Текст книги "Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы"
Автор книги: Стивен Вайнберг
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 6 (всего у книги 19 страниц)
Некоторые ученые и писатели, например Фритьоф Капра[65]Б65
Capra F. The Tao of Physics (Boston: Shambhala, 1991).
[Закрыть], приветствуют те стороны квантовой механики, которые, как они считают, дают возможность примирить научное познание с более тонкими проблемами нашего существования. Я бы тоже радовался, если бы считал такую возможность реальной, но полагаю, что это не так. Квантовая механика невероятно важна для физики, но я не могу обнаружить в ней каких-то откровений, касающихся жизни человека, принципиально отличающихся от тех, которые нам известны в рамках ньютоновской физики.
Так как эти вопросы все еще вызывают споры, я пригласил для их обсуждения двоих хорошо известных личностей.
Диалог о смысле квантовой механики
Крошка Тим18)А18
См.: Диккенс Ч. Рождественская песнь в прозе / Пер. Т. Озерской // Диккенс Ч. Приключения Оливера Твиста. Повести и рассказы. М: Художественная литература, 1969 (Библиотека всемирной литературы. Серия вторая. Т. 82). – Прим. перев.
[Закрыть]. Я думаю, квантовая механика – замечательная наука. Мне никогда не нравилось, что в ньютоновской механике, зная положение и скорость каждой частицы в данный момент, вы можете полностью предсказать будущее поведение системы, так что при этом не остается места ни для свободной воли, ни вообще для особой роли людей. В квантовой механике все ваши предсказания расплывчаты и вероятностны, ничто не находится в определенном состоянии до тех пор, пока человеческие существа не совершат акт наблюдения. По-моему, что-то похожее говорили некоторые восточные мистики.
Дядюшка Скрудж. Э-э! Я, может быть, и поменял свое мнение насчет Рождества, но чепуху-то я всегда узнаю. Конечно, у электрона нет определенных значений положения и скорости в один и тот же момент времени, но это просто означает, что такие величины не подходят для описания электрона. В каждый момент времени и электрон, и любой коллектив частиц имеют волновую функцию. Если есть человек, наблюдающий частицы, то и состояние всей системы, включая человека, описывается волновой функцией. Эволюция волновой функции так же детерминирована, как и орбиты частиц в ньютоновской механике. На самом деле она еще более детерминирована, так как уравнения, определяющие то, как волновая функция меняется со временем, слишком просты, чтобы обладать хаотическими решениями[66]Б66
Физики иногда используют термин «квантовый хаос», имея в виду квантовые системы, которые бы ли бы хаотическим и в классической физике. Однако сами квантовые системы никогда не могут быть хаотическими.
[Закрыть]. Так где же твоя свободная воля?
Крошка Тим. Меня поражает, что вы отвечаете столь ненаучным образом. Волновая функция не представляет объективной реальности, так как ее нельзя измерить. Например, если мы наблюдаем, что частица находится здесь, мы не в силах из этого заключить, что волновая функция до наблюдения имела нулевое значение там; у нее могли быть любые значения здесь и там и нам просто посчастливилось обнаружить частицу здесь, а не там в результате акта наблюдения. Но если волновая функция не реальна, то почему же вы придаете так много значения тому, что она эволюционирует детерминированным образом? Все, что мы когда-либо можем измерить, это величины типа положения, импульса или спина, и для них мы можем получить только вероятностные предсказания. При этом до тех пор, пока какой-нибудь человек не вмешивается с тем, чтобы измерить эти величины, мы вообще не можем сказать, что частица находится в каком-то определенном состоянии.
Дядюшка Скрудж. Мальчик мой, похоже, ты проглотил безо всякой критики родившуюся в девятнадцатом веке доктрину, называемую позитивизмом, которая утверждает, что наука должна иметь дело только с теми вещами, которые можно реально наблюдать. Согласен, что ни в одном эксперименте невозможно измерить волновую функцию. Ну и что? Много раз повторив измерения для одного и того же начального состояния, ты можешь узнать, какой должна быть волновая функция этого состояния и применять результаты для проверки наших теорий. Чего же еще требовать? Тебе, на самом деле, нужно привести свои мысли в соответствие с двадцатым веком. Волновые функции реальны настолько же, насколько реальны кварки и симметрии: их просто удобно включить в наши теории. Любая система находится в определенном состоянии, независимо от того, наблюдает ее какое-либо человеческое существо или нет; состояние описывается не своими положением или импульсом, а волновой функцией.
