Текст книги "100 великих нобелевских лауреатов"
Автор книги: Сергей Мусский
Жанр:
Биографии и мемуары
сообщить о нарушении
Текущая страница: 29 (всего у книги 46 страниц)
ПЕТР ЛЕОНИДОВИЧ КАПИЦА
(1894—1984)
От низких температур вблизи абсолютного нуля до чрезвычайно высоких температур, необходимых для синтеза атомных ядер, – таков огромный диапазон неутомимой многолетней работы академика Капицы.
Петр Леонидович Капица родился 9 июля 1894 года в Кронштадте в семье военного инженера, генерала Леонида Петровича Капицы, строителя кронштадтских укреплений. Мать – Ольга Иеронимовна, урожденная Стебницкая, филолог, специалист в области детской литературы и фольклора, оставила заметный след в истории русской культуры.
В 1905 году Петр начал учебу в гимназии, но через год из-за неуспеваемости (ему плохо давалась латынь) покидает ее и продолжает учебу в Кронштадтском реальном училище, которое окончил с отличием в 1912 году. Однако на физико-математический факультет Петербургского университета «реалистов» не брали, поэтому Капица поступает на электромеханический факультет Петербургского политехнического института (ППИ). Уже на первых курсах на него обратил внимание А.Ф. Иоффе, преподававший в институте физику. Он привлек Капицу к исследованиям в своей лаборатории.
В 1914 году Петр уехал на летние каникулы в Шотландию для изучения английского языка. В августе начинается Первая мировая война и вернуться в Петроград ему удается лишь в ноябре.
В январе 1915 года он добровольно отправляется на Западный фронт водителем санитарного автомобиля в составе санитарного отряда Союза городов. До мая того же года Петр на польском фронте перевозил раненых на грузовике.
В 1916 году после демобилизации из армии Капица вернулся в институт. Иоффе привлек его к экспериментальной работе в физической лаборатории, руководимой им, а также к участию в своем семинаре – одном из первых физических семинаров в России. В том же году в «Журнале русского физико-химического общества» появилась первая статья Капицы.
В 1916-м Капица женился на Надежде Кирилловне Черносвитовой, дочери К.К. Черносвитова, члена ЦК партии кадетов.
В 1918 году в невероятно трудных условиях Иоффе основал в Петрограде один из первых в России научно-исследовательских физических институтов. Капица был одним из первых сотрудников этого института, сыгравшего очень важную роль в развитии советской экспериментальной, теоретической и технической физики. Закончив в том же году Политехнический институт, Петр был оставлен в нем в должности преподавателя физико-механического факультета.
В сложной послереволюционной ситуации Иоффе всеми силами стремился сохранить семинар и своих учеников – молодых физиков, среди которых был и Капица. Он настаивал на том, что Капице необходимо отправиться за границу, но революционное правительство не давало на это разрешения, пока в дело не вмешался Максим Горький, самый влиятельный в ту пору русский писатель. Наконец Капице позволили выехать в Англию. Незадолго до этого Петр во время эпидемии гриппа – «испанки» в течение месяца потерял отца, сына, жену и новорожденную дочь.
22 мая 1921 года молодой ученый прибыл в Англию в качестве члена комиссии Российской академии наук, направленной в страны Западной Европы для восстановления научных связей, нарушенных войной и революцией. 22 июля Капица начал работать в Кавендишской лаборатории, руководитель которой, Резерфорд, согласился принять его на краткосрочную стажировку. Экспериментальное мастерство и инженерная хватка молодого русского физика сразу производят на Резерфорда сильное впечатление.
О своей работе ученый писал так: «Сперва выполнил работы по альфа– и бета-излучению, затем разработал метод получения сильных магнитных полей и в последние годы, занявшись низкими температурами, разработал метод получения жидкого гелия с помощью поршневого детандера».
Темой его докторской диссертации, которую он защитил в Кембридже в 1922 году, было «Прохождение альфа-частиц через вещество и методы получения магнитных полей».
