого имеется ветровое ружье ВР-2. Оно устанавливается вертикально, а затем с помощью зондировочного патрона ЗП-1 или ЗП-2 свинцовая пуля выбрасывается из канала ствола. После выстрела находят пулю (для повышения заметности к ней привязывается лента красного цвета) и измеряют расстояние до места падения (с помощью мерной ленты или буссоли). Средняя скорость ветра в слое определяется по измеренной дальности с помощью таблицы.

Поскольку существует вероятность отсутствия метеобюллетеня (в связи с выходом из строя метеокомплекса, нарушением связи и т.д.), в артиллерийских дивизионах также создаются метеорологические посты. Они производят наземные метеоизмерения и по данным измерениям составляют бюллетень, получивший название «Метеоприближенный». Основным прибором метеопоста дивизиона является десантный метеокомплект (ДМК), измеряющий наземные значения температуры, направления и скорости ветра, давления и влажности.

В конце 1970-х гг. бурное развитие в СССР электроники и цифровой вычислительной техники обусловило возможность перейти на новый этап развития метеорологического обеспечения. Так, был разработан и в 1985 г. принят на вооружение метеорологический радиотехнический комплекс МРК-1 с радиозондом МРЗ-4 или МРЗ-З6*6
  * Радиозонд МРЗ-4 используется для метеообеспечения стрельбы артиллерии, а МРЗ-З – для синоптических целей.


[Закрыть]
. В этом комплексе обработка радиолокационной и телеметрической информации, а также составление метеобюллетеня производится автоматически с помощью бортовой ЭВМ, что значительно облегчает работу расчета и исключает вычислительные ошибки. Способ проведения зондирования атмосферы остался классический: передатчик РЛС излучает СВЧ-импульсы, которые через некоторое время достигают радиозонда. Радиозонд отвечает на запросные импульсы, и этот ответ достигает антенны наземной РЛС. По времени задержки ответного сигнала относительно запросного импульса определяется дальность до радиозонда, а по излучению радиозонда методом пеленгации – его угловые координаты. Кроме того, радиозонд фиксирует температуру воздуха и передает температурную информацию в телеметрическом виде на РЛС.

В метеокомплексе МРК-1 применили ряд прогрессивных решений по сравнению с предыдущими поколениями. Во-первых, автоматизация расчета метеобюллетеня с помощью ЭВМ позволила существенно снизить требования к обученности расчета РЛС и исключить вычислительные ошибки. Во-вторых, за счет перехода на новую элементную базу (микросхемы, транзисторы) удалось существенно снизить массогабаритные характеристики всей аппаратуры, что позволило разместить ее на одном автомобиле Урал-375, тем самым повысив мобильность комплекса.

Однако данный метеокомплекс имеет и недостаток. Использованный принцип определения дальности до радиозонда подразумевает необходимость излучения СВЧ-энергии. По этой причине МРК-1 может легко обнаруживаться радиотехнической разведкой противника и подавляться различными способами. В связи с активизацией РЭБ в современной войне данный недостаток является существенным. Учитывая, что комплекс осуществляет метеорологическое обеспечение реактивной бригады, артиллерийской бригады и артиллерийских подразделений мотострелковой бригады, выход его из строя исключает проведение полной подготовки стрельбы указанных соединений и подразделений, что значительно снижает эффективность нанесения огневых ударов в бою и операции. Поэтому требовался новый метеокомплекс, который мог бы работать в скрытном режиме (только на прием) и, следовательно, оставаться трудно обнаруживаемым для радиотехнической разведки противника.


Аппаратная машина метеорологического радиотехнического комплекса МРК-1.


Радиозонд MP3 в сборе с датчиком температуры.


Радиозонд MP3 без крышки с датчиком температуры и батареей.

Перед промышленностью была поставлена задача разработать метеокомплекс с такими же характеристиками, как у МРК-1, но функционирующий без излучения. В результате в 1988 г. на вооружение приняли радиопеленгационный метеорологический комплекс РПМК-1 «Улыбка» (1Б44), спроектированный в ОКБ «Пеленг» и имеющий два режима: радиолокационный (такой же, как в МРК-1, с излучением СВЧ-энергии)и радиопеленгационный (без излучения СВЧ-энергии). Принцип определения дальности до радиозонда в радиопеленгационном режиме основан на распределении Больцмана7*7
  * Распределение вероятностей различных энергетических состояний идеальной термодинамической системы (идеальный газ) в условиях термодинамического равновесия.


[Закрыть]
, связывающем давление воздуха с высотой при определенной температуре.

Для обеспечения пеленгационного режима предназначался новый радиозонд (МРЗ-5), включающий датчики температуры и давления, измерительный радиоблок (преобразующий температуру и давление в телеметрический сигнал и излучающий пеленг-сигнал) и водоналивную батарею (такую же, как и в радиозонде МРЗ-4). Телеметрическая информация о температуре и давлении воздуха на различных высотах передается на наземную РЛС.

