355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Станислав Галактионов » Биологически активные » Текст книги (страница 15)
Биологически активные
  • Текст добавлен: 21 сентября 2016, 14:26

Текст книги "Биологически активные"


Автор книги: Станислав Галактионов


Жанры:

   

Химия

,

сообщить о нарушении

Текущая страница: 15 (всего у книги 20 страниц)

«Гормоны, сохраняющие статус-кво личинки»

Наиболее эффективные приемы химической борьбы с сорняками были разработаны, как явствует из только что приведенных примеров, на основе результатов солидных фундаментальных исследований; выявления основных механизмов химической регуляции в организме растения. Гормональная система насекомых гораздо сложнее и в очень многих деталях толком не изучена по сей день. С другой стороны, организация целого ряда биохимических и физиологических процессов у насекомых и млекопитающих удивительно схожа, и очень трудно подобрать такой ядохимикат, который бы эффективно уничтожал насекомых, будучи в то же время безвредным для человека.

Очевидным кажется, что наилучший способ «отстройки» – использование препаратов, действующих именно на гормональную систему насекомых, очень все-таки непохожую на пути химической регуляции в организме прочих животных. «Путь к фундаментальному пониманию механизма действия гормонов был и остается неясным, и мы должны смотреть на наши современные представления скорее с большой долей трезвости, чем с экстравагантным энтузиазмом, – писали совсем недавно (1984 год) американские исследователи Дж. Ричарде и М. Эшбернер. – Гормоны насекомых в особенности удивительные, поскольку их эффект является столь сильным и сложным. Немногие в состоянии не удивляться метаморфозам бабочки. Эти чудесные события контролируются немногими гормонами, наиболее важные из которых, ювенильный гормон и экдистероидные гормоны, просты по химическому строению. Превращение гусеницы в крылатую бабочку и подобные явления в жизненном цикле многих насекомых требуют полной перестройки животного и всех его тканей. Полный метаморфоз бабочек, мух, жуков, муравьев, пчел позволяет этим видам насекомых находиться в существенно различном окружении в форме гусеницы и в форме взрослого насекомого. Это означает, что, кроме морфологических преобразований, столь заметных невооруженным глазом, метаморфоз вызывает полную перестройку физиологических процессов и поведения насекомого».

Действительно, развитие под действием гормона у курочки внешних признаков петушка – явление, что и говорить, удивительное, но посадите рядом бабочку-капустницу и ее гусеницу...

Самое интересное, что важнейшая группа гормонов, регулирующих процессы метаморфоза, так называемые ювенильные гормоны, своим действием не вызываетметаморфоз, а сдерживает его.

Японский исследователь Фукуда удалял у гусениц тутового шелкопряда секретирующие ювенильные гормоны железы – корпора аллата. При нормальном развитии гусеница проходит пять стадий, после чего окукливается. Если же удаление желез происходит, скажем, на третьей стадии, превращение в куколку наступает немедленно; более того, из маленькой гусеницы образуется маленькая же куколка, из которой потом разовьется взрослая особь, также в несколько раз меньше нормальной. Недаром эти гормоны назвали «гормонами, сохраняющими статус-кво личинки».

По своей химической структуре ювенильные гормоны сравнительно просты, это – метиловые эфиры эпоксидов органических кислот (воздержимся на этот раз от более подробного описания). Когда в 1967 году группа западногерманских химиков установила структуру первого из ювенильных гормонов, появилась надежда, что на их основе можно будет получить эффективные средства борьбы с насекомыми; сейчас, двадцать лет спустя, эта надежда все еще жива, но промышленного производства чудодейственных средств пока нет.

Американцев есть нельзя

Применяемые ныне в сельскохозяйственной и всякой иной практике инсектициды не создавались, конечно, совсем уж эмпирически, без использования новейших достижений биохимии, физиологии, биофизики. Наоборот, процесс создания многих инсектицидов мог бы служить образцом современного подхода к истинно целенаправленному синтезу биологически активных соединений, обладающих требуемыми свойствами. Именно такого рода примеры представляют для нас наибольший интерес; некоторые из них я приведу в дальнейшем.