Научный авторитет Капицы быстро рос. В 1923 году он стал доктором наук и получил престижную стипендию Максвелла. В 1924 году русского ученого назначили заместителем директора Кавендишской лаборатории по магнитным исследованиям, а через год он стал членом Тринити-колледжа.
В 1925 году в Париже академик Алексей Николаевич Крылов познакомил Капицу со своей дочерью Анной, которая жила тогда с матерью в столице Франции. В 1927 году Анна Алексеевна стала женой Капицы. После женитьбы Капица купил небольшой участок земли на Хантингтон-Роуд, где построил дом по своему плану. Здесь родились его сыновья Сергей и Андрей. Оба они впоследствии стали учеными.
Для исследования процессов радиоактивного распада и превращения ядер требовались сильные магнитные поля. Капица выдвинул идею проводить исследования в импульсных магнитных полях, разработал оригинальные методы и установки для получения таких полей. На своей установке Петр Леонидович получил рекордные по тому времени магнитные поля – в 6–7 тысяч раз превосходившие все прежние. Создание небывалых дотоле магнитных полей надолго сделало его, по выражению Ландау, «магнитным чемпионом мира».
Изучая свойства металлов в сильных магнитных полях, Капица пришел к необходимости проведения исследований в условиях возможно более низких (гелиевых) температур.
Именно с физикой и техникой низких температур связаны наиболее яркие достижения ученого. Но проводил исследования по этой теме ученый уже в СССР.
Советские официальные лица неоднократно обращались к нему с просьбой остаться на постоянное жительство в СССР. Петр Леонидович относился с интересом к таким предложениям, но выставлял определенные условия, в частности, свободу поездок на Запад, из-за чего решение вопроса откладывалось.
В конце лета 1934 года Капица вместе с женой в очередной раз приехали в Советский Союз, но, когда супруги приготовились вернуться в Англию, оказалось, что их выездные визы аннулированы. Позднее жене было разрешено вернуться в Англию к детям, и вскоре Анна Алексеевна присоединилась к мужу в Москве, а вслед за ней приехали и дети. Резерфорд и другие друзья Капицы обращались к советскому правительству с просьбой разрешить ему выезд для продолжения работы в Англии, но тщетно.
В 1935 году Капице предложили стать директором вновь созданного Института физических проблем Академии наук СССР. Петр Леонидович поставил условием покупку оборудования, с которым он работал в Англии. В конце концов, Резерфорд, смирившись с потерей своего выдающегося сотрудника, позволил советским властям купить оборудование лаборатории Капицы.
Дав согласие, Петр Леонидович с семьей поселился тут же, на территории института, в особняке из нескольких комнат. Возвращение Капицы на родину совпало со сталинскими чистками. Петр Леонидович, обладавший необычайно высоким авторитетом, смело отстаивал свои взгляды даже в это тяжелое время. Он знал, что в стране все решает высшее руководство. С этим руководством он и стал вести прямой и откровенный разговор. С 1934 по 1983 год ученый написал более 300 писем «в Кремль» (Сталину – 50, Молотову – 71, Маленкову – 63, Хрущеву – 26). Благодаря его вмешательству, от гибели в тюрьмах и лагерях в годы сталинского террора были спасены многие ученые.
В 1972 году, когда властями был инициирован вопрос об исключении из Академии наук Андрея Дмитриевича Сахарова, против этого выступил один только Капица. Он сказал: «Аналогичный позорный прецедент уже был. В 1933 году фашисты исключили из Берлинской академии наук Альберта Эйнштейна».
Но каковы бы ни были условия жизни, Петр Леонидович никогда не прекращал научную работу. На установке, доставленной в Москву из Кавендишской лаборатории, Капица продолжал исследования в области сверхсильных магнитных полей. В опытах участвовали его кембриджские сотрудники, прибывшие на время в Москву, – механик Пирсон и лаборант Лауэрман. Эти работы заняли несколько лет. Капица считал их очень важными.
Ученый усовершенствовал небольшую турбину, очень эффективно сжижавшую воздух. В созданной им оригинальной установке не требуется предварительное охлаждение гелия: газообразный гелий охлаждается, адиабатически расширяясь в специальном детандере. Теперь в разных странах создаются практически только такие гелиевые установки.