Крошка Тим. Не думаю, что мне стоит спорить о том, что реально, а что нет, с тем, кто проводит вечера, прогуливаясь с духами. Позвольте мне только напомнить вам серьезную проблему, с которой сталкиваешься немедленно, как только представляешь, что волновая функция реальна. Эта проблема была упомянута во время той атаки на квантовую механику, которую предпринял Эйнштейн на Сольвеевском конгрессе 1933 г. в Брюсселе, а затем в 1935 г. была изложена им письменно в знаменитой статье совместно с Борисом Подольским и Натаном Розеном. Представьте систему, состоящую из двух электронов и приготовленную таким образом, что в какой-то момент времени электроны находятся на известном большом расстоянии друг от друга и обладают известным суммарным импульсом. (Это не нарушает соотношение неопределенностей Гейзенберга. Например, можно с любой желаемой точностью измерить расстояние между электронами, послав от одного к другому пучок света очень короткой длины волны; это, конечно, исказит импульс каждого из электронов, но в силу закона сохранения импульса, не изменит их полный импульс.) Если затем кто-то измеряет импульс первого электрона, то импульс второго также можно немедленно найти, поскольку известна сумма импульсов. С другой стороны, если кто-то измеряет положение первого электрона, то и положение второго становится немедленно известным, так как измерено расстояние между ними. Но все это означает, что наблюдая состояние первого электрона, вы можете мгновенно изменить волновую функцию, так что второй электрон станет обладать определенным положением или определенным импульсом, даже несмотря на то, что вы и близко не подходили ко второму электрону. И что же, вы продолжаете настаивать на реальности волновой функции, которую можно менять таким способом?
Дядюшка Скрудж. Я готов все это принять. Точно так же, меня не беспокоит проблема с выполнением закона специальной теории относительности, запрещающего распространение сигналов со скоростью, большей скорости света; нет никакого противоречия и с этим законом. У физика, который измеряет импульс второго электрона, нет способов узнать, не исказилось ли значение, измеренное им, в результате наблюдения первого электрона. Все, что ему известно, что электрон перед измерением мог в том числе иметь и определенное положение, и определенный импульс. Даже Эйнштейн не смог бы воспользоваться измерениями подобного рода, чтобы послать мгновенный сигнал от одного электрона к другому. (Можно было бы заметить, что Джон Белл сравнительно недавно столкнулся с еще более фантастическими следствиями квантовой механики, касающимися атомных спинов, а физики-экспериментаторы показали[67]Б67
В значительной степени это сделал А. Аспект.
[Закрыть], что спины в атомных системах ведут себя так, как предсказывает квантовая механика, т.е. на самом деле законы квантовой механики отражают устройство самого мира.) Мне кажется, что ничто из сказанного не может заставить нас отказаться от мыслей о волновых функциях как о реальности; просто волновая функция ведет себя непривычным для нас образом, допуская мгновенные изменения, влияющие на волновую функцию всей Вселенной. Я думаю, что тебе надо перестать выискивать в квантовой механике глубокие философские откровения и предоставить мне возможность пользоваться ею.
Крошка Тим. Прошу меня извинить, но я должен заметить, что если вы готовы признать мгновенные изменения волновой функции во всем пространстве, то, как я подозреваю, вы готовы признать что угодно. Кроме того, надеюсь, вы простите меня, если я скажу, что вы не очень последовательны. Вы сказали, что волновая функция любой системы эволюционирует во времени совершенно детерминированным образом и что вероятности появляются только тогда, когда мы производим измерения. Но, согласно вашей точке зрения, не только электрон, но также измерительный прибор и человек, производящий с его помощью наблюдения, – все они образуют одну большую систему, описываемую волновой функцией с невероятно большим количеством значений, причем все эти значения меняются причинным образом даже во время измерения. Но если что-то происходит детерминированно, откуда же берется неопределенность в результатах измерений? Откуда берутся вероятности, когда производятся измерения?
* * *
Я испытываю симпатию к обеим сторонам в этом споре, хотя мне ближе реалист Скрудж, а не позитивист Крошка Тим. Я предоставил Крошке Тиму последнее слово, потому что проблема, поднятая им в последних фразах, является одной из самых важных загадок в интерпретации квантовой механики. Ортодоксальная копенгагенская интерпретация, которую я до сих пор излагал, базируется на резком разграничении физической системы, управляемой законами квантовой механики, и прибора, используемого для изучения этой системы и описываемого классически, т.е. согласно законам доквантовой физики. Наша мифическая частица может иметь волновую функцию со значениями как здесь, так и там, но когда ее наблюдают, она каким-то образом становится с достоверностью равной либо здесь, либо там, причем совершенно непредсказуемым образом, если не считать вероятностей. Но это различие в подходах к системе, которую наблюдают, и прибору, которым это делают, есть несомненная фикция. Мы полагаем, что квантовая механика управляет всем во Вселенной, не только поведением отдельных электронов, но и поведением измерительных приборов и самих людей, использующих эти приборы. Если волновая функция описывает измерительный прибор, так же как и наблюдаемую систему, и при этом эволюционирует детерминированно по законам квантовой механики даже во время измерения, то, как спрашивает Крошка Тим, откуда же берутся вероятности?