Бортовая ЭВМ обрабатывает информацию и рассчитывает текущую высоту радиозонда. Одновременно РЛС измеряет угловые координаты радиозонда (угол места и азимут). Используя эти данные, ЭВМ определяет дальность до радиозонда. Таким образом, метеорологический комплекс РПМК-1 измеряет сферические координаты радиозонда без излучения в эфир, что обеспечивает его скрытность.

Комплекс РПМК-1 «Улыбка» размещается на двух автомобилях Урал-4320 и одноосном прицепе. На автомобилях находятся РЛС (аппаратная машина) и дизельная электростанция АД-8 (вспомогательная машина). Кроме того, во вспомогательной машине расположен бытовой отсек с местами для отдыха расчета метеорологического комплекса (в передней части кузова), а также одиночный комплект ЗИП и запас радиозондов. На прицепе перевозится запас водорода в баллонах.

Основное различие метеокомплексов МРК-1 и РПМК-1 состоит в том, что первый имеет один режим работы – с излучением СВЧ-энергии (радиолокационный режим), а второй два режима – с излучением СВЧ– энергии и без излучения (радиопеленгационный режим). Оба метеокомплекса в настоящее время состоят на вооружении Российской Армии и предназначены для проведения температурно-ветрового (комплексного) зондирования атмосферы в слое высот полета снаряда, а также составления и передачи в артиллерийские подразделения метеорологических бюллетеней «Метеосредний».

Метеорологические комплексы обеспечивают высоту зондирования до 30 км, что обусловлено максимальной высотой траектории снаряда. Наибольшую высоту траектории снаряда в настоящее время имеет РСЗО 9К58 «Смерч» – 27 км при максимальной дальности стрельбы. В случае стрельбы артиллерии с различными высотами траектории снаряда в метеокомплексах имеется возможность выдачи бюллетеней на промежуточных высотах (по команде оператора) в процессе полета радиозонда. При этом огневому подразделению, стреляющему на меньшие высоты, нет необходимости ждать окончания зондирования, что экономит время на проведение метеоподготовки. Для этого командиру метеовзвода указываются высоты, на которых необходимо выдать метеобюллетени.

Скорость подъема радиозонда определяет важнейшую характеристику метеообеспечения – время зондирования до необходимой высоты. Чем меньше это время, тем меньше погрешность метеообеспечения (определяемая изменчивостью метеопараметров), и большее время, отводимое на метеоподготовку в огневых подразделениях. Существующая скорость подъема радиозонда (достаточно невысокая – 5-6 м/с) обусловлена способом зондирования – радиозонд поднимается на оболочке больших размеров, на которую действует значительное лобовое сопротивление. Уменьшение времени зондирования требует разработки перспективных методов, основанных на иных физических принципах.

Применяемый способ зондирования обуславливает еще один недостаток – необходимость использования водорода (для наполнения оболочек), который хранится в баллонах в сжатом виде. Вес баллона составляет 75 кг, что определяет значительную трудоемкость работ по загрузке и выгрузке баллонов, а также необходимость доставки баллонов с базы хранения на позицию. В комплексах предыдущих поколений (например, РМС-1) наряду с указанным способом применялся способ добычи водорода на позиции (химическим путем). Однако в связи с длительностью, сложностью и пожароопасностью такого процесса в современных метеокомплексах он не применяется.

Боевая работа РПМК-1 заключается в следующем. Метеокомплекс разворачивается на позиции, представляющей открытый участок местности (необходимое условие – отсутствие высоких деревьев, мачт электропередач и т.д., затрудняющих выпуск радиозонда).

Аппаратная и вспомогательная машины соединяются электрическим кабелем. На расстоянии 50-100 м от аппаратной машины развертывается пункт выпуска радиозонда, включающий палатку для наполнения радиозондовой оболочки водородом, прицеп с запасом водорода и радиозонд. На кузове вспомогательной машины устанавливается мачта метеокомплекта, с помощью которого измеряются наземные метеопараметры (ветер, температура, давление и относительная влажность).


Аппаратная машина радиопеленгационного метеорологического комплекса РПМК-1 «Улыбка».


Палатка для наполнения оболочек водородом.


Вспомогательная машина комплекса РПМК-1.


Прицеп для перевозки баллонов с водородом.

Затем производится подготовка радиозонда к полету и наполнение оболочки водородом. После подсоединения батареи питания радиозонд сразу начинает передавать в эфир метеоинформацию, а также излучать сигнал, необходимый для его сопровождения радиолокатором. По данному излучению оператор, находящийся в аппаратной машине, захватывает радиозонд на автоматическое сопровождение. В качестве источника питания радиозонда используется водоналивная одноразовая батарея. Подготовленный радиозонд выпускают в полет по команде командира метеовзвода.