Экспериментальные научные исследования Капицы в области физики низких температур ознаменовались фундаментальным открытием. В процессе изучения свойств жидкого гелия в 1937 году им было открыто явление сверхтекучести. Ранее было известно уникальное свойство гелия, который переходит в жидкое состояние при температуре 4,2°K, оставаясь жидким при более низких температурах вплоть до абсолютного нуля. Было также известно, что при температуре 2,19°K скачкообразно меняется теплоемкость жидкого гелия (точнее, изотопа гелия с атомным весом 4). В чрезвычайно изящных экспериментах, наблюдая протекание жидкого гелия через капилляры и узкие щели (шириной до полумикрона), Капица показал, что у этой жидкости при температурах ниже 2,19°K полностью отсутствует вязкость.
В работах 1937—1941 годах были обнаружены и изучены другие аномальные явления в жидком гелии, в частности, распространение тепла в нем. Было показано, что в интервале температур от 4,2 до 2,19°K гелий ведет себя как обычная жидкость, а при температуре ниже 2,19°K в его поведении проявляются аномалии. Петр Леонидович приходит к выводу о сосуществовании в таком гелии двух жидкостей – нормальной и аномальной (сверхтекучей), которые могут двигаться как бы сквозь друг друга.
Эти и другие совершенно необычные свойства жидкого гелия оказалось возможным объяснить только в рамках квантовотеоретических представлений. Экспериментальные работы Капицы стали основой развития нового направления – физики квантовых жидкостей.
После начала войны Институт физических проблем эвакуировался в Казань. По прибытии на место его разместили в помещениях Казанского университета. В тяжелое время Капица создал самую мощную в мире турбинную установку для получения в больших масштабах необходимого промышленности жидкого кислорода.
В 1945 году в Советском Союзе активизировались работы по созданию ядерного оружия. Отказ Капицы участвовать в создании атомной бомбы привел к его отставке и отстранению от научной работы. Капица был смещен с поста директора института и в течение восьми лет находился под домашним арестом. Он был лишен возможности общаться со своими коллегами из других научно-исследовательских институтов. У себя на даче Петр Леонидович оборудовал небольшую лабораторию и продолжал заниматься исследованиями.
Здесь он заложил основы нового направления – электроники больших мощностей, ставшей первым шагом на пути овладения термоядерной энергией. Но продолжить полномасштабные работы в этой области ученый смог лишь после того, как вернулся в свой институт в 1955 году. Там он и занялся исследованием высокотемпературной плазмы. Сделанные Капицей открытия легли в основу разработки схемы термоядерного реактора непрерывного действия.
Послевоенные научные работы Капицы охватывают самые различные области физики, включая гидродинамику тонких слоев жидкости и природу шаровой молнии, но основные его интересы сосредоточиваются на микроволновых генераторах и изучении различных свойств плазмы.
В 1965 году, впервые после более чем тридцатилетнего перерыва, Капица получил разрешение на выезд из Советского Союза в Данию для получения Международной золотой медали Нильса Бора. Там он посетил научные лаборатории и выступил с лекцией по физике высоких энергий. В 1969 году ученый вместе с женой впервые совершил поездку в Соединенные Штаты.
17 октября 1978 года Шведская академия наук направила из Стокгольма Петру Леонидовичу Капице телеграмму о присуждении ему Нобелевской премии по физике за фундаментальные исследования в области физики низких температур. Эту весть Капица получил в подмосковном санатории «Барвиха», где он отдыхал с женой. Среди вопросов, заданных академику журналистами, был и такой: какое свое научное достижение он считает самым значительным? Капица сказал, что для ученого всегда наиболее важна та работа, которой он занимается в данный момент. «У меня такая работа относится к термоядерному синтезу», – добавил он.
Стокгольмская лекция Капицы была необычной уже потому, что вопреки уставу Нобелевского фонда не была посвящена отмеченным Нобелевской премией работам. Лекция называлась «Плазма и управляемая термоядерная реакция».
