Текст книги "Химия лунного грунта"
Автор книги: Сергей Викторов
Соавторы: Владимир Чесноков
сообщить о нарушении
Текущая страница: 2 (всего у книги 4 страниц)
Рис. 3. Принцип действия характеристического фильтра, применяемого для разделения линий элементов, имеющих близкие по значению энергии флуоресцентного излучения
Можно подобрать фильтры для пар различных элементов: алюминий + кремний, калий + кальций и т. д. Поскольку при подобной «фильтрации» интенсивность одной из линий значительно ослаблена (причем заранее известна степень ослабления), то сравнение спектров излучения исследуемого образца, полученных с фильтрами и без фильтров, позволяет в отдельности определить интенсивности всех неразделенных линий.
Важно отметить, что на основе рентгеновского изотопного флуоресцентного метода можно создать довольно простую аппаратуру для проведения химического анализа вещества в космических условиях, удовлетворяющую всем поставленным выше требованиям. Радиоактивные источники, необходимые для облучения грунта, абсолютно надежны в работе, они не требуют настройки, наладки и не нуждаются в электрической энергии. Пропорциональные счетчики, регистрирующие рентгеновское излучение грунта, компактны и легки. Информацию легко перевести в электрические величины – амплитуды импульсов, что очень удобно для передачи по линиям космической радиосвязи. Наконец, исследуемые рентгеновские спектры довольно просты (в них всего несколько линий) по сравнению с оптическими. К настоящему времени в исследованиях химического состава грунта, проведенных непосредственно на поверхности Луны, применялись только два из перечисленных методов. Рентгеновский флуоресцентный метод анализа, предложенный коллективом советских ученых, с успехом был применен при работе автоматических самоходных аппаратов «Луноход-1 и -2». Американские ученые на станциях «Сервейер-5, -6 и -7» использовали метод «обратно рассеянных альфа-частиц» (подробное описание которого будет дано ниже), но впоследствии уже на марсианских станциях «Викинг-1 и -2» они тоже применили рентгеновский флуоресцентный метод.
ИЗМЕРЕНИЯ С ОРБИТЫ ИСКУССТВЕННЫХ СПУТНИКОВ ЛУНЫ
Исследования химического состава лунного грунта были начаты с орбиты искусственных спутников Луны. Эти спутники позволили изучить характеристики окололунного пространства, магнитного и гравитационного полей Луны, а также, что особенно важно для нас, получить общие сведения геохимического характера. Естественно, что такие исследования являются глобальными, т. е. их результаты получаются усредненными по значительным площадям лунной поверхности.
Измерения, проведенные с помощью гамма-спектрометра, установленного на первом искусственном спутнике Луны – станции «Луна-10», позволили получить данные о гамма-излучении больших областей лунной поверхности. Часть этого излучения, как полагают, возникает за счет взаимодействия космических лучей с поверхностью, а другая связана с собственной радиоактивностью лунных пород. После сравнения интенсивности гамма-излучения от распада в лунном грунте естественных радиоактивных элементов (калия-40, изотопов урана и тория) с интенсивностью излучения этих элементов, содержащихся в земных горных породах, ученые пришли к выводу, что лунные породы содержат радиоактивные элементы, концентрация которых соответствует земным породам основного состава (типа базальтов). Таким образом, полученные данные указывали на отсутствие (в районах лунной поверхности, где проводились измерения) пород с таким же содержанием радиоактивных элементов, как в земных кислых породах (гранитах). Вместе с тем нельзя было на основании лишь орбитальных исследований полностью исключить возможность существования ультраосновного или метеоритного вещества в этих районах.
Исследования Луны с орбит искусственных спутников были продолжены советскими станциями «Луна-11, -12, -14 и -15» (1966–1969 гг.) и пятью американскими аппаратами серии «Лунар орбитер» (1966–1967 гг.). Эти станции дали возможность получить детальные снимки больших площадей видимой и невидимой с Земли сторон Луны, определить аномалии ее гравитационного поля, изучить метеоритную и радиационную обстановку в окрестностях Луны. Полученные результаты позволили сделать вывод о реальности осуществления полетов пилотируемых космических кораблей. Началась также отработка возможности мягкой посадки космической станции в разных районах Луны, т. е. проведение различных маневров с изменением селеноцентрической орбиты («Луна-15»).
