355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Лысенко » Особый взгляд на информационную безопасность » Текст книги (страница 4)
Особый взгляд на информационную безопасность
  • Текст добавлен: 28 июля 2020, 20:30

Текст книги "Особый взгляд на информационную безопасность"


Автор книги: Сергей Лысенко


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 4 (всего у книги 7 страниц)

Не важно, использовал ли экспериментатор медный провод или монахов, последующая электронная передача данных требовала более надежного источника электричества, нежели натертый янтарь или электрические угри.

Эту проблему не могли решить, пока в 1800 году Алессандро Вольт не изобрел первые батареи, изготовленные из цинка и меди или из цинка и серебра. Лишь через еще несколько десятилетий американец Сэмюэл Морзе и англичане Уильям Кук и Чарльз Уитстон создали действующий телеграф. С его помощью в 1844 году Морзе передал из Балтимора в Вашингтон результаты съезда партии вигов. Его телеграмма опередила более чем на час курьера, ехавшего в столицу верхом на лошади.

К 1848 году в США были проложены телеграфные провода на две тысячи миль, а еще через два года протяженность линий насчитывала уже двенадцать тысяч. Как результат, через двадцать лет в США прекратила существование курьерская почта. В 1858 году англо-американский правительственный консорциум проложил первый трансатлантический кабель и изумил планету мгновенной передачей информации между Новым и Старым светом. В 1870 году азиатская кабельная магистраль дошла до Индии, а в 1871-м – до Австралии. Наземные и подводные телеграфные линии сократили время передачи информации, то что раньше занимало большую часть года, теперь удавалось совершить за минуты или самое долгое – за часы.

Рациональные наблюдатели, пораженные внезапными достижениями информационных технологий, полагали, что эти события способны установить мир между странами и народами. Через несколько месяцев после прокладки первого трансатлантического кабеля Чарльз Бриггс и Огастес Маверик напечатали «Историю телеграфа и великого атлантического кабеля».

К сожалению, спокойствия миру новая технология не принесла, их ожидания оказались ошибкой. На протяжении полутора столетий она будет повторяться с каждым новым информационным прорывом.

В 1842 году американец Джозеф Генри, впоследствии первый секретарь Смитсоновского института, создал прибор, принимавший радиоволны от искрового передатчика на расстоянии тридцати футов. К сожалению, ученые еще не имели всеобщей теории, которая объяснила бы это явление и, реализованная на практике, обеспечила бы беспроводную электропередачу и прием информации, то есть радио.

Приблизительно в то же время англичанин Майкл Фарадей проводил эксперименты с магнитными полями, которые порождаются электрическим током. А уже в 1864 году его соотечественник Джеймс Кларк Максвелл разработал теорию, согласно которой радиоволны и свет являются, по сути, одними и теми же электромагнитными волнами, но различающимися частотой и длиной. Максвелл придумал красивое математическое обоснование, уравнение, описывающее взаимоотношения света, магнетизма и электрического тока.

Изобретение уравнения Максвелла предсказало три важных научных факта. Во-первых, изменяющееся во времени электрическое поле порождает в окружающем пространстве электромагнитные волны. Во-вторых, эти волны проходят через пространство. И в-третьих, самое поразительное, делают это со скоростью света. В последующие два столетия ученые измеряли скорость света все точнее, поскольку свет и радиоволны представляют один и тот же электромагнитный феномен, уравнения Максвелла предсказали, что радиоволны движутся с той же скоростью, что и свет.

Еще одним славянином в авторском списке мыслителей оказался Никола Тесла, который при жизни имел большую мистическую историю. После его смерти в отеле Нью-Йорка был проведен обыск, и сотрудники ФБР США конфисковали все документы, которые хранились в личном сейфе Теслы, и вывезли их под грифом «секретно». Поэтому большинство официальной информации о Тесле граничит с фантастикой и предположениями.

Наиболее продуктивным считается американский период жизни Теслы. В США он начинает активно работать и реализовывать свой потенциал. Не опускаясь в подробности, автор может утверждать, что Никола получил более 40 патентов на свои изобретения. Уже в 1896 году Николе удается, как казалось в то время невозможным, передать информационный радиосигнал на расстояние 48 километров. Он описал и показал принципы радиосвязи, а в 1893 году создал антенну для беспроводной радиосвязи. Катушки Теслы до сих пор используются для получения искусственных молний.

