Текст книги "Логистика"
Автор книги: Татьяна Савенкова
Жанры:
Деловая литература
,сообщить о нарушении
Текущая страница: 5 (всего у книги 11 страниц)
3. 3. Толкающие и тянущие системы
Управление материальными потоками в рамках производственных логистических систем может осуществляться двумя способами.
Первый вариант – толкающая система. Предметы труда, поступающие на производственный участок, непосредственно этим участком у предыдущего технологического звена не заказываются.
Материальный поток «выталкивается» получателю по команде из центральной системы управления производством (рис. 3.1).
Толкающие модели управления потоками характерны для традиционных методов организации производства. Возможность их применения для логистической организации производства появилась в связи с распространением вычислительной техники. Эти системы позволили согласовывать планы действия всех подразделений предприятия с учетом постоянных изменений.
При этом способе не устанавливаются текущие производственные задания. Производственная программа отдельного технологического звена определяется размером заказа последующего звена. Центральная система управления ставит задачу лишь перед конечным звеном производственной технологической цепи. Тянущая система имеет преимущества перед толкающей, так как персонал цеха в состоянии учесть больше специфических факторов, определяющих размер оптимального заказа, чем это могла бы сделать центральная система управления.
На практике применяются различные варианты толкающих систем, известные под названием «системы МRР». MRP (Material Requirement Planning) – это общепринятая идеология, технология и организация управления промышленными предприятиями. Стандарты MRP – опыт управления предприятиями в условиях конкурентной рыночной среды. Возможность их внедрения обусловлена началом массового использования вычислительнойтехники. Системы MRPхарактеризуются высоким уровнем автоматизации управления, позволяющим реализовывать следующие основные функции:
• обеспечивать текущее регулирование и контроль производственных запасов;
• в реальном масштабе времени согласовывать и оперативно корректировать планы и действия различных служб предприятия – снабженческих, производственных, сбытовых.
Основной недостаток толкающих MRP-систем связан с необходимостью создания и поддержания значительных буферных запасов между производственными подразделениями и этапами технологического цикла.
К преимуществам тянущей системы относятся:
• отказ от избыточных запасов, информация о возможности быстрого приобретения материалов или наличие резервных мощностей для быстрого реагирования на изменение спроса;
• замена политики продажи произведенных товаров политикой производства продаваемых товаров;
• задача полной загрузки мощностей, заменяемая минимизацией сроков прохождения продукции по технологическому процессу;
• снижение оптимальной партии ресурсов и партии обработки;
• сокращение всех видов простоев и нерациональных внутризаводских перевозок.
Вклад в развитие логистической системы внесли концепция just in time – JIT (точно в срок) и внутрипроизводственная система KANBAN (Япония). Система КАNВАN не требует тотальной компьютеризации производства, однако она предполагает высокую дисциплину поставок, а также высокую ответственность персонала. Она позволяет существенно снизить производственные запасы. Тянущие микрологистические системы типа KANBAN, устраняя излишние запасы, могут эффективно работать лишь при относительно коротких производственных циклах,
точном прогнозировании спроса и некоторых других производственно-технологических условиях.
Примером синтеза в производстве продукции ключевых элементов MRP и KANBAN на основе современных информационно-компьютерных технологий служит система ОРТ (Optimized Production Tehnology) – оптимизированная производственная технология, которая относится к классу «тянущих» микрологистических систем, интегрирующих процессы снабжения и производства.
Основной принцип работы этой системы заключается в выявлении в производственном процессе так называемых «узких» мест (критических ресурсов). Эффект системы ОРТ с логистических позиций заключается в снижении производственных и транспортных издержек, уменьшении запасов незавершенного производства, сокращении времени производственного цикла, снижении потребности в складских и производственных площадях, повышении ритмичности отгрузки готовой продукции потребителям.
3. 4. Управление логистической системой на предприятии
В логистической системе класса MRP существуют три базовых блока.
1. Формирование основного плана на основе заказов клиентов и прогноза спроса. Этот организационно-алгоритмический процесс включает процедуру быстрой проверки выполнимости плана по ресурсам, так называемое приблизительное планирование мощности – Rough Gut Capacity Planning.