Исследование Луны и окололунного пространства с орбиты искусственных спутников Луны оказалось весьма перспективным, поэтому они продолжаются и в настоящее время («Луна-19» в 1971 г., «Луна-22» в 1973 г., «Луна-23» в 1974 г.).
Американская программа исследования Луны с орбиты ее искусственных спутников после полетов аппаратов «Лунар орбитер» осуществлялась с помощью командных модулей кораблей «Аполлон», а также небольших спутников, запущенных экипажами «Аполлона-15 и -16». На борту «Аполлона-15 и -16» находились приборы, позволявшие с помощью метода рентгеновского флуоресцентного анализа (примененного для исследования лунного грунта впервые на «Луноходе-1» в 1970 г.) измерять содержание ряда элементов в поверхностном слое лунного грунта.
Однако следует отметить, что на «Луноходах» была реализована полная схема рентгеновского флуоресцентного анализа: там имелись как радиоактивные источники для возбуждения рентгеновского излучения грунта, так и детекторы для его регистрации. Американские же космонавты имели на борту лишь детекторы, а в качестве источника для возбуждения флуоресценции лунного грунта «использовалось» солнечное рентгеновское излучение (рис. 4), энергия которого достаточна для возбуждения лишь наиболее легких элементов – магния, алюминия, кремния. Кроме того, интенсивность рентгеновского излучения Солнца весьма непостоянна, в силу чего невозможно было проводить абсолютные измерения концентраций.
Рис. 4. Принцип измерения усредненного содержания химических элементов на больших участках лунной поверхности, использующийся при полете кораблей «Аполлон-15 и -16» (для облучения грунта «использовалось» рентгеновское излучение Солнца)
В американском эксперименте использовались три детектора с окнами, изготовленными из тонкой берилловой фольги. Ввиду того что кремний, магний и алюминий имеют очень близкое по энергии флуоресцентное излучение, для определения интенсивности линий этих элементов применялись алюминиевый и магниевый фильтры. С помощью специального источника периодически проводилась калибровка детекторов. Для контроля за интенсивностью рентгеновского излучения Солнца был установлен солнечный монитор, работавший в диапазоне энергий от 1 до 3 кэВ. Для получения энергетических спектров флуоресцентного рентгеновского излучения использовался восьмиканальный амплитудный анализатор.
Измерения с орбиты проводились в течение десятков часов и охватили около 20 % лунной поверхности. В тех местах, где измерения были проведены как «Аполлоном-15», так и «Аполлоном-16», они дали близкие результаты, совпадающие с точностью до 10 %. В результате этих исследований было измерено относительное содержание магния, алюминия и кремния в отдельных, но обширных районах Луны. Из-за большой скорости и значительной высоты орбитального полета каждая «точка» этих измерений соответствовала участку поверхности размером примерно 100 х 150 км.
Орбитальные измерения подтвердили тот факт, что «морские» и «материковые» районы Луны заметно различаются по содержанию в них алюминия. Отношение концентраций «алюминий/кремний» составило для «морских» районов от 0,29 до 0,38, для «материковых» – от 0,42 до 0,69, что хорошо согласуется с результатами других экспериментов. Наблюдалась также определенная корреляция между содержанием алюминия и отражающей способностью соответствующего участка лунной поверхности. Этот факт был вскоре подтвержден соответствующими исследованиями, выполненными на «Луноходе-2».
Любопытно отметить, что содержание алюминия в «морских» районах было выше в краевых частях «морей», граничащих с «материками». Этот результат может, вообще говоря, подтверждать факт горизонтального переноса вещества на лунной поверхности с более высоких «материковых» районов в более низкие «морские». Однако не исключено, что это вызвано неизбежным для данного эксперимента усреднением по сравнительно большой площади: при измерении краевых областей «морей» в поле зрения прибора могли попадать части «материковых» районов. В то же время обнаруженное «Луноходом-2» постепенное изменение химического состава вещества в зоне контакта «морской» и «материковой» областей свидетельствует в пользу наличия перемещения вещества на лунной поверхности.
