355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Стивен Вайнберг » Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы » Текст книги (страница 10)
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
  • Текст добавлен: 13 сентября 2016, 17:30

Текст книги "Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы"


Автор книги: Стивен Вайнберг



сообщить о нарушении

Текущая страница: 10 (всего у книги 19 страниц)

Глава VI. Красивые теории

 
Спеша за облачком или цветком,
Душа приют недолгий обретает,
Пред ней в сиянии неба голубом
Тень вечности, мелькая, исчезает.
 
Генри Воон. Приют

В 1974 г. Поль Дирак приехал в Гарвард, чтобы рассказать о своей исторической работе, ставшей одной из основ современной квантовой электродинамики. В конце своего выступления Дирак обратился к старшекурсникам и посоветовал им больше думать о красоте тех уравнений, которые они исследуют, а не об их смысле. Это был не самый лучший совет для студентов, но поиск красоты в физике[100]Б100
  Астрофизик С. Чандрасекар трогательно написал о роли красоты в науке (Truth and Beauty: Aesthetics and Motivations // Science (Chicago: University of Chicago Press, 1987) и Bulletin of the American Academy of Arts and Science 43, no. 3 (December 1989): 14).


[Закрыть]
красной нитью проходит через все работы Дирака, да и вообще составляет важную страницу истории физики.

Небольшой разговор о важности красоты в науке не должен рассматриваться как пустая болтовня. Я совсем не собираюсь использовать эту главу для очередных словоизвержений по поводу красоты вообще. Моя цель – более подробно рассмотреть происхождение красоты физических теорий или вопрос о том, почему наше чувство прекрасного иногда оказывается полезным, а иногда изменяет нам и почему плодотворное использование этого чувства есть знак нашего продвижения к окончательной теории.

Физик, заявляющий, что теория красива, имеет в виду не совсем то, что подразумевается, когда говорят, что красива какая-то картина, музыкальное произведение или стихотворение. Это утверждение не является просто личным выражением полученного эстетического наслаждения, скорее, это ближе к тому, что имеет в виду тренер лошадей, когда он глядит на скаковую лошадь и говорит, что она красива. Конечно, тренер выражает свое личное мнение, но это есть мнение по поводу объективного факта: основываясь на суждениях, которые тренеру иногда трудно выразить словами, он утверждает, что эта лошадь относится к породе тех, которые выигрывают скачки.

Конечно, разные тренеры могут по-разному оценивать качества лошадей. Именно на этом и держатся лошадиные скачки. Но эстетическое чувство тренеров есть средство для объективного вывода – отбора лошадей для участия в скачках. Предполагается, что чувство прекрасного у физиков служит аналогичной цели – оно помогает отобрать идеи, позволяющие объяснить устройство природы. Физики, как и тренеры лошадей, могут быть правы или ошибаться в своих суждениях, но они не просто забавляются этой игрой. Конечно, часто бывает и такое, но все же это не единственная цель их эстетических суждений.

Такое сравнение вызывает больше вопросов, чем дает ответов. Во-первых, что такое красивая теория? Каковы те характеристики физических теорий, которые вызывают у нас ощущение красоты? Более трудный вопрос: почему срабатывает ощущение красоты у физиков? Истории, рассказанные в предыдущей главе, продемонстрировали, что такое личное и субъективное чувство, как наше ощущение красоты, помогает не только развивать физические теории, но и судить об их справедливости. Почему мы обладаем таким даром эстетической оценки? Попытка ответить на этот вопрос вызывает к жизни еще более трудный вопрос, хотя он, возможно, и звучит тривиально: а чего собственно хотят добиться физики?

Что такое красивая теория? Работник одного большого американского музея однажды очень рассердился на то, что я употребил слово «красота» в разговоре о физике. Он сказал, что профессионалы в его области перестали употреблять это слово, так как поняли, насколько трудно определить его смысл. Очень давно физик и математик Анри Пуанкаре признал: «Очень трудно определить понятие математической красоты, но это же относится и к любому другому типу красоты».

Я не собираюсь пытаться определить, что такое красота, так же как не взялся бы определять понятия любви или страха. Такие вещи не определяются; просто, когда вы их чувствуете, вы знаете, о чем идет речь. Позднее, после того, как эти чувства испытаны вы можете иногда их как-то описать словами, что я и попытаюсь сделать.