Через три года Никола создает в Колорадо-Спрингс специальную лабораторию, где изучает электрический потенциал Земли. Исследования подтолкнули ученого к мысли о возможности беспроводной передачи информации и энергии на значительные расстояния.

Фантастическим изобретением Теслы стало устройство для фотографирования мыслей. Тесла в 1933 году, когда ему уже было 78 лет, сказал, что хочет фотографировать мысли. В ходе некоторых исследований он получил уверенность в том, что наглядная картина, сформированная в мыслях, может отражать действие и создавать некий образ на сетчатке глаза. Именно это он смог фиксировать соответствующим аппаратом. Это привело Теслу к идее телевидения, о которой он тогда объявил. Идея заключалась в том, что нужно создать искусственную сетчатку, на которой бы отображался образ увиденного объекта, похожую на шахматную доску и человеческий оптический нерв. Вскоре Тесла перестал раскрывать все детали этого изобретения общественности.

Интересным, по мнению автора, можно считать изобретение Теслы под названием «Луч смерти». Он представляет собой разновидность радио-скалярного волнового оружия, или ультразвуковой пушки. Это стало значительным шагом по направлению к другим, еще более важным изобретениям Теслы, вроде телепортации и машины времени. Если Тесла, действительно, гений, а многие, действительно, считают его гением, то он мог построить свою собственную машину времени и путешествовать в будущее или, возможно, телепортироваться на Марс. Тесла был похож на чудаковатого героя, фактически он опередил свое время, тем более, что он предсказывал свои изобретения, еще будучи подростком.

Примерно за год до первого показа кинофильмов братьями Люмьер на бульваре Капуцинов в Париже, украинский изобретатель Иосиф Тимченко уже устраивал подобные киносеансы в Одессе. В 1893 году в гостинице, на углу улицы Дерибасовской и Колодезного переулка, состоялась публичная демонстрация двух фильмов, снятых устройством нашего инженера, «Всадник» и «Метатель копья».

Тимченко жил и работал в Одессе. За свои многочисленные изобретения он получил четыре золотых и три серебряные медали различных международных выставок. Тимченко, совместно с физиком Николаем Любимовым и изобретателем Михаилом Фрейденбергом, изобрел скачковый механизм, который стал основой для аппарата под названием кинетоскоп. Этот аппарат использовал во время сеанса не кинопленку, а дисковую фотопластинку. Это было революционным изобретением для передачи информации, которое трое изобретателей так и не запатентовали в дальнейшем.

Тимченко пользовался большим уважением и авторитетом также среди специалистов самых разных областей науки. Изобретенные им уникальные приборы и механизмы для исследовательских работ славились далеко за пределами Украины. Известными стали макет первой в мире телефонной станции ступенчатой системы и точные измерительные приборы. Тимченко дал миру сейсмограф, барограф, фотографический телескоп и многое другое. Обнаруженные чертежи его работ и описание приборов свидетельствуют о том, что они были первым воплощением основной технической идеи передачи информации через изображение. Аппарат, разработанный Тимченко, был оценен современниками, как гениально простой.

Исследуя жизнь и деятельность выдающегося украинского изобретателя, мы видим, как трагически сложилась судьба талантливого человека. В 1914 году начинается Первая мировая война и услуги специалиста по передаче информации снова оказываются нужны государству даже сильнее, чем раньше. Позже Тимченко сконструировал станок для изготовления патронов, который позволял изготавливать их в три раза быстрее. С помощью военных чиновников, которым такое производство было очень необходимо, ученый получает свою лабораторию. После переворота 1917 года большевики расформировали Одесский университет, но Тимченко продолжал работу в своей мастерской почти до самой смерти в 1924 году.

С детских лет Альберт Эйнштейн не проявлял никаких признаков своей гениальности. Наоборот, он выделялся слабой развитостью, не умел разговаривать до трех лет, в семилетнем возрасте не мог произнести заученные на память фразы, а его тело и голова были не пропорциональны. Так начиналась судьба едва ли не самого выдающегося ученого 20-го века.

Сам Эйнштейн утверждал, что свою теорию относительности он создал, практически, случайно. Когда он заметил, что автомобиль, который двигался относительно другого автомобиля с одинаковой скоростью и в том же направлении, остается для второго неподвижным. Поэтому, двигаясь по Земле и в отношении других предметов на ней, эти автомобили остаются в состоянии покоя относительно друг друга.