Наземная РЛС (аппаратная машина) в режиме автоматического сопровождения измеряет угловые координаты радиозонда и дальность (в радиолокационном режиме). В радиопеленгационном (скрытном) режиме дальность до радиозонда не измеряется, а вычисляется по измеренному давлению атмосферы в процессе подъема радиозонда. Поскольку радиозондовая оболочка имеет большую парусность и незначительную массу, то в процессе подъема радиозонда его горизонтальное движение соответствует направлению и скорости ветра. Таким образом, измеряя текущие координаты радиозонда, бортовая ЭВМ рассчитывает ветровые характеристики на стандартных высотах бюллетеня. Одновременно определяется температура воздуха (с помощью датчика температуры, установленного на радиозонде), информация о которой передается на наземную РЛС.

Бортовая ЭВМ рассчитывает и составляет метеобюллетень, содержащий средние значения плотности и температуры воздуха, а также направления и скорости ветра на стандартных высотах. Этот метеобюллетень («Метеосредний», или Метео-11) по средствам связи доводится до артиллерийских дивизионов и реактивных батарей (голосом по радио). Из штаба дивизиона метеобюллетень передается в батареи, где старший офицер батареи на основании полученного метеобюллетеня с помощью таблицы стрельбы производит расчет метеопоправок.

Средства связи включают радиостанцию Р-171 на метеокомплексе и радиоприемник, находящийся в дивизионе и настроенный на частоту метеообеспечения. Для автоматизации передачи метеобюллетеня служит аппаратура передачи данных, которая устанавливается на метеокомплексе и на командно-штабную машину, находящуюся в огневых подразделениях. Метеоданные кодируются и передаются по радиоканалу. Это обеспечивает быструю (1-2 с) и безошибочную передачу метеобюллетеня, а также автоматизированный расчет установок для стрельбы в огневых подразделениях8*8
  * В войсках такая аппаратура в настоящее время отсутствует, что связано, по-видимому, с недостаточным вниманием военного руководства к роли метеообеспечения стрельбы артиллерии.


[Закрыть]
.

Процесс зондирования определяется временем развертывания метеокомплекса и временем достижения радиозондом требуемой высоты. Время развертывания составляет 30-35 мин, а время зондирования при высоте подъема 10 км – 27-33 мин. По этой причине требуемое время выдачи метеобюллетеня должно быть согласовано со временем начала стрельбы и доведено до командира метеовзвода.

Основная радиолокационная аппаратура РПМК-1 расположена в аппаратной машине, в кузове-фургоне автомобиля Урал-4320.

По правому борту расположены место оператора с пультом управления и дисплеем, а также стойка с радиолокационной аппаратурой. По левому борту установлены принтер и радиостанция. На передней стенке (отделяющей аппаратный отсек и антенный отсек) находится метеокомплект, измеряющий наземные метеопараметры.

Достоинством метеокомплекса является способ проведения автоматизированного функционального контроля аппаратуры с использованием бортовой ЭВМ.

Метеокомплексы МРК-1 или РПМК-1 входят в состав метеовзвода. Во времена существования дивизий метеовзвод находился в составе мотострелковой (танковой) дивизии, а в состав реактивной бригады входила метеобатарея. В 2008-2010 гг. в результате реорганизации Российской Армии (т.н. период «сердюковщины») роль метеообеспечения в подготовке стрельбы резко снизилась. Дивизии преобразовали в бригады, при этом метеоподразделения в их состав не вошли. В реактивной бригаде «Смерч» метеобатарея сокращена до метеовзвода (несмотря на возможно значительную удаленность дивизионов друг от друга). Таким образом, в мотострелковой (танковой) бригаде артиллерийские подразделения не имеют возможности провести полную подготовку стрельбы. Подготовка стрельбы в настоящее время проводится способом пристрелки, который имеет существенные недостатки (потеря фактора внезапности, повышенный расход боеприпасов и др.). Остается надеяться, что военные ученые и руководство армии со временем осознают роль метеообеспечения в подготовке стрельбы и примут меры для развития соответствующих средств.


Метеокомплекс РПМК-1 «Улыбка» на позиции.