Только что шла речь об ужасающей сложности классификации пестицидов. «Внутренних» классификаций инсектицидов было предложено несколько, но они попроще. Скажем, так называемая физиологическая классификация, в соответствии с путями поступления инсектицида в организм насекомого, различает четыре основные группы препаратов. Кишечные яды, попадающие с пищей, образуют первую и, по-видимому, самую многочисленную группу. К группе контактных относятся соединения, проникающие через поверхность тела, к фумигантам – через органы дыхания. Выделяют еще и группу системных ядов, которые поглощаются растением и вместе с растительной пищей поступают в организм. Не очень ясно, зачем понадобилось выделять их в отдельную группу, ведь это те же кишечные яды.

Такая классификация представляет, по-видимому, интерес для практики применения инсектицидов; с точки же зрения биохимических основ их действия важно не столько, каким путем токсикант проникает в организм, сколько те звенья обмена веществ, те химические реакции или регуляторные процессы, нормальное течение которых он блокирует.

Впрочем, некоторые дыхательные инсектициды прямо в эти процессы не вмешиваются. Например, в своей безуспешной борьбе с клопами упоминавшийся только что дядя Ваня применял также и керосин. По периферии тел клопа расположены дыхательные отверстия – дыхальца, через которые воздух поступает в организм. Если клопа хорошенько вывалять в керосине, дыхальца закупорятся и он в конце концов задохнется. Тот же керосин, различные минеральные масла применяют также в борьбе с вредителями плодовых деревьев. Есть даже группа инсектицидов, представляющих собой просто очень измельченную силикатную пыль, которая забивает дыхательные пути насекомого.

Среди контактных инсектицидов наибольшую известность приобрел, несомненно, ДДТ. Масштабами применения он, несомненно, превосходил любой другой, а уж написано о нем в несколько раз больше, чем обо всех остальных вместе взятых, и в специальной литературе, и в неспециальной в особенности. ДДТ – это рабочее сокращение благозвучного 4,4-дихлордифенилтрихлор-метилметана. Два кольца фенильных, посередине – соединяющий их атом углерода. Добавим заместители, по атому хлора в каждом кольце, атом водорода и радикал – CCl 3к углероду, вот и весь ДДТ.

В 1873 году молодой австрийский химик Отмар Цейдлер написал диссертацию, в которой сообщил о синтезе нового хлорорганического соединения: 4,4-дихлордифенилтрихлорметилметана. В наши дни автор каждой диссертации должен в своем автореферате дать общую характеристику работы по определенной форме, с обязательными подзаголовками: «Актуальность проблемы», «Цель и задачи исследования», «Научная новизна работы», «Практическая значимость» и т.п.

Многие современные диссертанты имеют трудности именно с этой практической значимостью. Мне ни разу еще не попадалась вполне честная формулировка: «Практическая значимость работы – отсутствует». Как-то я предложил было ее одному из своих аспирантов, тот чуть не задохнулся от обиды. В конце концов в ход пошло что-то лицемерное, вроде того, что полученные результаты освещают некоторые детали механизма такого-то и такого эффекта, что может оказаться полезным для понимания функций группы ферментов, по-видимому, играющих важную роль в процессах жизнедеятельности ряда микроорганизмов, которые, возможно, могут быть использованы в каких-нибудь биотехнологических процессах. Я думаю, если какому-то математику удастся доказать великую теорему Ферма (точнее, гипотезу): не существует целых a, b, c, для которых выполнялось бы условие a n +  b n =  c n(при целых nбольше двух), за что он немедленно и единогласно будет провозглашен величайшим математиком нашего времени, в своей диссертации, написанной на этом материале, он не прибегнет к приведенной смелой формулировке: «Практическая ценность работы отсутствует» (что чистая правда, по мнению самих же математиков), а будет что-то стыдливо лепетать о пользе для воспитания юных умов. Когда рукопись этой книги уже была в наборе, пришло известие, что теорема Ферма доказана, Что ж, остается ждать дальнейшего развития событий.