О наличии переноса вещества свидетельствуют также и материалы изучения некоторых особенностей структуры лунной поверхности. Так, например, находящиеся на довольно сглаженной поверхности камни погружены в грунт так, что имеется резкая линия раздела, причем верхние поверхности камней часто совсем не покрыты пылью. Кроме того, отсутствуют нарушения структуры грунта, которые должны были бы возникнуть при падении этих камней, являющихся выбросами при кратерообразовании. Для объяснения этих фактов требуется достаточно эффективный и быстрый механизм, который должен был сгладить грунт и при этом не покрыть слоем пыли верх камней и не образовать вала вокруг каждого камня.
Характер зон раздела между горами и окружающими районами свидетельствует в пользу переноса материала возвышенностей вниз по склонам. Камни часто концентрируются вдоль разломов я пиков, что, по-видимому, вызвано переносом мелких частиц вниз, приводящим к обнажению ранее погребенных камней. В горных районах на любой широте местные низменности являются относительно плоскими. Это также можно рассматривать как результат переноса вещества с соседних склонов вниз.
По-видимому, сейчас мы наблюдаем запечатленные на поверхности результаты перемещений мелких частиц грунта, происходивших в течение миллионов лет до «космической эры». Имеются экспериментальные данные, свидетельствующие о наличии пыли в окололунном пространстве. Так, например, еще приборами «Сервейеров» было зарегистрировано свечение лунного горизонта, продолжавшееся в течение 90 мин после захода Солнца. С помощью «Сервейера-7», в частности, было зарегистрировано свечение горизонта, распространявшееся на 2–3° в каждую сторону от линии захода Солнца и приподнятое по вертикали на 3 – 30 см над линией горизонта, причем интенсивность свечения монотонно уменьшалась со временем.
Было предложено следующее объяснение этому явлению. Вблизи поверхности, видимо, имелось облако взвешенных частиц лунного грунта, которые и рассеивали солнечный свет в полностью затемненную область, где стоял космический аппарат. Расчет рассеяния света на пылевых частицах позволил оценить их радиус – 5–6 мкм.
Интересную информацию дали оптические эксперименты, проводившиеся на «Луноходе-2». Установленный на нем астрофотометр регистрировал яркость лунного неба в оптическом и– ультрафиолетовом диапазонах спектра. Была зарегистрирована избыточная по сравнению с ожидаемой яркость в течение лунного дня и лунной ночи, особенно сильная в видимой области спектра. Ее изменение в зависимости от зенитного расстояния Солнца может быть объяснено наличием в окололунном пространстве неких частиц, рассеивающих свет. Причем оптические характеристики этих частиц оказались такими же, как у лунной пыли.
Необычные оптические эффекты были замечены также при наблюдениях, проведенных «на окололунной орбите во время полета кораблей «Аполлон». Командир «Аполлона-17» Ю. Сернан делал зарисовки своих визуальных наблюдений, в частности отмечал появление свечения над лунным горизонтом при восходе Солнца. За 2 мин до восхода Солнца на фоне свечения появились своеобразные лучистые структуры – «стримеры», интенсивность которых быстро увеличивалась. Скорость изменения яркости «стримеров» и их угловые размеры (более 30°) указывают на то, что они производились каким-то процессом, действующим в окрестностях Луны, Образование «стримеров» может быть вызвано некоторыми действительными физическими вариациями в концентрации пыли. Характерно, что «стримеры» не наблюдались в течение полета «Аполлона-16» (за полгода до «Аполлона-17»), и, следовательно, области рассеивающих частиц не могут быть постоянными по природе (концентрация частиц в них может существенно изменяться со временем).
Визуальные наблюдения астронавтов на окололунной орбите могут быть объяснены рассеянием света пылевой средой, простирающейся за пределы орбиты корабля (120 км). Наиболее вероятные размеры частиц пыли оцениваются в 0,1 мкм. Результаты описанных наблюдений дают хорошее согласие с данными «Лунохода-2».