Капица объяснил причину допущенной вольности. Он сказал: «Выбор темы для нобелевской лекции представлял для меня некоторую трудность. Обычно эта лекция связана с работами, за которые присуждена премия. В моем случае эта премия связана с моими исследованиями в области низких температур, вблизи температуры сжижения гелия, т е. нескольких градусов выше абсолютного нуля. По воле судеб случилось так, что от этих работ я отошел уже более 30 лет назад, и, хотя в руководимом мною институте продолжают заниматься низкими температурами, я сам занялся изучением явлений, происходящих в плазме при тех исключительно высоких температурах, которые необходимы для осуществления термоядерной реакции. Эти работы привели нас к интересным результатам, открывающим новые перспективы, и я думаю, что лекция на эту тему представляет больший интерес, чем уже забытые мною работы в области низких температур. К тому же, как говорят французы, les extremes se touchent (крайности сходятся). Хорошо известно, что в данное время управляемая термоядерная реакция представляет большой практический интерес, так как этот процесс мог бы наиболее эффективно решить проблему надвигающегося глобального энергетического кризиса, связанного с истощением запасов сырья, используемого теперь как источник энергии».
Умер Капица 8 апреля 1984 года, немного не дожив до девяноста лет.
ЖОРЕС ИВАНОВИЧ АЛФЁРОВ
(1930)
«Едва ли не каждый житель планеты ежедневно и повседневно пользуется научными разработками Жореса Ивановича, – отмечает М. Зубов. – Во всех мобильных телефонах есть гетероструктурные полупроводники, созданные Алфёровым. Вся оптиковолоконная связь работает на его полупроводниках и «лазере Алфёрова». Без «лазера Алфёрова» были бы невозможны проигрыватели компакт-дисков и дисководы современных компьютеров. Открытия Жореса Ивановича используются и в фарах автомобилей, и в светофорах, и в оборудовании супермаркетов – декодерах товарных ярлыков…
Сама личность Жореса Ивановича разрушает миф о том, что всю электронику придумали в Америке или Японии – где угодно, только не у нас. Да, сейчас эти страны нас намного опередили. Но все началось с открытий ленинградского ученого, которые он сделал в 1962—1974 годах и которые привели к качественным изменениям в развитии всей электронной техники. Нынешней же Нобелевской премией отмечены как его «былые» заслуги перед физикой, так и современные – создание сверхбыстрых суперкомпьютеров».
Жорес Иванович Алфёров родился 15 марта 1930 года в Витебске. Жоресом мальчика назвали в честь Жана Жореса, основателя газеты «Юманите», основателя французской социалистической партии. Отец, Иван Карпович, начинал рабочим, а после окончания Промакадемии в 1935 году работал в различных городах страны: Сталинграде, Новосибирске, Барнауле, Сясьстрое под Ленинградом. Вместе с ним путешествовала и вся семья – мать Анна Владимировна и старший брат с таким же необычным именем – Маркс.
Военные годы Алфёровы провели в городе Туринске Свердловской области, где Иван Карпович работал директором завода пороховой целлюлозы. В 1944 году в семью пришла похоронка: в Корсунь-Шевченковском сражении погиб Маркс.
С окончанием войны Алфёровы вернулись в лежащий в руинах Минск.
«Выбор мною физики, конечно, не случаен, – вспоминает Алфёров. – В послевоенном Минске, в единственной в то время в разрушенном городе русской мужской средней школе № 42 был замечательный учитель физики – Яков Борисович Мельцерзон. У нас не было физического кабинета, и Яков Борисович читал нам лекции по физике, на которых мы, вообще-то довольно «хулиганистый» класс, никогда не шалили, потому что Яков Борисович, влюбленный в физику, умел передать это отношение к своему предмету нам. На его уроках было слышно, как муха пролетит. Он не мог воспринять, что физикой можно не интересоваться и не любить! Он и порекомендовал мне ехать учиться в Ленинград.
Я, пораженный его рассказом о работе катодного осциллографа и принципах радиолокации, поехал учиться по его совету в Ленинград в Электротехнический институт (ЛЭТИ).