Под красотой физической теории я, безусловно, не имею в виду механическую красоту расположения математических символов на печатном листе. Поэт-метафизик Томас Траерн специально заботился о том, чтобы слова его поэм образовывали на листе бумаги красивый узор22)А22
  Этим же «балуется» более знакомый русскому читателю Андрей Вознесенский. – Прим. перев.


[Закрыть]
. Но к физике эти игры не относятся. Я также хотел бы отделить тот тип красоты, который я имею в виду, от качества, которое математики и физики иногда называют элегантностью. Доказательство или вычисление элегантно, если с его помощью достигается мощный результат при минимальном количестве не имеющих отношения к делу усложнений. Для красивой теории совершенно не обязательно, чтобы ее уравнения имели элегантные решения. Уравнения общей теории относительности невероятно трудно решить за исключением простейших ситуаций, но это ни в коей мере не противоречит красоте самой теории. Эйнштейн говорил, что ученые должны оставить элегантность для портных.

Частью того, что я называю красотой, является простота, но простота идей, а не механическая простота, которую можно оценить, подсчитав число уравнений или символов. Теории тяготения Ньютона и Эйнштейна содержат уравнения, определяющие гравитационные силы, создаваемые любым заданным количеством вещества. В ньютоновской теории таких уравнений три (что соответствует трехмерности нашего пространства), в теории Эйнштейна их четырнадцать[101]Б101
  Я имею в виду десять уравнений поля и четыре уравнения движения.


[Закрыть]
. Само по себе это не может считаться эстетическим преимуществом ньютоновской теории перед эйнштейновской. На самом деле именно теория Эйнштейна более красива, отчасти из-за простоты ее главной идеи об эквивалентности тяготения и инерции. В этом сходятся все ученые и, как мы видели, во многом благодаря такой оценке теория Эйнштейна получила быстрое признание.

Есть и другое качество, кроме простоты, делающее физическую теорию красивой – это ощущение неизбежности, которую нам внушает теория. Слушая музыкальное произведение или читая сонет, вы иногда получаете огромное эстетическое наслаждение от ощущения, что в этом произведении ничего нельзя изменить, что ни одна нота и ни одно слово не должны быть иными. В «Святом семействе» Рафаэля расположение каждой фигуры совершенно. Может быть, это не самая любимая ваша картина, но когда вы на нее смотрите, у вас не возникает желания, чтобы что-то было написано иначе. Это же частично верно (и никогда не более, чем частично верно) и в отношении общей теории относительности. Если вам известны общие физические принципы, принятые Эйнштейном, вы понимаете, что не существует другой существенно отличающейся теории тяготения, к которой он мог бы прийти. Как писал сам Эйнштейн об общей теории относительности, «главной привлекательной чертой теории является ее логическая полнота. Если хоть один из ее выводов окажется неверным, теорию следует отвергнуть; похоже, что подправить ее, не разрушив всю структуру, невозможно»[102]Б102
  Цитата взята из Holton G. Constructing a Theory: Einstein’s Model // American Scholar 48 (summer 1979): 323.


[Закрыть]
.

Это менее верно для теории Ньютона. Ньютон вполне мог предположить, что гравитационная сила уменьшается обратно пропорционально кубу, а не квадрату расстояния, если бы только это соответствовало требованиям астрономических данных, но Эйнштейн не мог включить в свою теорию закон обратных кубов, не разрушив ее концептуальную основу. Поэтому четырнадцать уравнений Эйнштейна неизбежны и, следовательно, красивы, чего нет в трех уравнениях Ньютона. Думаю, что именно это имел в виду Эйнштейн, когда говорил, что левая часть уравнений тяготения в общей теории относительности, содержащая гравитационное поле, красива и как будто вырезана из мрамора, в то время как правая часть уравнений, описывающая материю, все еще уродлива, будто сделана из обыкновенной деревяшки. Все дело в том, что способ включения гравитационного поля в уравнения Эйнштейна почти неизбежен, но в общей теории относительности нет ничего, что объясняло бы, почему материя входит в уравнения именно в таком, а не ином виде.

То же ощущение неизбежности возникает (опять же, только частично) при рассмотрении современной стандартной модели сильных и электрослабых сил, действующих между элементарными частицами. Одно общее свойство придает общей теории относительности и стандартной модели черты неизбежности и простоты: и та, и другая теории подчиняются принципам симметрии.