Каким же образом попадают частицы лунного грунта на такие высоты? Каковы механизмы подъема и переноса лунного вещества?
Однозначного ответа ученые пока не нашли. Наиболее вероятным считается так называемый электростатический механизм. В одном из вариантов этого механизма учитывается горизонтальный перенос лунной пыли, выбитой с поверхности ударами микрометеоритов, в слабом электрическом поле. Это поле образуется при ионизации атомов грунта под воздействием ультрафиолетового излучения Солнца, и его величина достаточна для поддержания во взвешенном состоянии небольших заряженных пылинок. Удары микрометеоритов разрушают материал поверхности и выбивают частицы пыли – мельчайшие из них ускоряются в электрическом поле и ускользают в межпланетное пространство, преодолев притяжение Луны, наиболее крупные частицы материала опускаются в непосредственной окрестности падения микрометеорита, и только часть изверженного материала имеет массу, пригодную для переноса силами электрического поля. Эти частицы движутся за счет горизонтальной составляющей начальной скорости, «подпрыгивая» в электростатическом поле Луны. Время их жизни в полете над освещенной плоской равниной оценивается от 4 до 300 ч.
Другой вариант электростатического механизма «работает» только в зоне терминатора.[2]2
Терминатор – граница дня и ночи, очень резкая на Луне из-за отсутствия атмосферы. При вращении Луны терминатор перемещается по лунной поверхности.
[Закрыть] При прохождении последнего по лунной поверхности отдельные мелкие возвышенности (бугорки, камни и т. д.) остаются частично освещенными довольно длительное время, а соседние участки находятся в тени. На границе между освещенной и совершенно темной областями при взаимодействии рентгеновского и ультрафиолетового излучений Солнца с лунной поверхностью возникают электрические поля, причем значительно более сильные, чем в рассмотренном выше варианте. Эти поля могут поднимать мельчайшие заряженные частицы лунного грунта на некоторую высоту. Дальнейшее свое движение пылинки совершают уже под действием гравитационных сил, например, перемещаясь вниз по склонам и засыпая дно кратеров. В пользу рассмотренного механизма говорит такой факт: когда интенсивность рентгеновского излучения Солнца возрастала (а это должно приводить к увеличению количества пылинок над лунной поверхностью, которые рассеивают видимый солнечный свет), то возрастала и интенсивность свечения лунного горизонта, измеренного «Сервейерами».
До настоящего времени непосредственная проверка в лунных условиях предложенных электростатических механизмов не проводилась. В лабораторных условиях на Земле велось экспериментальное моделирование некоторых сторон этого процесса, причем на аналогах лунного грунта и на натуральных образцах лунного вещества подтверждена возможность электростатического переноса. Возникли, однако, принципиальные трудности, связанные с невозможностью обеспечения в модельных экспериментах тех же условий, что и на Луне (в частности, очень высокого вакуума, необходимого для реализации электростатических эффектов). Поэтому проведенные к настоящему времени лабораторные исследования не являются достаточно полными и не привели к определенным количественным выводам. В связи с этим представляется целесообразным обсудить ряд экспериментов, выполнение которых в лунных условиях позволило бы определенно судить об эффективности электростатического механизма переноса.
При переносе вещества резкая граница между двумя соседними поверхностями должна размываться, а частицы – перемешиваться. Изменение некоторых свойств этих поверхностей, например химического состава, радиоактивности, оптических характеристик, как раз и может быть определено количественно, в частности для двух смежных естественных разнородных поверхностей, которыми являются лунные «моря» и «материки» (изучению подлежат свойства типичного «моря», типичного «материка» и переходной зоны между ними).
Подобные исследования начались экспериментами на «Луноходе-2». При этом был успешно применен рентгеновский флуоресцентный метод анализа грунта, использование которого для этих целей кажется весьма перспективным.