2. Планирование потребностей, т.е. составление плана-графика изготовления партий изделий собственного производства и плана графика закупки материалов и комплектующих. При этом работают вполне определенные алгоритмы расчета размеров заказов и дат запуска заказов на основе сетевых моделей. На этом этапе выполняется также расчет загрузки ресурсов или балансировка плана-графика по ресурсам – процедура «планирование мощности» – Capacity Planning.
3. Оперативное управление. Процедуры проверки укомплектованности и запуска заказов, управление ходом производства через механизмы производственных циклов, приоритетов, размеров заказов. Учет выполнения операций и заказов. Складской учет.
Система класса MRP направлена на планирование деятельности служб сбыта, снабжения и производства как сквозной график взаимосвязанных заказов. Она должна включать средства бюджетирования и развитую систему управленческого учета, содержать систему бухгалтерского учета или иметь интерфейс с такой системой, работающей в стандартах бухгалтерского учета и отчетности. Кроме того, она должна включать средства, позволяющие смоделировать весь ход производства при данном варианте основного плана, чтобы увидеть возможные будущие проблемы и узкие места. Системы MRP должны поддерживать методы «точно в срок».
Использованию логистики, переходу из концепции в практический инструмент бизнеса как в производстве, так и через дистрибьюторов способствовала логистическая система DRP (Distribution Requirement Planning) – система управления распределением продукции. К числу важных функций DRP, а затем ее расширенных модификаций стали относиться контроль за состоянием запасов, включая расчет точки заказа, организация перевозок, распределение, формирование связей производства, снабжения и сбыта с использованием обеспечивающего комплекса MRP.
Шагом в развитии управления логистической системой на предприятии стала философия всеобщего управления качеством продукции – TQM (Total Quality Management). Основа системы TQM – это управленческий подход, ставящий в центре внимания задачу повышения качества и основанный на участии в решении этой задачи всего коллектива предприятия (организации) на всех стадиях производства и продвижения продукции (услуг), позволяющей достичь долговременного успеха за счет удовлетворения нужд потребителей и благодаря взаимной выгоде как каждого члена предприятия, так и общества в целом. Этот подход применим в равной мере ко всем элементам логистических систем.
3. 5. Гибкие производственно-логистические системы
В гибких производственно-логистических системах организация производственного процесса осуществляется по схеме «склад – станок – склад». Особо эффективна данная схема в мелкосерийном производстве. Она позволяет обеспечивать возможность асинхронной обработки деталей (полуфабрикатов), их оперативную доставку, а также своевременное поступление технологической оснастки к любому рабочему месту. Это позволяет в реальном масштабе времени перейти к непрерывному организационному управлению процессом производства, а также материальными и информационными потоками в действующей производственно-логистической системе.
Гибкие производственно-логистические системы средне– и мелкосерийного производства строятся по секционному принципу.
По назначению секции подразделяются:
^ на станочные;
^ нестаночные;
^ вспомогательные.
Все обслуживаемые секции являются ячейками гибкой производственно-логистической системы. Комплексные ячейки бывают технологическими и производственными.
Общая схема «склад – станок – склад» зависит от технологии обработки, транспортно-перемещающих работ и организации производства. Например, в технологический процесс могут входить дополнительные операции, которые включают движение детали со склада на станок, проходя через секцию монтажа-демонтажа, а затем в накопитель. Транспортно-перемещающие работы для производственных ячеек могут осуществляться также по схеме «склад – станок -… – станок – склад». Движение по этой схеме деталей (полуфабрикатов) производится без привлечения транспортной подсистемы (вручную, рабочими или внутренними транспортерами). Для хранения деталей (полуфабрикатов) между операциями, выполняемыми в производственной ячейке, применяются промежуточные накопители. Таким образом, схема транспортных потоков в производственной ячейке аналогична той, которая используется в гибких автоматических линиях.
Логистическая транспортно-складская система представляет собой комплекс взаимосвязанных автоматизированных транспортных и складских устройств для погрузки, разгрузки, укладки, хранения, транспортировки, временного накопления предметов труда, инструментов и технологической оснастки. Система управления автоматизированной транспортно-складской системой состоит из двух уровней.