Принцип симметрии – это просто утверждение, что нечто выглядит одинаково с некоторых разных точек зрения. Из всех подобных симметрий простейшей является приближенная двусторонняя симметрия человеческого лица. Так как две стороны вашего лица мало отличаются, то оно выглядит одинаково, если посмотреть на него непосредственно, или поменять местами левую и правую сторону, как это происходит, когда вы глядите в зеркало. Стандартный прием в кино – дать зрителям внезапно понять, что лицо актера, на которое вы смотрели, на самом деле было видно в зеркале; впечатление было бы испорчено, если бы у людей, как у камбалы, оба глаза были бы на одной стороне лица, причем всегда на одной и той же.

Некоторые вещи обладают более расширенной симметрией, чем человеческое лицо. Куб выглядит одинаково, если смотреть на него с шести разных направлений, попарно взаимно перпендикулярных друг другу, а также, если поменять местами правое и левое. Идеальные кристаллы выглядят одинаково, не только если смотреть на них с разных направлений, но и если перемещаться внутри кристалла в определенных направлениях на заданное расстояние. Сфера выглядит одинаково, если смотреть на нее с любого направления. Пустое пространство выглядит одинаково со всех точек и вдоль всех направлений.

Подобные симметрии интересовали и развлекали художников и ученых в течение многих веков, но в науке эти симметрии не играли особой роли. Мы знаем многое о соли, и тот факт, что соль – это кубический кристалл, выглядящий одинаково с шести различных точек зрения, не относится к числу самых важных ее свойств. Нет сомнений и в том, что двусторонняя симметрия – не самое интересное, что можно сказать о человеческом лице. Те симметрии в природе, которые действительно важны, это симметрии не вещей, а законов.

Симметрия законов природы – это утверждение, что при определенном изменении точки зрения, с которой наблюдаются естественные явления, обнаруженные при этом законы природы не меняются.

Такие симметрии часто называют принципами инвариантности. Например, открытые нами законы природы не меняют свою форму при изменении ориентации наших лабораторий; нет разницы в том, измеряем ли мы расстояния по направлению к северу, северо-востоку, вверх или в любом другом направлении. Древним и средневековым философам и ученым это не было очевидно; ведь в повседневной жизни имеется явная разница между направлениями вверх, вниз и по горизонтали. Только после зарождения современной науки в XVII в. стало ясно, что низ отличается от верха или направления к северу только потому, что под нами есть большая масса, Земля, а не потому, что (как думал Аристотель) низ и верх являются естественными вместилищами тяжелых и легких вещей, соответственно. Обратите внимание, что эта симметрия не утверждает, что верх и низ одинаковы; наблюдатели, измеряющие расстояния вниз и вверх от поверхности Земли, по-разному описывают события вроде падения яблока, но при этом обнаруживают одни и те же законы, подобные закону притяжения яблока большой массой Земли.

Законы природы выглядят одинаково, где бы ни находились наши лаборатории; на результатах экспериментов не может сказываться то, где проводятся опыты, – в Техасе, в Швейцарии или на какой-нибудь планете с другой стороны нашей Галактики. Законы природы не меняют своего вида, как бы мы не установили часы: нет никакой разницы, начнем ли мы отсчитывать время от начала первой Олимпиады, от Рождества Христова или от момента рождения Вселенной. Это отнюдь не означает, что с течением времени ничто не меняется, или что Техас это то же самое, что Швейцария. Утверждение заключается в том, что законы, обнаруженные в разные моменты времени и в разных местах, одинаковы. Если бы таких симметрий не было, все научные данные нужно было бы переделывать в каждой новой лаборатории и в каждый момент времени.

Любой принцип симметрии в то же самое время есть и принцип простоты. Если бы законы природы различали направления вверх, вниз или на север, то в уравнения, описывающие эти законы, пришлось бы ввести какие-то дополнения, позволяющие проследить за ориентацией наших лабораторий. Соответственно, сами уравнения стали бы заведомо более сложными. На самом деле даже та система обозначений, которую используют математики и физики, для того чтобы уравнения выглядели как можно проще и компактнее, основана на предположении, что все направления в пространстве эквивалентны.

