355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Станислав Зигуненко » Я познаю мир. Авиация и воздухоплавание » Текст книги (страница 19)
Я познаю мир. Авиация и воздухоплавание
  • Текст добавлен: 5 октября 2016, 00:44

Текст книги "Я познаю мир. Авиация и воздухоплавание"


Автор книги: Станислав Зигуненко


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 19 (всего у книги 20 страниц)

Человек-стрекоза

В 1987 году на авиационном празднике в Москве Владимир Топоров демонстрировал «Истину» – полноразмерный махолет с мотоциклетным двигателем. Машина разгонялась по бетонке Тушинского аэродрома, задирала нос... но так и не взлетела. Конструктор обещал исправить ее недостатки и в следующий раз полететь по-стрекозиному.

Через два года Владимир привез в Ригу на очередной слет солидную модель махолета. Семикилограммовая стрекоза с игрушечным моторчиком взлетала с рук, поднималась на 50-метровую высоту и порхала до тех пор, пока был бензин. Она по всем параметрам превосходила модели, о которых шумела западная пресса. Зарегистрирован почти пятиминутный полет махолета.

И наконец, в 1993 году Топорову все-таки удалось взлететь самому. Вот как это было...

Воткинск, где живет Владимир Топоров, – небольшой зеленый городок с сапфировым озером посередине. Это родина Петра Ильича Чайковского. Здесь, казалось бы, не махолеты придумывать, а сочинять музыку да стихи.



Махолет Топорова в полете

Впрочем, теперь уже все знают, что именно здесь расположен завод, выпускающий самые совершенные ракетные комплексы средней дальности – предмет черной зависти западных инженеров. Клуб «Алые паруса», которым руководит Топоров, до недавних пор действовал при этом заводе. Да и сам Владимир работал на нем конструктором и расчетчиком.

На лето клуб переехал за город. На опушке берендеевского леса Топоров и 12 его юных помощников разбили лагерь, построили ангар.

Жили, сочетая приятное с полезным, но главным занятием оставался махолет. Прогоны по тихому шоссе, ставшему взлетно-посадочной полосой, доработки, снова прогоны...

Потом в тихое солнечное утро машину вывели из ангара, донесли до шоссе, покатили на соседнее поле. Пилотировал махолет сам конструктор, а разгоняли всей командой с помощью лебедки. Взявшись за пропущенный через нее трос, ребята помчались по полю. Пилот пустил в ход крылья. Скорость возросла, и после короткого разбега машина взмыла в воздух. Топоров начал яростно махать крыльями, и гигантская стрекоза какое-то время набирала высоту. Она летела сто, двести метров, но силы пилота небеспредельны. Махолет снизился и плавно сел на край поля. Конечно, победа, но Топоров не очень доволен. Подлеты, считает он, только начало.

«Я чувствую, что махолет можно поднимать с земли без буксировки, и даже знаю направление поиска. Надо работать еще...»

Потомки Дедала

Впрочем, не надо думать, что Топоров и его команда – единственные в своем роде. Работы над орнитоптерами и махолетами ведут и другие конструкторы.

Началось все еще со времен Леонардо да Винчи, в архивах которого обнаружены довольно подробные чертежи орнитоптера – летательного аппарата с машущими крыльями, С тех пор, если не раньше, человеческая мысль бьется над решением этой технической задачи. Модели птиц-парителей строили и изучали пионеры авиации А.Ф. Можайский, О. Лилиенталь, Н.Е. Жуковский. Еще в прошлом веке лейтенант В. Спицын замерял подъемную силу построенной им машущей модели с пружинным приводом. В 1908 году русский летчик А. Лиуков испытывал в Тифлисе мускулолет своей конструкции с ножным приводом, а спустя 25 лет совместно с В. Андреевым построил моторный орнитоптер АШ-1. Но машущее крыло не помогло поднять машину в воздух. Поэтому на несколько десятилетий в этой области авиации наступило затишье. Но с середины 50-х годов у махолетчиков начался новый бум. Инженер А. Монацков подрессорил крылья планера А-9. И в итоге аппарат, названный «Кашук», летал в Тушине на параде, качая крыльями с амплитудой 4 м.

Стали строить орнитоптеры и в Германии, Франции, но более всего – в США. Инженер-исследователь Мемориального института в городе Колумбусе, штат Огайо, Т. Харрис и преподаватель авиакосмического машиностроения Принстонского университета Д. Деларье создали двухметровую радиоуправляемую модель, но каких-либо выдающихся результатов не добились. Потом они попробовали построить пилотируемый аппарат с размахом крыла 18 м, однако проект так и не был реализован.