Теория Эйнштейна предсказала существование гравитационных волн, которые могли бы быть средством передачи информации во Вселенной на любое расстояние. Но только в 2015 году современные физики зафиксировали эти волны в обсерватории в США, за что получили Нобелевскую премию. Подобно тому, как сейчас люди используют электро-магнитные волны для связи, в будущем неограниченный обмен информацией будет основан на гравитационных волнах. Как всем становится понятно, это следующий прорыв в сфере обмена информацией, который создает новые горизонты для исследования информационной безопасности будущего.

Эйнштейн писал, что механическая система может передавать энергию и информацию гравитационным волнам. Считается, что эти волны имеют вид совмещения пространства и времени и проявляются в качестве изменений гравитационного поля, подобно волнам на воде. Волны излучаются движущимися массами и большими событиями, но существуют независимо. Эйнштейн предполагал, что гравитационные волны распространяются со скоростью света. Такая гравитационная связь имеет преимущество перед электро-магнитной, поскольку не уменьшает своей мощности в пространстве и времени, тогда как последняя ослабевает в зависимости от расстояния источника сигнала и наличия препятствий.

Современные ученые пытаются доказать факт того, что существует возможность зашифровать определенную информацию в гравитационной волне и передать ее на неограниченное расстояние. Единственное, что сейчас не известно, то какими должны быть приборы, передающие и получающие информацию из этих волн. В далеком будущем гравитационно-волновая связь может оказаться главным средством для обмена информацией во Вселенной.

Имя Карла Густава Юнга известно людям, которые даже очень далеки от психиатрии. Его называют великим ученные из разных сфер современной научной деятельности. Юнг известен, как последователь Зигмунда Фрейда, но на самом деле он не придерживался фрейдовских традиций, а работал по личному направлению. Концепция существования коллективного бессознательного была основной причиной расхождений во взглядах между ними.

По Юнгу, структура личности или души состоит из Эго, Личного бессознательного и Коллективного бессознательного. Причем, Эго – это то, что мы обычно понимаем под сознанием, или все то, что мы имеем в виду, когда говорим «Я». Личное бессознательное представляет собой личный опыт человека, по каким-то причинам забытый или вытесненный им из обихода. Личное бессознательное, в основном, состоит из комплексов, которые являются эмоционально заряженными мыслями, чувствами или воспоминаниями. Например, распространенный в наше время комплекс власти развился благодаря тому, что люди очень много своей психической энергии посвящают мыслям и чувствам о контроле, доминировании или подчинении других. Коллективное бессознательное состоит из мыслей и чувств, которые являются общими для всех людей, то есть оно является результатом совместного эмоционального прошлого человечества. Как писал сам Юнг: «В коллективном бессознательном содержится все духовное наследие человеческой эволюции, возрожденное в структуре мозга каждого индивидуума». Понятно, что коллективная бессознательная информация передается из поколения в поколение, она общая для всего населения Земли. Примерами служат мифы, народные эпосы или понимание добра и зла.

Именно за эту точку зрения о существовании накопленной коллективной информации автор и включил Карла Юнга в число ученых, внесших неоценимый вклад в науку об информационной безопасности. И действительно, непонятно иногда, каким образом именно в том месте и в то время пришла к Ньютону идея существования всемирного тяготения, если представить, что он каждый день наблюдал явления падения на землю различных предметов. Еще большее удивление вызывают изобретения Теслы или Эйнштейна, которые в своем большинстве были теоретическими, то есть не доказанными на практике по причине своей сложности и невозможности реализация в то время. Только недавно некоторое современное оборудование дало возможность воспроизвести их предположения и доказать правоту гениев.

Автор видит свое предназначение и дальнейшее развитие информационной науки в исследовании законов и качеств этого коллективного информационного пространства для его эффективного использования и безопасности.Вся научная деятельность англичанина Алана Тьюринга была посвящена исследованию информационных процессов и безопасности. Именно он стоял у источника зарождения информатики и кибернетики. В 1936 году он предложил свою «Машину Тьюринга», которая стала первым в мире компьютером. Именно Тьюринг создал основы современного криптоанализа и теорию искусственного интеллекта.