Эти симметрии необычайно важны в классической физике, но их значение еще больше возрастает в квантовой механике. Рассмотрим, что отличает один электрон от другого? Только его энергия, импульс и спин; если не считать этих свойств, каждый электрон во Вселенной похож на любой другой. Все эти свойства электрона характеризуют то, каким образом его квантово-механическая волновая функция откликается на преобразования симметрии, а именно на изменения установки часов, местоположения или ориентации нашей лаборатории23)А23
  Например, частота, с которой осциллирует волновая функция любой системы в состоянии с определенной энергией, равна этой энергии, деленной на мировую константу – постоянную Планка. Такая система выглядит совершенно одинаково для двух наблюдателей, установивших показания своих часов с разницей в одну секунду. Однако, если они оба посмотрят на систему в тот момент, когда часы каждого показывают ровно полдень, обнаружится, что колебания находятся в разных фазах. Так как часы установлены по-разному, наблюдатели на самом деле фиксируют положение системы в разные моменты времени, так что один наблюдатель может, например, видеть горб волны, а другой – впадину. В частности, фаза отличается на число циклов колебаний (или долей цикла) за одну секунду, т.е. на частоту колебаний в циклах за секунду, а следовательно, на энергию, деленную на постоянную Планка. В современной квантовой механике мы определяем энергию любой системы как изменение фазы (в циклах или долях цикла) волновой функции этой системы в данный момент времени по часам, если сдвинуть установку часов на одну секунду. Постоянная Планка участвует в игре только потому, что энергия исторически измеряется в единицах типа калорий, киловатт-часов или электрон-вольт, принятых задолго до создания квантовой механики. Постоянная Планка является просто переводным множителем между этими более старыми системами единиц и естественной квантово-механической единицей энергии – числом циклов в секунду. Можно показать, что определенная таким образом энергия обладает всеми свойствами, которые мы обычно ассоциируем с этим понятием, в том числе свойством сохранения. Действительно, инвариантность законов природы относительно преобразования симметрии, заключающегося в переустановке наших часов, и дает ответ на вопрос, почему существует такая величина, как энергия. Точно так же компонента импульса любой системы в любом заданном направлении определяется как произведение постоянной Планка на изменение фазы волновой функции при сдвиге точки, относительно которой измеряются координаты, на один сантиметр в этом направлении. Величина спина системы относительно любой оси определяется как произведение постоянной Планка на изменение фазы волновой функции при повороте системы отсчета, используемой нами для измерения направлений, на один оборот вокруг этой оси. С такой точки зрения импульс и спин представляют собой то, что они есть, благодаря симметрии законов природы относительно изменений системы отсчета, используемой нами для измерения положений или направлений в пространстве. (Перечисляя свойства электронов, я не включил координату, так как координата и импульс являются сопряженными величинами. Можно описывать состояние электрона, задавая его координату или импульс, но не обе величины одновременно.)


[Закрыть]
. Таким образом, вещество теряет свою главенствующую роль в физике: все, что остается, – это принципы симметрии и разные способы преобразования волновых функций под действием преобразований симметрии.

Существуют и менее очевидные преобразования пространства-времени, чем простые трансляции и вращения. Законы природы не меняют своей формы для наблюдателей, движущихся с различными постоянными скоростями: нет разницы, проводим ли мы эксперимент здесь, в Солнечной системе, крутящейся вокруг центра Галактики со скоростью в несколько сотен километров в секунду, или в далекой галактике, удаляющейся от нас со скоростью в десятки тысяч километров в секунду. Этот принцип симметрии часто называют принципом относительности. Широко распространено мнение, что он был сформулирован Эйнштейном, однако уже в ньютоновской механике был свой принцип относительности. Разница между ними только в том, как скорость движения наблюдателя влияет на наблюдение положений и моментов времени в обоих теориях. Но Ньютон просто постулировал свой принцип относительности; что же касается Эйнштейна, то он явно сформулировал его так, чтобы он был совместим с тем экспериментальным фактом, что скорость света не зависит от скорости движения наблюдателя. В этом смысле упор на симметрию как на вопрос, относящийся к физике, в работе Эйнштейна 1905 г. по специальной теории относительности ознаменовал начало современного отношения к роли принципов симметрии.

Самое важное отличие ньютоновской физики от эйнштейновской при ответе на вопрос, как движение наблюдателя влияет на наблюдение пространственно-временных положений, заключается в том, что в специальной теории относительности утверждение, что два удаленных друг от друга события произошли одновременно, не имеет абсолютного смысла. Один наблюдатель может видеть, что двое часов одновременно бьют полдень; другой наблюдатель, движущийся относительно первого, обнаруживает, что одни часы пробили полдень раньше или позже других. Как уже отмечалось выше, из-за этого ньютоновская теория гравитации, как впрочем и любая аналогичная теория тяготения, несовместима с специальной теорией относительности. Ньютоновская теория утверждает, что в любой момент времени сила притяжения, действующая со стороны Солнца на Землю, зависит от того, где в этот момент находится Солнце. Возникает вопрос: в этот же момент относительно чего?