В конце концов Деларье заявил, что изучение аэродинамики малых скоростей, характерных для махолетов, может само по себе дать богатую информацию по целому ряду дисциплин, но в коммерческое применение орнитоптеров он не верит.

Параллельно над проблемой машущего полета работал руководитель летно-исследовательской лаборатории имени Распета при университете штата Миссисипи Д. Беннет. Он испытывал радиоуправляемые орнитоптеры, поднимавшиеся на тросе за автомобилем. Беннет также пришел к невеселому выводу: «Должно быть, существует веская причина, объясняющая, почему братья Райт не построили махолет». Уже в наше время за дело взялись профессионалы из британских ВВС во главе с Роем Андервудом. Используя лучшие материалы и технологии, воссоздали птицу Леонардо, но она так и не полетела. Идею машущего полета пыталась реализовать группа американских инженеров под руководством Д. Фицпатрика. После очередной неудачи он подвел печальный итог: истрачено полмиллиона долларов, а итоги – кот наплакал.

Самые серьезные попытки создать махолет предпринял известный ученый Пол Мак-криди. Лет пятнадцать тому назад профессор, успешно работавший в НАСА, вдруг отошел от ракетных дел и организовал лабораторию, где для начала построил мускулолет, на котором Брайн Аллен перелетел Ла-Манш. Затем создал небольшую модель летающего ящера-птеродактиля. Она успешно прошла испытания в планирующем полете, и это вдохновило ученого на строительство большого махолета. В 1989 году на авиабазе Эндрюс под Вашингтоном состоялся первый демонстрационный полет. Спустя несколько секунд после отделения буксировочного троса отчаянно хлопающий крыльями птеродактиль перевернулся несколько раз и начал камнем падать на землю. Замешкавшиеся операторы слишком поздно передали команду выпустить парашют, и напичканная электроникой пластиковая модель стоимостью 700 тыс. долларов распласталась на бетоне взлетно-посадочной полосы.


«Теперь мы знаем, почему вымерли птеродактили», – шутили журналисты.

Когда мы полетим, как стрекозы и мухи?

Итак, как видите, особыми успехами махолетчики похвастаться пока не могут. Так быть может, и ну их – орнитоптеры? Жили же как-то без них. И дальше проживем. Но...

Генеральный конструктор был весьма озабочен.

– Перед коллективом КБ поставлена задача небывалой сложности, – сказал он, открывая совещание. – Нам поручено сконструировать летательный аппарат, который бы имел весьма экономичный и практически бесшумный двигатель; мог взлетать и садиться без разбега; с одинаковой легкостью летать в любом направлении и зависать в воздухе неподвижно; за минуту одолевать не менее чем десять тысяч длин своего корпуса и обладать дальностью полета в несколько тысяч километров... Прошу высказывать ваши соображения.

Генеральный сел, и в кабинете воцарилась тягостная тишина. Слышно было даже одинокое жужжание бившейся о стекло осенней мухи. Инженеры в задумчивости молчали. В самом деле, да разве можно создать нечто подобное?

Неожиданно слово попросил самый молодой из присутствующих, недавний выпускник авиационного института.

– Простите, – произнес он, – но мне кажется, такой летательный аппарат уже есть. Вот он. – И молодой инженер указал на оконное стекло, по которому ползла крупная осенняя муха...

Сознаюсь, историю с совещанием я придумал. Но то, что муха, как и многие другие насекомые, обладает уникальными летными качествами, – истина. Даже птицы – эти врожденные летуны – не способны проделывать те фигуры «высшего пилотажа», что без труда выполняют мухи, стрекозы, бабочки... А уж о разных наших механических летунах и говорить не хочется. Сравните: гиперзвуковой перехватчик пролетает в минуту не более 5– 6 тыс. длин своего корпуса, стрекоза же – свыше 100 тыс. длин! Полет насекомых – чрезвычайно сложный процесс. Он таит в себе множество загадок; некоторые из них решены лишь недавно, другие еще только ждут своих первооткрывателей.

Взгляните на крыло мухи через увеличительное стекло. С точки зрения современных специалистов самолетостроения, оно – форменное аэродинамическое безобразие. Все в желобках, вмятинах, микроскопических волосках... Шиферная крыша и то глаже. Такое крыло, вместо того чтобы сглаживать воздушный поток, похоже, специально его завихряет.