Вряд ли подобные заботы тяготили Цейдлера – что ни говорите, развитие науки находилось в те годы на весьма низком уровне в сравнении с сегодняшним днем – но если бы ему пришлось все же оформлять автореферат своей диссертации в строгом соответствии с ныне действующими правилами Высшей аттестационной комиссии, он немало намаялся бы, выдумывая для своих результатов ну хоть какое-нибудь практическое значение, и уныло в конце концов стал бы мямлить о понимании отдельных стадий определенных органических реакций... что, возможно, окажется полезным при получении... каковые, в свою очередь, могут быть использованы как компонент подкрахмаливающих средств для манишек.

Между тем, после того как в 1937 году было установлено, что ДДТ обладает высокой токсичностью для насекомых, будучи безвредным в соответствующих концентрациях для теплокровных животных, этому соединению суждено было получить такое уж широкое практическое применение... Как выяснилось, впрочем, на нашу голову.

ДДТ поражает нервную систему насекомого. О степени его токсичности можно судить по тому, что личинки мух гибнут при попадании на поверхность их тела (напоминаю, ДДТ – яд контактного действия) менее одной миллионной миллиграмма. (Для вящей наглядности: если в одном кубометре растворителя содержится один грамм ДДТ, смертельная для личинки доза – один кубический миллиметр такого раствора.)

При обработке посевов на один квадратный метр вносили около ста миллиграммов ДДТ. Здесь, разумеется, речь идет о действующем начале: том самом 4,4-дихлор... и т.д. Реально же применялись его препараты в виде дустов, эмульсий или растворов в органических растворителях. В воде ДДТ нерастворим. Дуст – это мелкая пыль наполнителя, чаще неорганического (английское dust – пыль), на котором сорбирован ДДТ и некоторые другие вещества, облегчающие прилипание частичек дуста к поверхности тела насекомого и процессы переноса токсиканта через его покровы.

Десятки и даже сотни миллионов гектаров посевов во всем мире обрабатывались ДДТ в 50-х – начале 60-х годов. Помимо этого, широко применялся он и против вредителей леса, и в кампании борьбы с малярией (здесь на гектар водоема вносилось всего около 100 граммов ДДТ, и этого было достаточно для того, чтобы уничтожить личинок малярийного комара), и в быту против мух, тараканов и тех же самых клопов (полки хозяйственных магазинов были завалены коробками с дустом ДДТ).

Словом, мир быстро приобретал опыт применения ДДТ в широких масштабах, но, как стало постепенно выясняться, опыт отнюдь не только положительный. Началось с того, что вместе с некоторыми вредителями погибали и полезные насекомые, например, хищники, уничтожающие других вредителей, менее чувствительных к ДДТ. Среди насекомых такими оказались различные виды тлей. Помимо этого, сравнительно легко переносили обработку ДДТ клещи, повреждающие посевы. Вездесущие карикатуристы не преминули откликнуться и на это явление. Колорадский жук, лицу которого художник придал крайне неприятное выражение, злобно говорит муравью:

– Обработка химикатами, конечно, будет по моему поводу, но тебе, муравьишка, от этого не легче!

Затем выяснилось, что после нескольких лет применения ДДТ появились расы вредителей, устойчивых к его действию; для их эффективного уничтожения нужно было увеличивать дозы порой даже в десять и более раз.

А тем временем и те количества ДДТ, которые вносились в окружающую среду на протяжении предыдущих лет, оказались не столь уж безвредными для человека, домашних и теплокровных диких животных.