В ЛЭТИ, институте, сыгравшем выдающуюся роль в развитии отечественной электроники и радиотехники и в образовании в этих областях, мне очень повезло с моим первым научным руководителем. На третьем курсе, считая, что математика и теоретические дисциплины мне даются легко, а «руками» мне нужно многому учиться, я пошел работать в вакуумную лабораторию профессора Б.П. Козырева. Там я начал экспериментальную работу под руководством Наталии Николаевны Созиной, увы, уже покойной ныне – человека редкой доброты, незадолго до этого защитившей диссертацию по исследованию полупроводниковых фотоприемников в инфракрасной области спектра. Так, в 1950 году, полвека тому назад, полупроводники стали главным делом моей жизни.
И диплом я делал у нее. Во время выполнения дипломной работы, посвященной получению пленок и исследованию фотопроводимости теллурида висмута, в декабре 1952 года проходило распределение, и Наталия Николаевна очень хотела, чтобы я остался в ЛЭТИ на кафедре для совместной работы. Но я мечтал о Физтехе, институте Абрама Федоровича Иоффе, монография которого «Основные представления современной физики» стала для меня настольной книгой. В ЛЭТИ на наш факультет пришло три вакансии в ЛФТИ – тогдашняя аббревиатура Физико-технического института, – и одна из них досталась мне. Радости моей не было границ. И я думаю, что моя счастливая жизнь в науке была предопределена этим распределением».
5 марта 1953 года Алфёров создал первый транзистор, а в 1961 году защитил кандидатскую диссертацию, посвященную в основном разработке и исследованию мощных германиевых и частично кремниевых выпрямителей. На основе этих работ возникла отечественная силовая полупроводниковая электроника.
«Общие новые принципы управления электронными и световыми потоками в гетероструктурах (электронное и оптическое ограничения и особенности инжекции) я сформулировал лишь в 1966 году и, чтобы избежать засекречивания, в названии статьи говорил прежде всего о выпрямителях, а не о лазерах, – вспоминает Жорес Иванович. – В начале наших исследований гетероструктур мне не раз приходилось убеждать моих молодых коллег, теперь уже сотрудников моей лаборатории (в 1967 году я был избран ученым советом ЛФТИ заведующим сектором), что мы далеко не единственные в мире, кто занялся очевидным и естественным для природы делом: полупроводниковые физика и электроника будут развиваться на основе гетеро-, а не гомо-структур. Но, уже начиная с 1968 года, реально началось очень жесткое соревнование, прежде всего с тремя лабораториями крупнейших американских фирм – Bell Telephone, IBM и RCA.
В 1968—1969 гг. были практически реализованы все основные идеи управления электронными и световыми потоками в классических гетероструктурах на основе системы арсенид галлия – арсенид алюминия. Помимо принципиально важных фундаментальных результатов – односторонняя эффективная инжекция, эффект «сверхинжекции», диагональное туннелирование, электронное и оптическое ограничения в двойной гетероструктуре, ставшей вскоре основным элементом исследований низкоразмерного электронного газа в полупроводниках – удалось практически реализовать основные преимущества использования гетероструктур в полупроводниковых приборах: лазерах, светодиодах, солнечных батареях, динисторах и транзиторах… Важнейшим было, конечно, создание низкопороговых, работающих при комнатной температуре лазеров на предложенной нами еще в 1963 году двойной гетерострутуре (ДГС). Подход, реализованный Панишем и Хаяси на Bell Telephone и Кресселем на RCA, был значительно более узким и основывался на использовании в лазерах одиночной гетероструктуры pAlGaAs-pGaAs. Очевидно, они не верили в возможность получения эффективной инжекции в гетеропереходах и, хотя потенциальные преимущества ДГС были известны, не рискнули на ее реализацию.