Нижний уровень выполняет функции непосредственного управления исполнительными механизмами автоматизированной транспортно-складской системы. Верхний уровень координирует работу исполнительных механизмов, поддерживает информационную модель функционирующей автоматизированной транспортно-складской системы и обеспечивает взаимодействие системы управления автоматизированной транспортно-складской системы с другими подсистемами гибкой производственно– логистической системы. Координация работы включает:
^ синхронизацию алгоритма выполняемых действий;
^ согласование работы параллельно функционирующих механизмов с целью недопущения сбоев и аварийных ситуаций;
^ определение очередности обслуживания заявок с различных рабочих мест и организацию подачи к ним грузоносителей с деталями (полуфабрикатами) и технологической оснасткой в соответствии с программой производства.
Структура и функциональные возможности автоматизированной транспортно-складской системы, как правило, предопределяют конкретный вариант (или набор вариантов) организации производства в гибкой производственно-логистической системе.
В процессе своего функционирования производственно-логистическая система получает с обслуживаемых объектов и одновременно самостоятельно формирует необходимый объем взаимодополняющей оперативной информации, обмен которой, как правило, ведется в режиме активного диалога.
3.6. Качественная и количественная гибкость
Производство в условиях рынка может укрепить свои позиции лишь в том случае, если оно способно быстро реагировать на изменение
спроса. Логистика предлагает адаптироваться к изменяющимся условиям за счет запаса производственной мощности.
Запас производственной мощности возникает при наличии качественной и количественной гибкости производственных систем. Качественная гибкость обеспечивается за счет наличия универсального обслуживающего персонала и гибкого производства. Количественная гибкость может обеспечиваться за счет резерва рабочей силы или резерва оборудования.
Логистическая концепция организации производства предполагает: отказ от избыточных запасов; отказ от завышенного времени на выполнение основных и транспортно-складских операций; отказ от изготовления серий деталей, не имеющих спрос; устранение простоев, оборудования, брака; устранение нерациональных внутризаводских перевозок и др.
3. 7. Перспективы развития производственно-логистической системы
В процессе развития научно-технического прогресса, формирования рынка покупателя, изменения приоритетов в мотивациях потребителей и обострения всех форм конкуренции возрастает динамичность рыночной среды. Гибкая производственно-логистическая система представляет собой совокупность в разных сочетаниях оборудования с числовым программным управлением, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования, систем обеспечения функционирования гибких переналаживаемых систем в автоматическом режиме в течение заданного интервала времени.
Гибкие производственно-логистические системы обладают свойством автоматизированной переналадки в процессе производства продукции произвольной номенклатуры или оказания услуг производственного характера. Они позволяют почти полностью исключить ручной труд при погрузочно-разгрузочных и транспортно-складских работах, осуществить переход к малолюдной технологии. Организация производства по типу гибких производственных систем практически невозможна без применения логистических подходов в управлении материальными и информационными потоками.
Гибкость – способность производственно-логистической системы оперативно адаптироваться к изменению условий функционирования с минимальными затратами и без потерь.
Гибкость станочной системы (гибкость оборудования) отражает длительность и стоимость перехода на изготовление очередного наименования деталей (полуфабрикатов) в пределах закрепленного за гибкой производственно-логистической системой ассортимента. Показателем гибкости принято считать количество наименований деталей, изготавливаемых в промежутках между наладками.
Ассортиментная гибкость отражает способность производственно-логистической системы к обновлению продукции. Основными характеристиками являются сроки и стоимость подготовки производства нового наименования деталей (полуфабрикатов) или нового комплекса логистических операций. Показателем служит максимальный коэффициент обновления продукции или комплекса логистических операций, при котором функционирование производственно-логистической системы остается экономически эффективным.
Технологическая гибкость отражает способность производственно-логистической системы использовать различные варианты технологического процесса для сглаживания возможных отклонений от предварительно разработанного графика производства.
Гибкость объемов производства проявляется в способности производственно-логистической системы рационально изготавливать детали (полуфабрикаты) в условиях динамичности размеров партий запуска. Показателем выступает минимальный размер партии (материальных потоков), при котором функционирование данной системы остается экономически эффективным.