Естественный способ исправить положение заключается в отказе от старой ньютоновской идеи о мгновенном действии на расстоянии и замене этой идеи картиной сил, обусловленных полями. В такой картине Солнце не притягивает Землю непосредственно; оно создает в окружающем пространстве поле, называемое гравитационным, которое затем оказывает силовое действие на Землю. Может показаться, что такое отличие не составляет большой разницы, но на самом деле разница огромная: когда, например, на поверхности Солнца возникает протуберанец, он сначала оказывает влияние только на гравитационное поле вблизи Солнца, после чего это небольшое изменение поля начинает распространяться в пространстве со скоростью света, как рябь на поверхности воды от брошенного камешка, достигая Земли примерно через восемь минут. Все наблюдатели, движущиеся с любой постоянной скоростью, согласны с таким описанием, так как в специальной теории относительности все наблюдатели измеряют одну и ту же скорость света. Подобным образом электрически заряженное тело создает поле, называемое электромагнитным, действующее посредством электрических и магнитных сил на другие заряженные тела. Когда электрически заряженное тело внезапно приходит в движение, электромагнитное поле меняется сначала только вблизи тела, а затем это изменение поля распространяется со скоростью света. На самом деле в этом случае изменения электромагнитного поля и есть то, что известно нам как свет, хотя это может быть свет такой большой или маленькой длины волны, которая недоступна нашему зрению.

В рамках доквантовой физики специальная теория относительности Эйнштейна хорошо согласовывалась с дуалистичной картиной природы: есть частицы, например электроны, протоны, нейтроны в обычных атомах, и есть поля – гравитационное или электромагнитное. Развитие квантовой механики привело к значительно более единой картине. С точки зрения квантовой механики энергия и импульс поля (например, электромагнитного) распространяются в виде сгустков, называемых фотонами, которые ведут себя как частицы, хотя и не имеющие массы. Аналогично, энергия и импульс гравитационного поля переносятся в виде сгустков, называемых гравитонами[103]Б103
  Гравитоны экспериментально не обнаружены, но это неудивительно. Расчеты показывают, что они так слабо взаимодействуют, что отдельные гравитоны и не могли быть обнаружены ни в одном из до сих пор осуществленных экспериментов. Тем не менее никто серьезно не сомневается в существовании гравитонов.


[Закрыть]
, также ведущими себя как частицы с нулевой массой. В длинно-действующем силовом поле вроде гравитационного поля Солнца мы не наблюдаем отдельных гравитонов главным образом потому, что их чрезвычайно много.

В 1929 г. Вернер Гейзенберг и Вольфганг Паули, основываясь на более ранней работе Макса Борна, Гейзенберга, Паскуаля Йордана и Юджина Вигнера, объяснили в нескольких статьях, каким образом массивные частицы, такие как электрон, могут рассматриваться как сгустки энергии и импульса в полях разного типа, например электронном поле. Точно так же, как электромагнитная сила между двумя электронами возникает в рамках квантовой механики в результате обмена фотонами, так и сила между фотонами и электронами порождается обменом электронами. Различие между материей и силой в значительной степени исчезает: каждая частица может играть роль пробного тела, на которое действуют силы, но эта же частица, участвуя в обмене, может порождать другие силы. В наши дни общепринято считать, что единственный способ, позволяющий объединить принципы специальной теории относительности и квантовой механики, достигается в квантовой теории поля или в подобной теории. Это и есть та самая логическая жесткость, которая придает красоту истинно фундаментальной теории: квантовая механика и специальная теория относительности почти несовместимы и их союз в рамках квантовой теории поля накладывает сильные ограничения на возможные способы взаимодействия частиц друг с другом.

Все вышеупомянутые симметрии только ограничивают те типы сил и виды материи, которые может содержать теория, но сами по себе эти симметрии не требуют обязательного существования никакого определенного вида материи или силы. В ХХ в., особенно в последние десятилетия, значение принципов симметрии поднялось на новый качественный уровень: именно они определяют сейчас само существование всех известных сил в природе.