Неудовлетворенность искусственным разделением систем и наблюдателей в рамках копенгагенской интерпретации привела многих ученых к совершенно иной точке зрения, к интерпретации квантовой механики на основе идеи о множественности миров или множественности историй. Впервые такая интерпретация была представлена в диссертации Хью Эверетта из Принстона. Согласно этой точке зрения, измерения типа здесь-там над нашей мифической частицей представляют определенное взаимодействие между частицей и прибором, в результате которого волновая функция комбинированной системы перестраивается так, что имеет заметные значения лишь для двух конфигураций; одно значение соответствует конфигурации, в которой частица находится здесь и указатель прибора указывает на здесь, другое значение соответствует возможности, что частица находится там и прибор показывает там. Существует и определенная волновая функция, возникшая совершенно детерминированным образом по законам квантовой механики в результате взаимодействия частицы с измерительным прибором. Однако два значения волновой функции соответствуют двум состояниям с разной энергией, а так как измерительный прибор макроскопический, то разница в энергиях двух состояний очень велика и два значения волновой функции осциллируют на сильно отличающихся частотах. Наблюдение положения указателя на приборе напоминает случайную настройку на одну из двух радиостанций, WZ-ЗДЕСЬ и YX-TAM; если несущие частоты достаточно разделены, интерференция не возникает и вы принимаете ту или другую радиостанцию с вероятностью, пропорциональной интенсивности сигнала. Отсутствие интерференции между двумя значениями волновой функции означает, что, по существу, мировая история расщепилась на две истории, в одной из которых частица находится здесь, а в другой – там, и с этого момента две истории развиваются без взаимодействия друг с другом[68]Б68
Явление, при котором две мировые истории прекращают интерферировать друг с другом, называется «декогерентностью». Изучение вопроса о том, как это происходит, привлекло позднее внимание теоретиков, в том числе Мюррея Гелл-Манна и Джеймса Хартля и независимо Брайса Де Витта.
[Закрыть].
Применяя правила квантовой механики к комбинированной системе из частицы и измерительного прибора, можно на самом деле доказать, что вероятность обнаружить частицу здесь, а указатель прибора в положении здесь, пропорциональна квадрату значения здесь волновой функции частицы перед тем самым мгновением, когда она начала взаимодействовать с измерительным прибором, что как раз и постулируется в копенгагенской интерпретации квантовой механики. Однако вопрос Крошки Тима все еще остается без ответа. При вычислении вероятности того, что комбинированная система из частицы и измерительного прибора имеет одну из двух конфигураций, мы неявно все-таки протащили наблюдателя, который считывает показания прибора и обнаруживает надписи здесь или там. Хотя при этом прибор рассматривается квантово-механически, наблюдатель считается классическим; он обнаруживает, что указатель совершенно определенно указывает либо на здесь, либо на там, причем это нельзя предсказать заранее иначе как вероятностным образом. Конечно, можно и наблюдателя рассматривать квантово-механически, но ценой введения другого наблюдателя, который детектирует результаты наблюдений первого, читая, например, статью в физическом журнале. И так далее.
Множество физиков работало над тем, чтобы очистить основы квантовой механики от любых утверждений о вероятностях[69]Б69
Вот неполный перечень ссылок: Hartle J.В. Quantum Mechanics of Individual Systems // American Journal of Physics (1968): 704; Witt B.S. De and Graham N. // The Many-Worlds Interpretation of Quantum Mechanics (Princeton: Princeton University Press, 1973), pp. 183–86; Deutsch D. Probability in Physics. Oxford University Mathematical Institute preprint, 1989; Aharonov Y.
[Закрыть] или каком-то ином интерпретирующем постулате, различающем системы и наблюдателей. То, что требуется, это квантовомеханическая модель с волновой функцией, описывающей не только различные изучаемые системы, но и как-то учитывающей наличие сознательного наблюдателя. Имея такую модель, можно попытаться показать, что в результате повторяющихся взаимодействий наблюдателя с отдельными системами волновая функция комбинированной системы с достоверностью эволюционирует к конечной волновой функции, причем наблюдатель в этом конечном состоянии уверен, что вероятности индивидуальных измерений совпадают с предсказаниями в рамках копенгагенской интерпретации. Я не убежден, что такая программа исследований успешно завершена, но думаю, что это может произойти рано или поздно. И тогда реализм Скруджа одержит полную победу.