Любопытные сведения на этот счет сообщила мне старший научный сотрудник Института эволюционной морфологии, кандидат биологических наук О.М. Бочарова-Месснер:

– До сих пор считалось, что во время полета крылья насекомых погружены в так называемый ламинарный пограничный слой воздуха, который как бы сглаживает их поверхность. Теперь эту точку зрения приходится пересматривать: результаты исследований говорят о том, что на крыльях насекомых ламинарный пограничный слой, судя по всему, отсутствует. Видимо, так выгоднее при машущем полете... Похоже, сложный рельеф крыла, расчленяющий поток на отдельные струи, делает движение воздуха более упорядоченным. Конечно, для авиационного инженера в рисунке рельефа много непривычного. Например, даже то, что желобки идут не поперек, а вдоль крыла, от основания к краю. Но эксперименты показали, что при полете насекомого скорость потоков у основания крыльев выше, чем у краев. Значит, крыло как бы засасывает воздух у основания, а затем, распределив его по желобкам, направляет к краям, создавая дополнительную подъемную силу.

Это не единственная тайна, окружающая полет насекомых, в частности той же мухи. При скоростной кино– и видеосъемке заметно, что крыло насекомого весьма эластично – изгибается, скручивается, может даже сложиться, словно веер...

Крыло пронизано нервами и системой «кровообращения», по которой течет геомолимфа – жидкость, подобная крови человека. Кроме того, здесь огромное количество микродатчиков – своеобразных органов чувств. Щетинки, колбочки, заметные только под микроскопом, и регистрируют скорость встречного потока воздуха, и отмечают всевозможные крутящие моменты, и помогают насекомому ориентироваться в пространстве... Остается лишь сожалеть, что подобными приборами человек пока не может оснастить крылья своих летательных аппаратов.

А каков «двигатель» у насекомого! Целый день висеть в воздухе не уставая, развивать скорость до 150 км/ч, покрывать в сутки расстояние 1200 км... Сколько бы горючего потребовали на это современные авиационные моторы! Бабочки же, стрекозы, мухи обходятся всего лишь несколькими каплями нектара или крохами с нашего стола.


Любопытно: мышцы, дающие движение крылу, вовсе с ним не связаны! Дело в том, что крыло прикреплено к мягкой перепонке, которая разделяет спинной и боковой отделы спинного панциря. На ней крыло может двигаться почти свободно, опираясь лишь на небольшой «столбик» – маленький, но очень крепкий вырост в верхней части бокового отдела груди. При этом та самая мягкая перепонка, к которой крепится пластинка крыла, позволяет перемещаться вверх-вниз спинной части панциря. При таких движениях, совершаемых за счет мышц, панцирь тянет за собой внутренние кончики крыла. И хотя такие перемещения еле заметны, за ними следует большой взмах лопасти крыла благодаря неравномерности плеч его рычага. Такая сложная система имеет определенные преимущества. Известно ведь, что сокращение мышцы вызывается нервным импульсом. Так вот, ни у одного живого существа планеты нервная система не способна дать более 500 импульсов в секунду. Некоторые же насекомые, например мелкие комарики цератопогониды, способны совершать до 1 тыс. взмахов в секунду. Каким образом? Есть предположение, что растянутые мышцы возвращаются в первоначальное положение самостоятельно, без команды нервной системы.

Благодаря координированной работе датчиков и мышц крылья насекомого выписывают в полете сложные фигуры. Ударяя своими краями о воздух, словно веслами о воду, они позволяют двигаться вперед и назад, неподвижно зависать в воздухе или лететь боком, выполнять головокружительные маневры... Уникально и «навигационное оборудование» мух, стрекоз, бабочек и прочих летунов из мира насекомых.

Известно, что пчелы, «загрузившись» нектаром, летят к своему улью по прямой. Как они вычисляют правильное направление? Говорят, ориентируются по солнцу даже в том случае, если оно скрыто сплошной облачностью, поскольку глаза-фасетки умеют определять поляризацию света, а следовательно, местоположение его источника. А там уж природный компьютер мгновенно определит и нужное направление...


И наконец, еще одна придумка природы, на которую, думается, стоит обратить внимание конструкторам летательных аппаратов, – мушиное «шасси». Оно ведь намного совершеннее, чем колесные тележки современных самолетов. Последним подавай гладкую бетонную полосу, муха же бегает по какой угодно поверхности, и не только горизонтальной, но и вертикальной. Ей ничего не стоит прогуляться и по потолку. Почему она не падает?