Однако изучение границы естественных разнородных поверхностей весьма затруднительно из-за отсутствия точных данных об их первоначальных свойствах и о времени начала процесса переноса. Значительно более информативными представляются исследования «размытия» границ между разнородными материалами.
Возможен такой ход исследования. На лунный грунт помещается некоторое «пятно» (или группа «пятен») «искусственного» грунта с четкими границами. Затем через определенные промежутки времени производится исследование «размытия» границы двух разнородных поверхностей на основании комплексного изучения изменений области раздела. Количество и характер распределения частиц «искусственного» грунта на окружающей поверхности служат мерой скорости переноса. При этом механические и электрические свойства этого грунта не должны сильно отличаться от «лунных». Вещество не должно изменять своих характеристик при длительном пребывании на Луне в условиях глубокого вакуума, космической радиации, резких перепадов температуры, а также отвечать требованиям, вытекающим из особенностей доставки этого вещества на Луну, упаковки и способа нанесения на поверхность.
Наряду с этими экспериментами важно продолжать систематические исследования оптических эффектов в окололунном пространстве. Причем регистрацию свечения лунного горизонта желательно проводить при различных вариантах расположения аппаратуры относительно деталей рельефа, а визуальные наблюдения орбитальных восходов Солнца необходимо контролировать приборами.
Кроме того, наблюдения яркости лунного горизонта целесообразно проводить в течение длительных промежутков времени как в ночных, так и в дневных условиях. В ночное же время можно исследовать и эффекты взаимодействия метеоритных тел с лунной поверхностью, регистрируя возникающие при этом оптические вспышки. Возможны и другие эксперименты, например с использованием системы детекторов для определения направления и величины импульса частиц лунного реголита, приведенных в движение электростатическим или иным механизмом.
Экспериментальные исследования явлений переноса вещества на лунной поверхности позволят выяснить роль Солнца в эволюции рельефа Луны, а также помогут ответить на вопрос, почему обратная сторона Луны, сплошь покрытая кратерами и «материковыми» возвышенностями, так разительно отличается от видимой стороны Луны, значительную часть которой занимают «морские» низменности? Таким образом, проблема переноса вещества на лунной поверхности, являющаяся частью более общей проблемы – формирования лунного рельефа, – безусловно, займет соответствующее место в последующих экспериментальных исследованиях Луны.
ИЗМЕРЕНИЯ С ПОМОЩЬЮ АППАРАТОВ «СЕРВЕЙЕР»
Запуски американских аппаратов типа «Сервейер» имели целью не только измерение химического состава грунта – планировалось и изучение лунного рельефа, гравитационного поля Луны, а также различных физических условий на лунной поверхности. Осуществление этой программы началось в 1966 г., когда «Сервейер-1» совершил мягкую посадку в Океане Бурь и передал на Землю изображения лунной поверхности. С помощью прилунившегося в апреле 1967 г. «Сервейера-3» проводилось (помимо телевизионной съемки поверхности) определение механических свойств грунта. Запуски «Сервейера-2 и -4» окончились неудачей.
Последние три аппарата этой серии – «Сервейер-5, -6 и -7», запущенные в 1967–1968 гг., передали цветное изображение лунной поверхности, исследовали механические свойства лунного грунта, а также произвели определение в нем содержания ряда элементов методом «обратно рассеянных альфа-частиц».
Суть этого метода в следующем. Альфа-частицы, испущенные радиоактивными источниками, при столкновениях с ядрами атомов испытывают рассеяние, причем энергия рассеянных частиц зависит от сорта ядер и от угла, под которым вылетела рассеянная частица. Если облучить какое-либо вещество альфа-частицами строго определенной энергии и установить (под фиксированным углом) счетчик рассеянных частиц, то он будет регистрировать альфа-частицы лишь определенных энергий, соответствующих наличию в изучаемом веществе тех или иных химических элементов, т. е. будет получен определенный спектр альфа-частиц. В действительности же, из-за особых свойств радиоактивных источников и счетчиков спектр будет состоять не из линий, а из «обрывов», соответствующих положению этих линий (рис. 5). По положению «обрывов» и определяют, какие элементы присутствуют в исследуемом образце.