Основные ТТХ комплексов

Наименование характеристикМРК-1 (1Б27)РПМК-1 (1Б44)
Режим зондирования: основной вспомогательныйРадиолокационныйРадиопеленгационный
  Радиолокационный
Высота зондирования, кмДо 30До 30
Скорость подъема радиозонда, м/мин300300
Потребляемая мощность, кВт88
Электропитание220 В, 400 Гц, Зф, Д220 В, 400 Гц, 3 ф, Д
Транспортная базаАвтомобили «Урал», ГАЗ-66 (2 шт.)Автомобили «Урал» (2 шт.), одноосный прицеп
Возимый запас водорода, м³ (колич. баллонов)75(15)110(22)
Время на развертывание и подготовку к зондированию, мин.24-3520-35
Время на свертывание, мин.18-3015-27
Расчет, чел.65
Климатические условия эксплуатации: – температура воздуха; – скорость наземного ветра-50,..+45'С До 25 м/с-50...+45’С До 25 м/с 

Таким образом, проанализировав возможности существующих метеокомплексов, можно сделать следующие выводы.

Достоинствами современных метеокомплексов являются:

1. Автоматизация составления бюллетеня, что практически исключает вычислительные ошибки и снижает требования к уровню обученности расчета.

2. Высокая надежность и простота эксплуатации.

3. Метеокомплекс РПМК-1 «Улыбка» обеспечивает наличие скрытного режима зондирования, что повышает его живучесть в бою.

К их недостаткам можно отнести:

1. Недостаточную точность бюллетеня в нижних слоях атмосферы вследствие большой изменчивости метеопараметров у подстилающей поверхности и значительного удаления метеостанции от огневой позиции. Данный факт затрудняет применение метеокомплекса для метеорологического обеспечения реактивных систем, особенно на активном участке траектории реактивных снарядов. Для повышения точности измерения ветра на АУТ применяются метеопосты артиллерийских дивизионов и реактивных батарей, имеющие на вооружении ветровое ружье ВР-2 и ДМК.

2. Невозможность определения ветра в районе цели на удалении 100 км и более.

3. Высокую трудоемкость и опасность работ, связанная с эксплуатацией водородных баллонов.

Для устранения отмеченных недостатков необходима разработка методов зондирования на иных физических принципах. В настоящее время ведутся разработки бесконтактных методов зондирования, основанных на излучении радиосигнала и анализе ответного сигнала, отраженного от метеообразований (снег, дождь, облака, аэрозоли, неоднородности плотности атмосферы и т.д.). Существенный минус данного способа заключается в том, что если концентрация метеообразований недостаточна (прозрачная атмосфера), то отраженный сигнал отсутствует и метеокомплекс работать не может. Вторым серьезным недостатком является сложность измерения температуры воздуха радиометрическим способом. Третий недостаток – малая высота зондирования (1-2 км), обусловленная низкой отражающей способностью атмосферных неоднородностей.

Отечественной промышленностью разработан опытный образец метеокомплекса «Механизм» (1Б67), в котором реализован данный принцип. Этот радиотехнический комплекс миллиметрового диапазона длин волн предназначен для определения параметров атмосферы в реальном масштабе времени. Принцип измерения скорости ветра основан на использовании эффекта Доплера9*9
  * Частота сигнала, отраженного от движущихся объектов, изменяет свою величину относительно частоты излучаемого сигнала на доплеровскую добавку, которая пропорциональна скорости движения этих объектов.


[Закрыть]
. Однако измерение температуры воздуха в данном комплексе осуществить не удалось.

Главным достоинством метеокомплекса «Механизм» является то, что его применение в каждом дивизионе (батарее) позволит повысить точность метеоподготовки (за счет более точного определения ветра на АУТ и при отсутствии бюллетеня от РПМК-1).

Метеокомплекс «Механизм» планируется применять в артиллерийских и реактивно-артиллерийских дивизионах. Он осуществляет ветровое зондирование атмосферы до высоты 2,6 км, расчет вертикального профиля ветра до 8 км (по результатам зондирования и метеобюллетеня «Метео-11» от 1Б44) и передачу результатов зондирования в автоматизированные системы управления (АСУ) РВиА.

Метеокомплекс работает как автономно, так и с использованием бюллетеня от метеокомплекса РПМК-1 (в этом случае бюллетень от метеокомплекса уточняется по данным своего зондирования). На основании собственных измеренных данных о ветре до высоты 2,6 км и полученного метеобюллетеня бортовой компьютер метеокомплекса «Механизм» производит экстраполяцию ветра до высоты 8 км. При этом точность метеоподготовки повышается.

В состав метеокомплекса входят радиолокатор, блок управления и обработки информации и переносный автоматизированный метеокомплект (ПАМК) для наземных метеоизмерений, (1Б65).

ПАМК разработан вместо ДМК и служит для измерения наземных метеопараметров. Его работа основана на иных физических принципах, использующих свойства ультразвукового луча изменять свои характеристики при различных значениях метеопараметров. Достоинство ПАМК заключается в отсутствии вращающихся механических и инерционных элементов, что повышает точность измерений и снижает стоимость прибора.


    Ваша оценка произведения:

Популярные книги за неделю