Точного ответа на этот вопрос у исследователей пока нет. Одни полагают, что муху держат присоски на кончиках лап. Другие считают, что все дело в специальном клее. Третьи склоняются к тому, что дело не обходится без специальных электрореологических жидкостей... А еще биологи выяснили: мухи теми же лапками проводят доскональный химический анализ поверхности, по которой ступают. И уж, конечно, не пропустят ничего съестного...

В момент опасности шесть лапок – исследовательских зондов – мгновенно превращаются в упругие пружинки. Миг – и муха уже в воздухе, словно подброшенная катапультой.

– Только никакая современная катапульта не обладает такой скорострельностью, компактностью и экономичностью...

А теперь вернемся к тому совещанию, которое я описал вначале. Скорее всего, оно закончится безрезультатно. Конструкторы констатируют, что до природы им еще далеко, разойдутся по своим рабочим местам, где на кульманах чертежи все тех же самолетов и вертолетов. А может, пора уж переходить к созданию мухолетов и стрекозокрылов? Ведь такую идею еще в 1969 году подал инженер В. Филиппов из Северодвинска и даже представил фантастический полет. Вот строки из его описания:

«...Включаем механизм крыльев... Машут! За землю бы не задели только. Включаем тягу на взлет. Ух ты! Наш мухолет так и рвется кверху. Сбавляем газ и усаживаем мухолет в положение катапультирования.

Стрелка стартового манометра подходит к нужной отметке. «Контакт!» Резкий рывок – и мы летим вверх под углом в сорок пять градусов. Вспыхивает лампочка «Крылья» – и вдруг наш мухолет резко уходит вверх и назад... Куда это нас несет?.. Ба! Да ведь надо убрать стартовые шасси: сложить ноги. Ну вот теперь дело лучше, но все равно тянет и тянет кверху. В чем дело? Наверное, надо дать рычаг вперед. Ну конечно, вот и выровнялся наш мухолетик, потянул вперед над городом.

Выключаем мотор, переходим на парящий полет. Тишина, только крылья шуршат, словно паруса. Это воздушные вихри тянут, держат наш мухолет-вихрелет. Вот озеро, луг, зеленые насаждения. Снижаемся и сажаем свое сооружение прямо между кустов...»


Так, возможно, будет выглядить «мухокрыл»

Как видим, идея витает в воздухе. Правда, ее осуществление, похоже, в ближайшее время не предвидится. Хоть первые робкие попытки и предпринимаются. Вспомним хотя бы о тех же махолетах из Воткинска. Но чтобы рукотворные аппараты летали столь же виртуозно, как насекомые, нам еще предстоит учиться и учиться. У мух и стрекоз.

Для других планет

Если вы думаете, что созданные или проектируемые землянами летательные аппараты годятся лишь для нашей планеты, то глубоко ошибаетесь. Ныне конструкторы думают и даже делают самолеты, воздушные шары и дирижабли и для других планет. И вот что у них получается.

Полеты над красной планетой

Добывать данные о строении Марса должны не только планетоходы, но и планетолеты, полагают исследователи России и США. Например, по первоначальному плану Российского космического агентства в 1996 году была предусмотрена доставка на Марс и аэростата, сделанного во Франции.

Он состоит из двух оболочек, объемом около 4 тыс. м каждая. По прибытии на место одна из них – герметизированная – будет автоматически накачана гелием. Другую же – негерметичную – наполнит марсианский воздух, состоящий в основном из углекислого газа. Поэтому, естественно, она, став тяжелее первой, расположится ниже гондолы с приборами, выполняя роль своеобразной балластной камеры.

Ночные часы аэростат проведет на поверхности планеты, так как создаваемой гелием подъемной силы не хватает, чтобы его приподнять. С восходом же солнца газ в «балласте» разогревается, объем его увеличится, и он частично выйдет наружу. Масса «балласта» уменьшится, и когда, согласно расчету, разница температур внутри и вне его достигнет 30 °С, подъемная сила верхнего баллона окажется достаточной, чтобы вся конструкция взмыла вверх.



Марсианский аэростат 455

Специалисты полагают, что за световой день аэростат, увлекаемый силой ветра, пролетит около 500 км. Наступившая ночь заставит его снова опуститься на поверхность планеты. Так что научная аппаратура в гондоле-контей-нере, прикрепленной к верхней оболочке, будет проводить обследования не только атмосферы, но и различных точек поверхности Марса. Такие взлетно-посадочные циклы продолжатся 10—15 суток.