В общей теории относительности основополагающий принцип симметрии утверждает, что все системы отсчета эквивалентны: законы природы выглядят одинаково не только для наблюдателей, движущихся с любой постоянной скоростью, но вообще для всех наблюдателей, как бы ускоренно не двигались и не вращались их лаборатории. Представьте, что мы заберем свои физические приборы из тиши университетской лаборатории и начнем производить эксперименты на равномерно вращающейся карусели. Вместо того, чтобы отсчитывать все направления от севера, мы станем измерять их по отношению к деревянным лошадкам, укрепленным на вращающейся карусели. На первый взгляд все законы природы станут выглядеть совершенно иначе. Наблюдатели на вращающейся карусели ощущают центробежную силу, которая отбрасывает все незакрепленные предметы к наружному борту карусели. Если бы физики родились и выросли на карусели и не знали бы, что они находятся на вращающейся платформе, то сформулированные ими для описания природных явлений законы механики обязательно включали бы центробежную силу так что эти законы выглядели бы существенно иначе, чем те, которые известны нам.

Исаак Ньютон был очень встревожен тем, что законы природы, по-видимому, различают неподвижную и вращающуюся системы отсчета. Это тревожило физиков и в последующие столетия. В 1880-е гг. физик и философ из Вены Эрнст Мах указал на другую возможную интерпретацию этого явления. Мах подчеркнул, что есть еще кое-что, помимо центробежной силы, отличающее вращающуюся карусель от обычной лаборатории. С точки зрения астронома, находящегося на карусели, Солнце, звезды, галактики – короче говоря, вся материя во Вселенной кажется вращающейся вокруг зенита. Вы или я скажем, что это происходит, потому что вращается карусель, но астроном, выросший на карусели и, естественно, использующий ее как систему отсчета, будет настаивать, что вся остальная Вселенная вращается вокруг него. Мах задал вопрос, а нельзя ли рассматривать это великое кажущееся вращение материи как причину возникновения центробежной силы. Если так, то обнаруженные на карусели законы природы на самом деле ничем не отличаются от тех, которые найдены в более привычных лабораториях; кажущаяся разница возникает просто от того, что наблюдатели в разных лабораториях видят вокруг себя разные вещи.

Догадка Маха была подхвачена Эйнштейном и приняла конкретные формы в общей теории относительности. В этой теории действительно существует влияние далеких звезд, создающее эффект центробежной силы на вращающейся карусели. Это сила тяготения. Конечно, в ньютоновской теории тяготения нет ничего, кроме простого притяжения между массами. Общая теория относительности более сложна: вращение материи Вселенной вокруг зенита, наблюдаемое на карусели, порождает поле, чем-то напоминающее магнитное поле, образуемое током, циркулирующим в катушке электромагнита. Именно эта «гравимагнитная» сила производит в системе отсчета, связанной с каруселью, эффекты, которые в более привычных системах отсчета приписываются центробежной силе. Уравнения общей теории относительности, в противоположность уравнениям ньютоновской механики, сохраняют свой вид как в лаборатории на карусели, так и в обычной лаборатории; вся разница в наблюдениях в этих лабораториях полностью связана с разным окружением – в одном случае Вселенная вращается вокруг зенита, в другом случае – нет. Однако, если тяготения не существует, такая интерпретация центробежной силы была бы невозможной, так что сила, которую мы ощущаем, находясь на карусели, позволила бы отличить систему отсчета, связанную с этой каруселью, от более привычных лабораторных систем. Этим была бы исключена какая бы то ни было эквивалентность между вращающимися и неподвижными лабораториями. Отсюда можно сделать вывод: симметрия между различными системами отсчета требует существования гравитации.