Рис. 5. Типичный спектр, получаемый при анализе, использующем метод «обратно рассеянных альфа-частиц»
Возможность анализа спектров рассеянных альфа-частиц в качестве метода изучения химического состава была известна давно, однако метод не получил распространения в практике лабораторных и промышленных исследований в силу нескольких причин. Например, данный метод позволяет уверенно определить в отдельности содержание в сложных образцах лишь тех элементов, которые расположены в начале периодической таблицы Менделеева. Более тяжелые элементы этим методом практически могут быть определены лишь в виде групп – «от титана до цинка» (9 элементов), все элементы «тяжелее цинка» и т. д. Причем лучше всего можно определить элементы, если детектор регистрирует альфа-частицы, рассеянные на образце в обратном направлении (назад). Кроме того, метод позволяет проводить анализы только в вакууме, при этом только один анализ занимает очень много времени – десятки часов. Впрочем, в рамках программы «Сервейер» (неподвижные станции для локальных исследований Луны) последнее обстоятельство не играло особой роли. В то же время следует отметить, что данный метод дает возможность определить общую картину химического состава вещества и при этом способен указать на аномально высокое содержание каких-либо элементов (или групп элементов). Однако он не позволяет получить детальные сведения о концентрации отдельных элементов, являющихся «представительными» для разных типов горных пород. Все это определило то обстоятельство, что данный метод использовался лишь на первом этапе изучения химического состава грунта.
Разработкой рассматриваемого метода в целях его применения для космических исследований занималась группа ученых Института им. Э. Ферми при Калифорнийском университете (руководитель работ А. Туркевич). Созданная ими аппаратура станций «Сервейер» состоит из блока электроники и блока, в котором расположены радиоактивные источники и детекторы альфа-частиц. Схематическое изображение последнего блока показано на рис. 6. В блоке, установленном на «Сервейере-5», использованы 6 альфа-источников радиоактивного кюрия-242 (период полураспада 163 дня, энергия альфа-частиц 6,11 МэВ) общей активностью около 100 мК. Из-за длительности предстартовых испытаний и в связи с относительно коротким периодом полураспада изотопа необходимо было вставить новый набор источников и провести его калибровку непосредственно перед самым стартом.
Рис. 6. Выносной блок аппарата «Сервейер» (при исследованиях блок опускался на грунт): 1 – детектор альфа-частиц; 2 – радиоактивный источник (альфа-излучатель); 3 – детектор протонов; 4 – исследуемый грунт
Сам блок представлял собой прямоугольный параллелепипед, в нижней части которого имелась круглая пластина, установленная с целью свести к минимуму погружение блока в лунный грунт. В нижней же части блока было круглое отверстие, через которое исследуемый грунт равномерно облучался альфа-частицами. Вблизи альфа-источников располагались два полупроводниковых детектора, регистрировавших альфа-частицы, рассеянные в почти обратном (облучению) направлении (в интервале углов 174 ± 1°). Расстояния от грунта до источников и от детекторов до грунта около 7 см.
Кроме того, в блоке были установлены четыре детектора протонов. Они регистрировали протоны, возникающие при ядерных реакциях, в которых участвовали альфа-частицы и ядра элементов лунного грунта. Полученные спектры протонов давали информацию о содержании наиболее легких элементов и существенно дополняли результаты исследований, проводимых по методу «обратно рассеянных альфа-частиц».
Характерной особенностью использованного метода и созданного на его основе прибора является очень большая длительность анализа лунного грунта. При заданной конструкцией геометрии прибора и использовании источников, в которых происходит 1011 распадов радиоактивных ядер в минуту, за это время можно было зафиксировать примерно 60 альфа-частиц и всего 5 протонов. Поэтому для достаточно полного анализа требовались целые сутки непрерывной работы прибора.
Блок детекторов был соединен кабелем с электронным блоком, который находился внутри станции «Сервейер». На поверхность грунта блок детекторов опускался с помощью зубчатого механизма на нейлоновой нити. Общая масса аппаратуры 11 кг.