Если сравнивать, сколько ДДТ требуется для того, чтобы погубить одну личинку мухи и одного человека, нужно, конечно, принимать во внимание их размеры. Обычно для этой цели осуществляется перерасчет на килограмм веса, у нас еще будет повод поговорить об этом подробнее. Итак, вообразим себе килограмм мушиных личинок (зрелище так себе). Чтобы расправиться с ними, нам понадобится (при справедливом распределении и отсутствии потерь препарата) не более одной десятитысячной миллиграммачистого ДДТ. Для человека же смертельная доза – сотни миллиграммовна килограмм веса. То есть человеку весом килограммов этак в восемьдесят – десятки граммов чистого ДДТ. Поскольку же он выпускался в виде несколько-процентного дуста – уже сотни граммов нужно съесть человеку, чтобы насмерть отравиться ДДТ, а такое количество, конечно, ни один даже завзятый токсикоман не осилит. И вот оказалось: самые нелепые, немыслимые просто случаи возможны, когда пестициды продаются и применяются повсюду свободно и бесконтрольно.

Как уж оно получилось, не знаю, но однажды, лет двадцать с лишним назад, газеты всего мира сообщили о страшном случае: в детском саду, где-то в Иране, при приготовлении каши в котел вместо порошкового молока засыпали соответствующее количество дуста ДДТ. И то, и другое было, видимо, в банках с иностранными этикетками, и то, и другое – белый порошок. Погибли, отравившись, несколько десятков ребятишек.

Этот трагический случай, конечно, безусловное исключение. Вред же, причиняемый применением ДДТ всюду и везде, ощутили на себе десятки или сотни миллионов человек, хотя и в менее ужасной форме.

ДДТ – вещество сравнительно стойкое, медленно разлагается в окружающей среде и в организме. Не страшны ему ни повышенные температуры, ни ферменты, занятые обезвреживанием чужеродных веществ, ни свет. В результате, попадая в трофическую (пищевую) цепь, ДДТ накапливается в значительных количествах сначала в растениях, затем в мясе и молочных продуктах, наконец, в человеческом организме. Один американский журналист ядовито заметил как-то (точнее, в 1970 году): «Американцев есть нельзя. Согласно закону нельзя есть мясо, содержащее свыше семи промилле (одна тысячная часть) ДДТ в жировой ткани. Американцы содержат 12 промилле».

Не могу поручиться за приведенные цифры, это – цитата как минимум вторичная, один журнал заимствовал из другого, а уж оттуда – я. Все же двенадцать промилле – это более процента, и если даже жировая ткань стройного, симпатичного, совершенно не обрюзгшего восьмидесятикилограммового американца составляет всего один процент от его веса, и то, оказывается, в нем содержится около десяти граммов ДДТ, доза, уже близкая к смертельной, согласно самым авторитетным справочникам, составлявшимся профессионалами. Те же справочники приводят и предельно допустимые (по нормативам 60-х годов) количества ДДТ, которые могут содержаться в пищевых продуктах. Обычно это несколько миллионных долей (принятая в англоязычных странах мера – ppm, parts pro million); я думаю, в приведенной цитате подразумевались именно миллионные доли, а не промилле.

Конечно, это только мой домысел: возможно, дело обстоит иначе. Но в любом, конечно, случае я полностью солидарен с приведенным предостережением – лучше воздержаться от поедания американцев.

Словом, с течением времени стало ясно, что ДДТ– препарат коварный, при широком применении отнюдь не безвредный для человека (в особенности для грудных детей – это было, кстати, установлено еще на ранних стадиях его использования), и постепенно в развитых странах его стали избегать. Несмотря на это, многие еще годы спустя остатки ДДТ обнаруживают то в океаническом планктоне, то в молоке, то в жировой ткани злосчастных американцев. А может, и не только американцев, кто проверял?

По рецепту полихеты

Итак, ДДТ плох главным образом тем, что он устойчив к деградации. Чем же его заменить? Очевидно, соединением, не менее эффективно истребляющим насекомых, но быстро разлагающимся до безвредных остатков. Наиболее подходящими претендентами оказались фосфорорганические инсектициды, удовлетворяющие обоим этим требованиям.