Симметрия, которая лежит в основе электрослабой теории, еще более необычна. Она не имеет никакого отношения к изменению нашей точки зрения в пространстве и времени, а связана с изменением нашей точки зрения об идентичности разных типов элементарных частиц. Как мы видели ранее, частица может находиться в таком квантово-механическом состоянии, когда про нее нельзя сказать с достоверностью, что она находится здесь или там или вращается по часовой стрелке или против часовой стрелки. Те же удивительные свойства квантовой механики позволяют частице находиться в состоянии, когда она не является с определенностью ни электроном, ни нейтрино, и это состояние существует до тех пор, пока мы не осуществим измерение некоторого свойства, отличающего эти две частицы, например их электрического заряда. В электрослабой теории форма законов природы не изменяется, если во всех наших уравнениях поменять электроны и нейтрино на такие смешанные состояния, которые не являются ни той, ни другой частицей. Поскольку с электронами и нейтрино взаимодействует множество других типов частиц, то одновременно необходимо перемешать семейства этих других частиц[104]Б104
  Строго говоря, эти семейства образуют только левые состояния электрона и нейтрино и u– и d-кварков. (Имеется в виду, что если совместить большой палец левой руки с осью вращения, направленной вдоль скорости частицы, то пальцы левой руки, охватывая ось, укажут направление вращения.) Различие между семействами, образованными левыми и правыми частицами, является причиной нарушения слабыми ядерными силами симметрии между правым и левым. (Асимметрия правого и левого в слабых взаимодействиях была предсказана в 1956 г. теоретиками Т. Ли и Ч. Янгом. Она была подтверждена в опытах по ядерному бета-распаду группой из Национального бюро стандартов в Вашингтоне под руководством Ц. By и в опытах по распаду пи-мезонов Р. Гарвиным, Л. Ледерманом и М. Вейнрихом, а также Дж. Фридманом и В. Телегди.) Мы до сих пор не знаем, почему только левые электроны, нейтрино и кварки образуют эти семейства; этот вопрос является вызовом для теорий, которые выйдут за рамки стандартной модели элементарных частиц.


[Закрыть]
, например смешать u-кварки с d-кварками или фотоны с их родственниками – положительно и отрицательно заряженными W-частицами и нейтральными Z-частицами. Такая симметрия связывает электромагнитные силы, вызываемые обменом фотонами, со слабыми ядерными силами, которые порождаются обменом W– и Z-частицами. В электрослабой теории фотоны, W– и Z-частицы являются сгустками энергии четырех полей, существование которых диктуется симметрией электрослабой теории во многом аналогично тому, как гравитационное поле диктуется симметрией общей теории относительности.

Симметрии, подобные той, которая лежит в основе электрослабой теории, называются внутренними симметриями, так как мы воспринимаем их как некоторое внутреннее свойство частиц, не связанное с их положением в пространстве или характером движения. Внутренние симметрии менее знакомы нам, чем симметрии, действующие в обычном пространстве и времени и определяющие структуру ОТО. Чтобы чуть-чуть лучше понять, о чем идет речь, вы можете представить, что у каждой частицы есть маленький циферблат, стрелка которого показывает направления, помеченные словами «электрон» или «нейтрино», или «фотон» и «W», или находится в любом промежуточном состоянии. Внутренняя симметрия утверждает, что законы природы не меняют своей формы, если мы станем произвольным образом вращать стрелки на этих циферблатах.

Более того, в рамках того типа симметрий, которые определяют электрослабые силы, мы можем вращать эти стрелки по-разному для частиц в разных местах и в разные моменты времени. Это уже во многом похоже на симметрию, лежащую в основе общей теории относительности, которая позволяет поворачивать наши лаборатории не только на постоянный угол, но и на угол, увеличивающийся со временем, если, например, поместить лабораторию на карусель. Инвариантность законов природы по отношению к совокупности преобразований внутренних симметрий, которые зависят от местоположения и времени, называется локальной симметрией (поскольку результат преобразования симметрии зависит от положения в пространстве и времени) или калибровочной симметрией (по чисто историческим причинам)[105]Б105
  В 1918 г. математик Герман Вейль предположил, что симметрия общей теории относительности по отношению к зависящим от пространства-времени изменениям положения или ориентации должна быть дополнена симметрией по отношению к зависящим от пространства-времени изменениям способа измерения (или «калибровки») расстояний и времени. Вскоре этот принцип симметрии был отвергнут физиками (хотя его версии до сих пор возникают в спекулятивных теориях), но математически он очень похож на внутреннюю симметрию уравнений электродинамики, которую стали поэтому называть калибровочной инвариантностью. Затем, после того как в 1954 г. Ч. Янг и Р. Миллс, в надежде понять сильные взаимодействия, ввели более сложный вид локальной внутренней симметрии, ее тоже назвали калибровочной симметрией.


[Закрыть]
. Именно локальная симметрия между разными системами отсчета в пространстве и времени приводит к необходимости существования тяготения. Во многом аналогичным образом другая локальная симметрия – между электронами и нейтрино (а также между u– и d-кварками и т.д.) – приводит к необходимости существования фотона и W– и Z-частиц.