Гибкость расширения системы (гибкость производственно-логистической системы) отражает возможности модулирования и последующего развития (расширения). Показателем служит максимальное число единиц оборудования, которое может быть задействовано в гибкой производственно-логистической системе при сохранении основных проектных решений по логистической (транспортно-складской) системе и системе управления.
Универсальность системы характеризуется множеством деталей (полуфабрикатов), которые потенциально могут быть обработаны в гибких производственно-логистических системах, и оценивается по прогнозному количеству модификаций деталей (полуфабрикатов), которые будут обработаны за весь период ее функционирования. Каждая производственно-логистическая система специализирована не только по своему технологическому назначению, но и по всему спектру производственно-хозяйственных задач.
Планирование и реализация интегрированной и автоматизированной системы логистики как области компьютерного интегрированного производства считаются большой междисциплинарной задачей создания информационной системы планирования.
Подключение отдельных модулей позволяет реализовать интеграцию отдельных модулей, обеспечивающих комплексное объединение ранее децентрализованных, так называемых «островковых» решений. Информационная система характеризуется структуризацией по уровням. При этом соблюдаются следующие предпосылки:
• сбор информации и ее переработка должны быть настолько автономны для каждого уровня, насколько это возможно;
• обмен информацией между уровнями должен быть, по возможности мал;
• подразделения должны быть четко разграничены по содержанию и функциональному смыслу.
Различные варианты системы коммуникаций ведут к детализации планирования, управления и наблюдения в процессе производства. Большое преимущество многоуровневой системы заключается в том, что подготовка информации выполняется раздельно на каждом уровне, и между этими уровнями происходит обмен только необходимой информацией.
Преимущество логистической информационной системы связано с возможностью применения принципа оборота информации. Исходя из показателей, достигнутых в производстве, обратная связь поступает в соответствующие пункты о фактических цифрах реализации, что возможно благодаря информационной системе. На основе этих показателей могут быть осуществлены перепроверка планируемых показателей и приведение их в соответствие исходным данным.
Статистическая обработка результатов работы за длительный промежуток времени приводит к устранению узких мест в производственном процессе и потоках информации.
Планирование и управление процессом производства при наличии компьютерной поддержки обеспечивают синхронизацию логистических операций. Одновременно достигаются высокая наглядность хода выполнения заказа, сокращение запасов, контроль за сроками.
Тема 4. Информационная логистика
4.1. Информационный логистический поток
Информационный поток – это совокупность сообщений, циркулирующих в логистической системе, между логистической системой и внешней средой, которые необходимы для управления и контроля за выполнением логистических операций.
Информационный поток может опережать материальный, следовать одновременно с ним или после него. При этом поток информации может быть направлен как в одну сторону с материальным, так и в противоположную:
• опережающий информационный поток во встречном направлении содержит, как правило, сведения о заказе;
• опережающий информационный поток в прямом направлении – это предварительные сообщения о предстоящем прибытии груза;
• одновременно с материальным потоком идет информация в прямом направлении о количественных и качественных параметрах материального потока;
• вслед за материальным потоком во встречном направлении могут проходить информация о результатах приемки груза, разнообразные претензии или подтверждения.
Информационный поток характеризуется следующими показателями: источником возникновения, направлением движения, скоростью передачи и приема, интенсивностью потока и др.
Управлять информационным потоком можно:
^ изменяя направление потока;
^ изменяя скорость передачи информации;
^ ограничивая или увеличивая объем потока информации.
Измеряется информационный поток количеством обрабатываемой или передаваемой информации за единицу времени. Это может быть количество документов или количество единиц информации, измеряемых в байтах.
Эффективное использование информационной логистики заключается в рациональном управлении информационным потоком по всей логистической сети на всех иерархических уровнях. Информационные потоки в логистических системах имеют свои специфические особенности, которые отличают их от всех других видов информационных потоков. Эти особенности зависят от свойств логистических систем. Логистические информационные потоки имеют следующие характеристики:
• неоднородность (информация, используемая в логистических системах, качественно разнородна);
• множественность подразделений – поставщиков информации;
• множественность подразделений – потребителей информации;
• сложность и трудность практической обозримости информационных маршрутов;
• множественность числа передач единиц документации по каждому маршруту;
• многовариантность оптимизации информационных потоков.