Приходится иногда встречать мнение, что эта группа инсектицидов является побочным продуктом усилий химиков, занятых созданием боевых отравляющих веществ. Трудно судить, сколько в этом утверждении правды, нельзя представить конкретный перечень фосфорорганических соединений, синтезированных с мыслью об их использовании как ОВ, но оказавшихся в конце концов эффективными инсектицидами. Что не подлежит сомнению, так это близость механизмов действия большинства фосфорорганических инсектицидов и упоминавшихся выше зарина, зомана, газов VX и т.п.

И те и другие взаимодействуют с активным центром ацетилхолинэстеразы, конкретно с гидроксилом бокового радикала серина в ее активном центре.

Этот фермент играет в организме насекомых ту же роль, что и у человека, являясь важнейшим участником процесса передачи нервного импульса. Однако устройство активного центра ацетилхолинэстеразы, в частности, его пространственная организация, по-видимому, в каких-то деталях различаются. Сейчас трудно сказать что-либо конкретное по этому поводу – рентгеноструктурный анализ молекулы ацетилхолинэстеразы до сих пор выполнить не удалось, однако это ясно хотя бы из того факта, что некоторые соединения, являющиеся сильными ингибиторами ацетилхолинэстеразы еловека, почти не действуют на ацетилхолинэстеразу насекомых, и наоборот.

В молекулах многих фосфорорганических инсектицидов так же, как у зарина и зомана, одним из заместителей у атома фосфора является аллоксильная группа (C 2H 5O–, CH 3O– и т.д.); часто их две, как например, у популярного хлорофоса (CH 3O) 2P(O)CH(OH)CCl 3.

В настоящее время используются в сельскохозяйственной (и не только) практике десятки различных соединений группы фосфорорганических инсектицидов; варьируя характер заместителей у атома фосфора, удается получить препараты, эффективные в отношении одних видов насекомых и сравнительно безвредные для других.

Естественно, все они в первую очередь должны быть достаточно безвредными для человека. Сходство с нервно-паралитическими газами, однако, дает о себе знать: большинство этих соединений примерно в десять раз более токсичны, чем ДДТ; смертельная доза у некоторых из них составляет около одного грамма или даже ста миллиграммов. Есть, впрочем, и вещества, токсичные в той же степени, что и ДДТ (тот же хлорофос) или еще менее (трихлорметафос).

Постоянно ищут новые фосфорорганические инсектициды, обладающие избирательным действием и предназначенные для выполнения некоторых узкоспециализированных задач; примечательно, что это не поиск вслепую, а вполне целенаправленные действия, руководимые глубоким пониманием молекулярных механизмов, лежащих в основе токсических эффектов соединений этой группы.

Можно привести в качестве курьеза и примеры иного рода – создание эффективных инсектицидов на основе идеи, подсмотренной у природы. Да даже и не идеи, а, скажем, технического решения.

Животный мир морского дна изобилует видами, кажущимися нам, непосвященным, прямо-таки фантастическими. Дело не только в причудливой форме некоторых его обитателей, но и в их образе жизни, очень сложных взаимоотношениях. Многие виды, живущие на дне, ядовиты. Среди них и кольчатые черви полихеты, мелкие хищники. В 60-х годах была установлена структура яда одного из видов полихет; им оказалось сравнительно простое циклическое соединение названное нереистоксином. Изучение токсикологических свойств нереистоксина показало, что он сравнительно безвреден для млекопитающих, но очень ядовит для насекомых.

Поскольку нереистоксин относительно легко может быть получен синтетически, возникла идея использования его в качестве инсектицида. Оказалось, однако, что это соединение по ряду параметров непригодно для таких целей, в частности, очень уж быстро разлагается. Тогда был синтезирован ряд аналогов нереистоксина; один из них, лишенный недостатков природного токсина, стал промышленно производиться в Японии под названием падана. Два других примера – выделенные из грибов циклопептиды аспрохацин и деструксин, циклодепсипептид бассанолид, у которых обнаружены выраженные инсектицидные свойства; неясно пока, правда, найдут ли они практическое применение.