Есть еще и другая точная локальная симметрия, связанная с внутренними свойствами кварков и получившая причудливое название «цвет»[106]Б106
  Различные варианты введения нового атрибута кварков – цвета – были предложены О. Гринбергом, М. Ханом и Й. Намбу, и В. Бардиным, Г. Фрицшем и М. Гелл-Манном38)А38
  Независимо и раньше понятие цвета было введено в работе Н.Н. Боголюбова, Б.В. Струминского и А.Н. Тавхелидзе. – Прим. перев.


[Закрыть]
.


[Закрыть]
. Мы видели, что существуют кварки разных типов, например кварки u и d, из которых сделаны протоны и нейтроны, входящие в состав всех обычных атомных ядер. Но кварки каждого из этих типов существуют в трех различных цветовых состояниях, которые физики (по крайней мере в США) часто называют красным, белым и синим. Конечно, все это не имеет никакого отношения к обычному цвету, а есть всего лишь способ отличить разновидности кварков данного типа. Насколько мы сейчас знаем, в природе существует точная симметрия между всеми цветами. Иными словами, сила, действующая между красным и белым кварками, равна силе, действующей между белым и синим кварками, а силы, действующие между двумя красными или двумя синими кварками, также равны друг другу. Но эта симметрия намного шире, чем просто симметрия по отношению к замене цветов кварков друг на друга. Согласно законам квантовой механики, можно рассматривать состояния отдельных кварков, которые не являются с определенностью красными, белыми или синими. Законы природы будут иметь точно ту же форму, если заменить красный, белый и синий кварки на кварки в трех подходящих смешанных состояниях (например, фиолетовый, розовый и бледно-лиловый). Опять же по аналогии с общей теорией относительности тот факт, что законы природы остаются прежними, даже если смешивание изменяется от точки к точке в пространстве и времени, приводит к необходимости включить в теорию семейство полей, аналогичных гравитационному полю и взаимодействующих с кварками. Таких полей восемь; их называют полями глюонов24)А24
  Название «глюон» произошло от англ. glue (клей). – Прим. перев.


[Закрыть]
, так как большие силы, которые они порождают, склеивают вместе кварки внутри протонов и нейтронов. Современная теория этих сил, квантовая хромодинамика, как раз и есть теория кварков и глюонов, подчиняющаяся локальной цветовой симметрии. Стандартная модель элементарных частиц состоит из теории электрослабого взаимодействия и квантовой хромодинамики.

Я упоминал, что принципы симметрии придают теориям определенную жесткость. Может показаться, что это недостаток, что физик хочет развивать теории, способные охватить как можно более широкий круг явлений, и поэтому предпочел бы, чтобы теории были как можно более гибкими и не теряли смысла при самых разных обстоятельствах. Да, во многих областях науки это верно, но только не в той области фундаментальной физики, о которой идет речь. Мы находимся на пути к чему-то универсальному, к чему-то, что управляет физическими явлениями везде во Вселенной, к тому, что мы называем законами природы. Мы не хотим разрабатывать теорию, способную описать все мыслимые типы сил, которые могли бы действовать между частицами в природе. Напротив, мы надеемся найти такую теорию, которая жестко позволила бы нам описать только те силы – гравитационную, электрослабую и сильную, которые существуют на самом деле. Жесткость такого рода в наших физических теориях есть часть того, что мы понимаем под их красотой.

Но не только принципы симметрии придают нашим теориям жесткость. Основываясь только на этих принципах, мы не смогли бы прийти к электрослабой теории или квантовой хромодинамике; эти теории выступали бы как частные случаи намного более широкого круга теорий с неограниченным набором настраиваемых констант, которые могли бы выбираться совершенно произвольно. Дополнительные ограничения, позволяющие отобрать нашу простую стандартную модель из множества других, более сложных, теорий, удовлетворяющих тем же принципам симметрии, связаны с требованием, чтобы полностью сокращались все бесконечности, которые возникают в вычислениях. (Иначе говоря, теория должна быть «перенормируемой»[107]Б107
  См. примечания к главе VIII.


[Закрыть]
.) Это условие, как оказывается, придает уравнениям теории большую простоту и вместе с разными локальными симметриями позволяет придать законченную форму нашей стандартной модели элементарных частиц.


    Ваша оценка произведения:

Популярные книги за неделю