Впервые описанный прибор был установлен на аппарате «Сервейер-5», совершившем мягкую посадку в южной части Моря Спокойствия 11 сентября 1967 г. Через 2 ч после посадки прибор был включен, и началась калибровка с помощью эталонного образца. Полученный спектр совпадал с тем, который был получен на Земле еще до запуска.
После окончания калибровки блок детекторов был опущен на нейлоновой нити до высоты около 0,5 м от грунта, и в течение 3 ч проводились измерения фона космических лучей. Затем прибор полностью был опущен на грунт, и телевизионные изображения подтвердили, что прибор занял правильное положение. С этого момента собственно и начался эксперимент. Его продолжительность составляла около 17 ч.
13 сентября 1967 г. «Сервейер-5» совершил «подскок» после специального включения реактивных двигателей. При этом он немного сполз вниз по склону кратера и занял несколько другое положение на грунте. Анализ нового участка продолжался еще 66 ч.
Первая обработка полученных спектров с помощью ЭВМ позволила определить процентное содержание в лунном грунте кислорода (58 ± 3 %), алюминия (6,5 ± 2 %) и группы из 16 элементов «от фосфора до цинка» (13 ± 3 %). Сделаны были также оценки наличия углерода (менее 3 %), натрия (менее 2 %), группы «железо, кобальт, никель» (более 3 %) и группы «тяжелее цинка» (менее 0,5 %).
Таким образом, в результате анализа поверхностного слоя лунного грунта (глубиной около 20 мкм) впервые удалось установить общность характера распространенности породообразующих элементов – кислорода, кремния и алюминия – на Земле и на исследованном участке лунной поверхности площадью в несколько квадратных сантиметров. Однако насколько типичен такой состав грунта для всей поверхности Луны было неясно, поскольку исследования проводились практически в «точке». Необходимо было продолжить исследования в других районах Луны.
«Сервейер-6» (ноябрь 1967 г.), совершивший мягкую посадку в Центральном Заливе, и «Сервейер-7» (январь 1968 г.), прилунившийся на склоне крупного кратера Тихо, были оснащены той же аппаратурой, использующей метод «обратно рассеянных альфа-частиц». Прибор, установленный на «Сервейере-6», провел анализ только одного участка поверхности: после «подскока» лунной станции выяснилось, что блок датчиков прибора для исследования химического состава грунта находился в перевернутом положения и не мог вести анализ поверхности. А работа прибора на «Сервейере-7» заставила изрядно поволноваться его создателей. Дело в том, что произошло «заедание» в механизме опускания блока датчиков на грунт. После подачи команды на опускание блок так и остался висеть в полуметре над лунной поверхностью. Сначала пытались немного встряхнуть блок (для этого стали включать электромоторы антенны и солнечной батареи), надеясь, что их вращение создаст какие-то вибрации корпуса станции «Сервейер-7». Но этого не произошло.
Через несколько дней было принято решение на рискованную операцию – стали давить на блок ковшом маленького «экскаватора» – электрической лопатки, служившей для изучения механических свойств грунта. После нескольких неудачных попыток застрявшую нейлоновую нить удалось, наконец, вытянуть и опустить на грунт. В последующие дни этим же ковшом переставили блок детекторов на два других участка поверхности. Таким образом, удалось сделать анализы трех участков грунта в пределах метровой площадки.
Полученные результаты в силу ограничений самого метода потребовали проведения дополнительных лабораторных экспериментов, моделирующих конкретные условия работы приборов на Луне. Это было связано с уточнением положения блока детекторов на поверхности, с необходимостью учета влияния изменения температуры счетчиков и т. д. Обработка спектров с учетом результатов дополнительных модельных опытов позволила американским ученым сделать окончательные выводы относительно проведенных анализов концентраций в лунном грунте кислорода, магния, алюминия, кремния, кальция, титана и железа. При этом результаты анализов в «морских» районах (Море Спокойствия и Центральный Залив) оказались близки между собой. В «материковом» же районе (кратер Тихо) измерения показали состав, отличающийся от ранее изученных районов (см. далее табл. 1 и 2).