Логистический информационный поток сам по себе достаточно сложная система и делится на ряд составляющих:
• реквизит, представляющий собой элементарную единицу сообщения. Реквизит характеризует количественную или качественную составляющую информационной совокупности.
Например, реквизиты – наименование организации, наименование товара, цена товара и т.п. Каждый реквизит может быть представлен совокупностью символов: цифровых, буквенных, специальных;
• документы, включающие один или несколько показателей с обязательным удостоверением (подписью или печатью) лица, ответственного за содержащуюся в документах информацию.
Большинство документов создается на стадии сбора и регистрации данных, хотя их немалая доля поступает в систему от внешних (вышестоящих и др.) организаций;
• показатель, являющийся результатом счета, взвешивания и т.п. Он служит основой получения, например, сводных бухгалтерских и статистических данных, которые в свою очередь будут входящей информацией при составлении статистических отчетов в разрезе организации, отрасли, региона и т.д.;
• массив, представляющий собой совокупность однородных данных, имеющих единую технологическую основу и объединенных единым смысловым содержанием. Данные (процессы, явления, факты и т.п.), представленные в формализованном виде, пригодном для передачи по каналам связи и для обработки на компьютере. Основными элементами массивов, определяющими их содержание, являются записи.
Записи – это элементы массива, которыми оперируют пользователи при обработке информации. К элементам записей, имеющих единое смысловое значение, относятся информационные поля. Данные, принадлежащие к одному массиву, записываются по общим правилам (в соответствии с технологией накопления, хранения и обработки данных, принятой в организации). Тип массива определяется его содержанием (например, массив материальных нормативов, массив поставщиков материалов), функциями в процессе обработки данных (входной, выходной, промежуточный массивы). Информационный массив, снабженный символическим именем, однозначно определяющим его в информационной системе, называется файлом.
Исходя из неоднородности и множественности поставщиков и потребителей логистических информационных потоков, а также руководствуясь главной целью классификации – упорядочением логистических информационных потоков, первым шагом в классификационной группировке является деление по признаку, позволяющему образовать однородные по видам деятельности (или по функциям) информационные потоки.
Информационный поток, как правило, выражается в определенном виде документации (накладные, счета-фактуры, приказы и пр.). В соответствии с существующим делением документации по видам деятельности логистические информационные потоки могут быть классифицированы на распорядительные (приказы, распоряжения), организационные (инструкции, протоколы, положения), аналитические (обзоры, сводки, докладные записки), справочные (справки), научные (статьи, рефераты), технические (документации по технике безопасности).
Передача и прием информационных потоков осуществляются с помощью носителей памяти человека, документа, магнитного носителя, устной речи и т.п. Логистические информационные потоки могут быть переданы на бумажные, электронные, смешанные носители информации. Носитель информации – это любое материальное средство, фиксирующее информацию. Информационный поток может состоять из бумажных и электронных носителей, кс горые дублируют или дополняют друг друга.
Для того чтобы человек мог воспринять любой вид информации, должна быть осуществлена ее индикация. В зависимости от индикации информационные потоки делятся:
• на цифровые (цифровая запись в документе, цифровое изображение на мониторе);
• алфавитные (словесная запись в документе, на экране монитора);
• символические (условное изображение на чертежах, организационных схемах);
• предметно-визуальные (телеизображение, фотография).
Структура информационных потоков определяет их однородность и неоднородность. Однородные информационные потоки характеризуются единым видом носителя, единой функциональной принадлежностью, единым видом документационного сопровождения.
Неоднородные информационные потоки соответственно не отвечают всем перечисленным требованиям.
По периодичности информационные потоки делятся на регулярные, соответствующие регламентированной во времени передаче данных, и оперативные – обеспечивающие связь в любой необходимый момент времени.
По степени взаимосвязи информационные потоки делятся на взаимосвязанные и невзаимосвязанные. Степень взаимосвязи характеризуется количеством видов информации, взаимосвязанных с данным видом информации.
По объему информационные потоки делятся на малообъемные, среднеобъемные и высокообъемные. Объем информации измеряется количеством символов (алфавитных, цифровых и служебных знаков) или байтов.