Самое удивительное в том, насколько все это не имеет значения. Большинство физиков использует квантовую механику в повседневной работе, не заботясь о фундаментальных проблемах ее интерпретации. Будучи здравомыслящими людьми, имеющими очень мало времени на то, чтобы успевать следить за новыми идеями и данными в своей собственной области, они совершенно не тревожатся по поводу всех этих фундаментальных проблем. Недавно Филип Канделас (с физического факультета Техасского университета) ждал вместе со мной лифт, и разговор зашел о молодом теоретике, подававшем надежды на старших курсах и затем исчезнувшем из вида. Я спросил Фила, что помешало бывшему студенту продолжать исследования.
Фил грустно покачал головой и сказал: «Он попытался понять квантовую механику».
Философия квантовой механики настолько не имеет отношения к ее реальному использованию, что начинаешь подозревать, что все глубокие вопросы о смысле измерения на самом деле пусты, порождены несовершенством нашего языка, который создавался в мире, практически управляющемся законами классической физики. Но я признаю, что ощущаю некоторый дискомфорт, всю жизнь используя теорию, которую никто толком не понимает. Нам ведь на самом деле необходимо лучше понимать квантовую механику, если мы хотим заниматься квантовой космологией, т.е. применением квантовой механики ко Вселенной в целом, когда даже вообразить нельзя, что существует какой-то внешний наблюдатель. Сейчас Вселенная слишком огромна для квантовой механики, чтобы это имело значение, но, согласно теории Большого взрыва, в прошлом было время, когда частицы находились настолько близко друг к другу, что квантовые эффекты должны были быть существенными. В наши дни никто даже не знает правил применения квантовой механики в подобной ситуации.
С моей точки зрения, еще интереснее вопрос о том, является ли квантовая механика с необходимостью истинной наукой. Квантовая механика имела феноменальный успех при объяснении свойств частиц, атомов и молекул, так что мы уверены, что она является очень хорошим приближением к истине. Но вопрос заключается в том, не существует ли другой логически возможной теории, предсказания которой очень близки, но все же отличаются от предсказаний квантовой механики. Легко придумать способы небольшого изменения почти всех физических теорий. Например, ньютоновский закон тяготения, утверждающий, что сила тяготения между двумя частицами убывает обратно пропорционально квадрату расстояния между ними, можно немного изменить, предположив, что сила убывает по закону, содержащему другую степень расстояния, которая близка, но все же отличается от степени −2. Чтобы экспериментально проверить теорию Ньютона, следует сравнить наблюдения над телами Солнечной системы с теми предсказаниями, которые получаются в случае силы, убывающей по закону с некоторой неизвестной степенью расстояния, и таким образом установить предел того, насколько этот закон может отклоняться от закона обратных квадратов. Даже общую теорию относительности можно немного изменить, например включив более сложные малые слагаемые в уравнения поля или введя в теорию новые слабовзаимодействующие поля. Поразительно, что до сих пор не удалось найти логически непротиворечивой теории, которая была бы близка к квантовой механике, но при этом отличалась от нее.
Несколько лет тому назад я сам попытался построить такую теорию. У меня не было серьезных намерений предложить альтернативу квантовой механике. Я всего лишь хотел построить хоть какую-нибудь теорию, предсказания которой были бы близки, но не совпадали с предсказаниями квантовой механики и которую можно было бы экспериментально проверить. Для этой цели я попытался предложить физикам-экспериментаторам идею такого эксперимента, который мог бы служить интересным количественным тестом справедливости квантовой механики. Когда речь идет о проверке само́й квантовой механики, а не какой-то конкретной квантовомеханической теории вроде стандартной модели, то для того, чтобы экспериментально различить квантовую механику и альтернативную теорию, следует проверить выполнение какого-то весьма общего свойства любой конкретной квантовомеханической теории. В поисках альтернативы квантовой механике я вцепился в одно общее свойство этой теории, всегда казавшееся несколько более произвольным, чем другие, а именно в свойство линейности.