Солнечные батареи на основе гетероструктур были созданы нами уже в 1970 году. А когда американцы публиковали первые работы, наши батареи уже летали на спутниках и было развернуто их промышленное производство. Блестяще доказано их преимущество в космосе многолетней эксплуатацией на орбитальной станции «Мир»…
Но это была очень тяжелая дорога. Поначалу у меня было один-два человека тех, кто со мной работали. Были ситуации, когда мы шли в тупиковом направлении. Мой аспирант будил меня в пять утра и говорил: ты заставляешь нас заниматься безнадежным делом. Твой папа старый большевик, и ты действуешь такими же методами – толкаешь, как он в революцию, нас в эти гетеропереходы! Но потом оказалось, что мы правы».
«За исследование полупроводниковых гетероструктур, лазерные диоды и сверхбыстрые транзисторы» Алфёров был удостоен Нобелевской премии по физике за 2000 год.
Исследования в этой области привели Алфёрова сначала к системам с низкоразмерным электронным газом – так называемым квантовым ямам, потом – квантовым проволокам, сейчас же ученый занимается квантовыми точками. Уже найден способ создания ансамблей таких квантовых точек в процессе выращивания гетероструктур. Это дает огромные преимущества для лазеров, в частности, резко возрастает возможный коэффициент усиления. Поэтому в сравнительно небольшом объеме достигаются большие коэффициенты усиления, и порог, при котором начнется генерация, будет меньше. Рассматривается возможность использования квантовых точек и в других приборах.
Несмотря на все трудности, Алфёров верит в будущее российской науки: «Но для этого все должны понять уже теперь: будущее России – это наука и технологии, а не распродажа сырья. Из нашего института вышли уже четверо нобелевских лауреатов: Николай Семенов, Лев Ландау, Петр Капица и я. И будущее страны – не за олигархами, а за кем-то из моих учеников».
Часть своей Нобелевской премии Алфёров отдал на развитие научно-образовательного центра физико-технического института.
«Научно-образовательный центр, который создал Алфёров в Петербурге, достоин еще одной Нобелевской премии. За опыт поддержания науки в стране, где она целое десятилетие была не нужна государству, не финансировалась. В центр приходят еще школьниками, учатся по углубленной программе, потом – институт, аспирантура, академическое образование, – рассказывает член президиума РАН, академик, директор Института радиотехники и электроники Юрий Гуляев. – Когда из страны валом начали уезжать ученые, а выпускники школ почти поголовно стали предпочитать бизнес образованию и науке – возникла страшная опасность, что знания старшего поколения ученых некому будет передать. Алфёров нашел выход и буквально совершил подвиг, создав эту своего рода «теплицу для будущих ученых»».
В ФТИ об Алфёрове говорят: он всегда добивается всего, чего хочет. Главное для него – определить четкую и ясную цель. Жорес Иванович заводила не только в делах академических: «С ним не соскучишься, – говорят его товарищи. – Особенно любит Жорес Иванович петь. Правда, данных для этого у него нет, с чем он сам соглашается. Тем не менее поет всегда в полный голос и обязательно всю песню до конца».
Первый раз Алфёров женился совсем молодым и уже в тридцать лет развелся. Несмотря ни на что отзывался о бывшей супруге только положительно. Ученый оставил ей полученную комнату в коммуналке, а сам опять переселился в общежитие. С собой он взял лишь мотоцикл. Сегодня, кстати, ученый ездит на «вольво».
В конце шестидесятых, будучи на отдыхе в Сочи, познакомился со своей второй женой – Тамарой Георгиевной, филологом по образованию. Через полгода они поженились. «Мне при этом пришлось переехать из Москвы в Питер, что прежде казалось совершенно невозможным. Не смогла устоять перед Жорой, – вспоминает сейчас Тамара Георгиевна. – Он звонил каждый день, а по выходным прилетал в столицу на пару-другую часов, чтобы только увидеть, одарить цветами и сообщить, что «любит и ждет»».
В памятный для академика 1972 год – ему присудили тогда Ленинскую премию – родился сын Иван. Сначала он пошел по стопам отца и окончил Электротехнический институт. Но позднее занялся бизнесом. Что очень расстроило отца. Попытки «образумить» сына ни к чему не привели.
Любимое место отдыха знаменитого ученого – поселок Комарово. На берегу Финского залива у академика дача, построенная еще в сталинские годы.