Снова генетическая инженерия

Наибольшие надежды, однако, специалисты, связывают с применением другого природного токсина – кристаллического белка из микроорганизма бациллус тюрингензис. Строго говоря, это четыре различных белка –. α-, β-, γ-ύкзотоксины и Δ-эндотоксины; их структура в настоящее время еще не установлена.

Бациллус тюрингензис широко используется в настоящее время в качестве биологического средства защиты растений. Вообще предполагается, что биологические средства, прежде всего препараты энтомопатогенных микроорганизмов, производство которых в настоящее время составляет около 5 процентов мирового производства пестицидов, в ближайшее время сильно потеснят химические средства и уже к 2000 году их доля возрастет до 50 процентов.

Преимущества их применения видны на примере той же бациллус тюрингензис. Известны несколько вариантов этого микроорганизма. Белковый токсин, вырабатываемый большинством вариантов, действует только на представителей отряда чешуекрылых (бабочек), практически безвреден для остальных насекомых и совершенно уж безвреден для теплокровных животных и человека. В отличие от большинства используемых ныне инсектицидов применение препаратов бациллус тюрингензис не вызывает гибели полезных насекомых – опылителей, хищников, пчел. Весьма значительная доля вредителей сельскохозяйственных культур – это именно представители отряда чешуекрылых, в отношении которых такие препараты эффективны. Более того, обнаружена разновидность бациллус тюрингензис, вырабатывающая белковый токсин, действующий на другую обширную группу вредных насекомых – комаров.

Ныне применяемые препараты, содержащие так называемый спорокристаллический комплекс, готовятся путем культивирования соответствующего штамма бациллус тюрингензис в специально подготовленной питательной среде, содержащей глюкозу, крахмал, соевую муку и некоторые добавки. Однако наиболее интересные перспективы использования белковых токсинов этой бациллы связаны, пожалуй, с переносом соответствующих генов в другие организмы уже неоднократно упоминавшимися методами генетической инженерии.

В настоящее время реализовано два подхода подобного рода. В первом случае объектом для пересадки гена была избрана распространенная в почве бактерия псевдомонас флюоресценс; полагают, что внесение полученных микроорганизмов в почву позволит избавиться от обитающих там личинок вредителей.

Однако гораздо более эффективен прием, к которому прибегли исследователи бельгийской фирмы «Плэнт джинетикс системе». Трудно сказать, известно ли им изречение Нидхэма «Лучший способ не быть съеденным – это стать несъедобным», но действовали они в точности в его духе. Ген, кодирующий синтез кристаллического белкового токсина бациллус тюрингензис, они перенесли непосредственно в геном культурного растения – табака, получив таким образом сорт, абсолютно устойчивый к поражению многими видами вредителей. Удачен и выбор культуры – «реципиента»: хотя безвредность кристаллического белкового токсина для человека доказана многими исследователями, ведомства, осуществляющие контроль безопасности новых сельхозпродуктов, еще долгое время не давали бы хода применению нового сорта на практике, будь то растение, употребляемое в пищу. Они, эти ведомства, страдают болезненной прямо-таки подозрительностью, и, надо признать, кое-какие основания для этого у них имеются. Не раз бывало, что новый продукт, казавшийся совершенно безвредным с позиций так называемого здравого смысла, в конце концов после придирчивых испытаний браковался.

В случае же с табаком попадание токсина в организм курильщика полностью исключено: он и не летуч и полностью сгорает. Тем более что в табачном дыме и без того масса всяких токсичных соединений, и вообще не очень понятно, какие критерии применяются при оценке безвредности табачных изделий.


    Ваша оценка произведения:

Популярные книги за неделю