Американцы же полагают, что для обследования красной планеты с воздуха лучше использовать не аэростатический, а аэродинамический летательный аппарат. По сведениям зарубежной печати, эксперты рассматривают три варианта самолета для Марса: крейсерские с гидразиновым либо с электрическим двигателем и посадочный. Все они будут иметь одну и ту же базовую конфигурацию, напоминающую планер.


Как же самолеты будут доставлены на Марс? Три «шаттла» выведут на околоземную орбиту по одному контейнеру и двухступенчатому межорбитальному буксиру. В каждом контейнере – 4 самолета, компактно уложенные и упакованные в персональные капсулы, и спутник связи, предназначенный для ретрансляции передаваемой на Землю информаций. Первая ступень буксира, сработав, выведет контейнер на дорогу к Марсу. Прибыв к месту назначения, он с помощью второй ступени будет переведен на орбиту красной планеты с перицентром 500 км и периодом обращения четверо марсианских суток. В верхней точке орбиты, апоцентре, отделится связной спутник, который, оперируя собственными гид-разиновыми двигателями, займет стационарную эллиптическую орбиту с периодом обращения 1,5 суток. Это необходимо для того, чтобы он практически постоянно висел над районом десантирования.

Срабатывает тормозной двигатель контейнера, и четыре капсулы, одна за другой выходя из него, начинают свой путь с орбиты вниз. Войдя в атмосферу под углом 15°, они сначала затормаживаются за счет собственных аэродинамических качеств, а потом на высоте 9,5 км над каждой раскроется тормозной парашют.

На высоте 7,5 км скорость снизится до 60 м/с, да и плотность атмосферы уже достаточна, чтобы капсула раскрылась и расправивший крылья самолет мог отправиться в самостоятельное путешествие. Выполнившая же свою задачу оболочка упадет на поверхность Марса. Крейсерская скорость самолета любого типа– 60—100 м/с, полезная нагрузка – 40—100 кг, продолжительность и максимальная дальность полета – до 31 часа и 10 тыс. км соответственно.

Дюжина, по мнению экспертов, как раз то оптимальное число самолетов, которое необходимо для объективного сравнения полученных данных и выявления каких-либо закономерностей. Мы уж не говорим о повышении надежности выполнения всего эксперимента – есть надежда, что хоть часть аппаратов не будет изломана марсианскими бурями и свою задачу выполнит.



Спутник связи

...Таковы планы исследования красной планеты. Что из них исполнится, смогут ли страны-участницы преодолеть как финансовые, так и технические затруднения, станут ли координировать свои усилия или каждая пойдет своим путем – все это мы узнаем в ближайшее время.

Дирижабль для Венеры

Если на Марсе лучше всего использовать аэропланы, то для Венеры, как показывают расчеты, больше подойдут долговременная летающая лаборатория и исследовательские зонды, наделенные некоторыми свойствами... глубоководного батискафа.

Как известно, температура у поверхности Венеры достигает 500 °С, а давление 100 атм. Кроме того, поверхность планеты покрыта плотнейшим облачным покровом, обрекающим Венеру на вечные сумерки. И наконец, в атмосфере планеты кроме огромного количества углекислого газа (до 98%) есть смеси соляной и фтористой кислот. Все это делает сколько-нибудь длительное пребывание исследовательских аппаратов поверхности Венеры весьма проблематично. Как же тогда исследовать ее поверхность? «А примерно так же, как мы ныне изучаем поверхность океанского дна», – предполагают ученые. И далее развивают свою мысль следующим образом.


Плотную атмосферу Венеры из врага можно превратить в союзника. На высоте примерно 50 км плотность и температура венерианской атмосферы вполне сравнимы с земной. Здесь, наверное, и имеет смысл разместить постоянно действующую научную базу. Она может представлять собой нечто вроде гигантского аэростата, а еще лучше – дирижабля, могущего избирательно перемещаться в тот или иной район планеты, зависать над избранной точкой.

Причем для заполнения оболочки такого дирижабля вовсе не надо везти с Земли, скажем, традиционный гелий. Как показывают расчеты, вес этого газа составит примерно 9% от массы всего аппарата, а вот баллоны, в которых он содержится под давлением 300– 350 атм., будут весить столько же, сколько и сам аппарат целиком. Иное дело, если мы возьмем с Земли баллоны низкого давления, заполненные аммиаком или даже обыкновенной водой. Весить они будут куда меньше, а на месте, под действием высоких венерианских температур, такие жидкости без каких-либо дополнительных затрат энергии превратятся в пар, который и послужит рабочим телом для аэростата.