Нужно сказать несколько слов о смысле линейности. Вспомним, что значения волновой функции любой системы меняются со скоростями, зависящими от этих значений, а также от природы системы и окружающей среды. Например, скорость изменения значения здесь волновой функции нашей мифической частицы равна некоторой константе, умноженной на значение здесь, плюс другая константа, умноженная на значение там. Динамический закон такого конкретного вида называется линейным, так как если начать менять одно значение волновой функции в произвольный момент времени и построить график любого значения волновой функции в любой последующий момент в зависимости от меняющегося значения, то при прочих равных условиях этот график будет прямой линией. Грубо говоря, отклик системы на любое изменение ее состояния пропорционален этому изменению. Одним из очень важных следствий такой линейности, как отмечал Скрудж, является то, что в квантовой механике не возникает хаотического поведения; малое изменение начальных условий приводит только к малым изменениям значений волновой функции в любой последующий момент времени.
Существует множество классических систем, линейных в указанном смысле, но линейность в классической физике никогда не бывает точной. Наоборот, в квантовой механике предполагается, что она линейна при любых обстоятельствах. Если кто-то собирается поискать способы изменения квантовой механики, то естественнее всего попробовать исследовать возможность, что эволюция волновой функции не точно линейна.
После некоторых усилий я построил слегка нелинейную альтернативу квантовой механике, казавшуюся физически осмысленной и легко проверяемой с очень высокой точностью. Тестом служило общее следствие линейности, заключающееся в том, что частоты колебаний любой линейной системы не зависят от способа возбуждения этих колебаний.
Например, Галилей заметил, что частота колебаний маятника не зависит от того, насколько велик размах колебаний. Это верно потому что пока амплитуда колебаний достаточно мала, маятник является линейной системой; скорости изменения его отклонения и его импульса пропорциональны, соответственно, импульсу и отклонению. Все часы используют это свойство колебаний линейных систем, идет ли речь о маятниковых, пружинных или кварцевых часах. Несколько лет назад, после разговора с Дэвидом Уайнлендом из Национального бюро стандартов, я понял, что вращающиеся вокруг своей оси ядра, используемые в Бюро для создания эталонов времени, позволяют осуществить превосходный тест линейности квантовой механики; в моей слегка нелинейной альтернативной теории частота, с которой направление спина ядра прецессирует вокруг направления магнитного поля, должна очень слабо зависеть от угла между спином и магнитным полем. Из того факта, что в Бюро стандартов никогда не наблюдали подобного эффекта, я сделал вывод, что любые нелинейные эффекты в изучавшемся ядре (изотопе бериллия) не могут привести к изменению энергии ядра на величину, большую, чем 10−18(в относительных единицах). После этой моей работы Уайнленд и другие экспериментаторы из Гарварда, Принстона и других лабораторий улучшили точность измерений, так что сейчас мы знаем, что нелинейные эффекты давали бы еще меньший вклад. Таким образом, даже если линейность квантовой механики приближенна, это приближение очень хорошее.
Все это не вызывает особого удивления. Даже если существуют малые нелинейные поправки к законам квантовой механики, нет никаких оснований полагать, что эти поправки окажутся достаточно заметными, чтобы быть обнаруженными в первой же серии нацеленных на это экспериментов. Что меня действительно разочаровало, так это то, что нелинейная альтернатива квантовой механике, как оказалось, содержит внутренние теоретические трудности. Сначала я не сумел найти способ распространить нелинейную версию квантовой механики на теории, основанные на специальной теории относительности Эйнштейна. Затем, уже после того, как была опубликована моя работа, Н. Гизин из Женевы и мой коллега Джозеф Польчински из Техасского университета независимо показали, что в мысленном эксперименте Эйнштейна–Подольского–Розена, упоминавшемся Крошкой Тимом, нелинейные свойства альтернативной теории могут быть использованы для мгновенной посылки сигналов на большие расстояния, что безусловно запрещено специальной теорией относительности[70]Б70
Позднее Польчински нашел слегка модифицированную интерпретацию этой теории, в которой подобная связь со сверхсветовой скоростью запрещена, но «разные миры», соответствующие разным результатам измерений, могут продолжать взаимодействовать друг с другом.
[Закрыть]. В конце концов к настоящему времени я прекратил всякую работу над этой проблемой; я просто не знаю, как можно немного изменить квантовую механику, не разрушив ее в результате до основания.
Этот крах теоретической попытки найти приемлемую альтернативу квантовой механике в еще большей степени, чем точные эксперименты по проверке линейности, убеждает меня, что квантовая механика такова, какова она есть, потому что любое ее малое изменение обязательно приведет к логическим противоречиям. Если это так, то квантовая механика должна быть постоянной частью физики. Иными словами, квантовая механика должна выжить не как приближение к более глубокой истине, подобно тому, как ньютоновская теория тяготения сохранилась как приближение к эйнштейновской общей теории относительности, а как точно выполняющееся свойство окончательной теории.