Понятное дело, аэростат, заполненный водяным паром, существенно тяжелее дирижабля, оболочка которого заполнена гелием. Но этот избыток с лихвой компенсируется отсутствием массивных баллонов высокого давления. И в итоге «водяной» аэростат будет брать на борт большую полезную нагрузку, чем гелиевый. Не забывайте, летать ему ведь придется в условиях Венеры, а не Земли.


С борта такой летающей долговременной лаборатории непосредственно на поверхность планеты можно будет время от времени запускать исследовательские зонды, напоминающие собой земные глубоководные батискафы. Только на Земле такие аппараты бывают полыми внутри или, в крайнем случае, заполняются легкой жидкостью (например, керосином). На Венере же, согласно прикидкам кандидата технических наук Г. Москаленко, логичнее использовать двухкомпонентное рабочее тело, например смесь паров воды и паров аммиака или метилового спирта.



Дирижабль для Венеры

Чтобы вы поняли, в чем тут выигрыш, давайте подробнее рассмотрим условия «аэростатического плавания» в атмосфере Земли и в атмосфере Венеры. В земной атмосфере количество рабочего тела, необходимое для уравновешивания аэростата, должно быть тем больше, чем выше мы хотим подняться. Дополнительно даже приходится сбрасывать балласт. А на Венере все наоборот: чем на большей высоте должен зависнуть аппарат, тем меньшее количество рабочего тела должно быть в его оболочке – таковы соотношения давления, плотности, температуры газов на разных высотах.

Теперь представим себе, что в летательном аппарате используется два разных газа, два рабочих тела – основное и вспомогательное. Основной газ обеспечивает подъем аппарата до некоторой максимальной высоты. Но еще до того, как эта высота будет достигнута, вспомогательное рабочее тёло, рабочие характеристики которого выбраны как раз с таким расчетом, начнет переходить из газообразного состояния в жидкое, превращаясь в балласт. Аппарат начнет снижаться.

Причем если конденсат собрать в баллон и не дать ему превращаться в газ по мере снижения и повышения температуры, то можно осуществить спуск до самой поверхности. А когда нужно будет подняться, достаточно будет выпустить жидкость из баллона, где она содержалась под давлением. Она тотчас станет превращаться в газ – не забывайте, за бортом около 500° жары, – и исследовательский зонд снова взмоет вверх.

Понятное дело, процесс этот можно сделать и плавно регулируемым; тогда зонд сможет зависать на любой заранее заданной высоте. И все это совершенно бесплатно: никакого расхода балласта или рабочего газа не предвидится.

Более того, Москаленко предлагает весьма остроумную идею, как при спуске попутно запастись электроэнергией. Для этого достаточно выставить наружу, в набегающий поток газа, крыльчатку. Она станет вращаться, электрогенератор будет вырабатывать электрический ток. Запасая энергию в аккумуляторах, ее можно затем использовать, скажем, для подсветки ландшафтов Венеры с помощью прожекторов или фотовспышек. Ведь на поверхности, как мы уже говорили, царит вечный полумрак.

Стартовать же и возвращаться такие аппараты будут на «летающие острова», свободно плавающие в верхних слоях венерианской атмосферы, на высоте примерно 50 км, где условия примерно такие же, как и на нашей планете.

Гигантская круглая платформа (несколько сотен метров в поперечнике) будет сооружена из прочных и легких пластмассовых конструкций. Ее покрывает слой почвы, на котором произрастают земные растения. Домики поселка разбросаны среди садов и парков. Основные жилые помещения– в толще платформы.

К краям платформы крепится огромная сферическая оболочка, ограничивающая воздушное пространство острова. Она прозрачна, и сквозь нее видно белесое небо Венеры, вечно покрытое толщей облаков. Оболочка сделана из нескольких слоев синтетической пленки. Между ними циркулируют газовые составы, содержащие вещества-индикаторы. Они сигнализируют о возможных проколах оболочки, могут содержать и герметики.

От краев платформы за оболочку уходят площадки аэродромов. Отсюда стартуют к черным глубинам Венеры телеуправляемые аппараты, исследующие ее поверхность, сюда прилетают гости с соседних островов, «приземляются» спускаемые аппараты космических кораблей.

Мощные пропеллеры способны перемещать остров по воле его обитателей.


    Ваша оценка произведения:

Популярные книги за неделю