В годы Второй мировой войны группа под руководством Тьюринга взломала немецкий шифратор «Enigma», что позволило читать переписку и сообщения немецких вооруженных сил. Теоретическая база для методов и взломов была разработана самим Тьюрингом.

Позже, в 1946 году, Тьюринг предложил первое детальное описание компьютера с хранимой памятью и программой. В то же время он продолжал работу над более теоретическими вопросами. В частности, ученый очертил проблему искусственного интеллекта и предложил эксперимент, который позже назвали в его честь «тестом Тьюринга».

Позже возник сексуальный скандал, в ходе которого Тьюринга судили за гомосексуализм и обрекли на введение инъекции женского гормона. После этого судьба очень строго повела себя с великим ученым. Он потерял работу и общественное уважение.

В 1954 году Алан Тьюринг был найден мертвым в своем доме, отравленный цианидом. Надкушенное яблоко, с этим ядом, лежало рядом с кроватью, на столе. Стив Джобс, боготворивший Тьюринга, поэтому для своей торговой марки «Apple», в качестве эмблемы и названия выбрал надкушенное яблоко, в память о причине смерти своего кумира.

После 1960 года многочисленные факторы смягчили тоталитарные возможности радио. Этому способствовали снижение цен и нарастающая доступность телефонов, факсов, персональных пишущих машинок и множительных устройств. Кроме того, миниатюрными стали дешевые длинноволновые радиоприемники, способные принимать иностранные станции. Возросло значение телевидения.

Вконце XIX века семья Норберта Виннера эмигрировала из России в Соединенные Штаты Америки. Его отец стал профессором Гарвардского университета, поэтому маленькому Норберту было предречено стать большим ученым.

Виннер не подвел ожиданий своих близких, его книга «Кибернетика или управление и связь в животном и машине» фактически открыла новую науку кибернетику. По определению ученого, кибернетика исследует закономерности получения, хранения и передачи информации в сложных управляемых системах. Эта книга перевернула весь научный мир и стала началом научно-технической революции. Благодаря Виннеру, мир получил современные методы обработки и использования информации, люди получили любимые компьютерные технологии и различные гаджеты.

Ярким был его опыт с крысами, когда одну запускали в незнакомое место с различными ходами. Там животное натыкалось на препятствия пока не находило выход. Во второй раз эта самая крыса уже без ошибок находила выход из известного ей лабиринта. Это и стало главным примером системы в действии. Таким Виннер представлял искусственный интеллект, что стало платформой для новой науки кибернетики, которая призвана была анализировать и синтезировать знания, накопленные предыдущими науками – философией, математикой, биологией, социологией и экономикой.

Виннер считал, что «Высшее предназначение математики представляет собой поиск скрытого порядка, который нас окружает». Поэтому он изложил положения и выводы новой теории, которая охватывала вопросы обмена информацией и управления в различных динамических системах, таких как человек, живые организмы и технические приборы. Только тогда, когда сложная система имеет случайное образное поведение, между ее составными частями возникают связи, которые описывают разницу между прошлым и будущим. А это, в понимании автора, позволяет сформировать направленность действий систем с целью создания более сложных структур, которые будут иметь устойчивую жизнеспособность. Эта технология передачи информации позволяет расширить человеческие возможности восприятия и влияния до масштабов всего земного шара.

Незадолго перед смертью Виннер был награжден Президентом Линдоном Джонсом высшей научной наградой – Национальной научной медалью США. В торжественной речи ученый оставил завещание: «Мы не являемся материальными существами, мы вечно повторяющиеся схемы. Схема же является посланием и может быть передана, как послание». Над его словами стоит задуматься, особенно сейчас.

На примитивном уровне Интернет функционирует, как множительный аппарат, позволяющий каждому пользователю с легкостью копировать документы, изображения и звуковые файлы. Возросшая личная власть людей стала частью большой истории передачи информации и развития информационных технологий. Фотокопировальные устройства, история которых началась почти сто лет назад, представляют отличную перспективу революции в Интернете.

Хотя фотоаппарат автоматизировал сложный процесс съемки и проявления, ему остались необходимы проточная вода и электричество. На заре двадцатого века обеспечить эти условия было непросто, машине требовалась целая отдельная комната. Устройство поглощало огромное количество дорогой фотобумаги и реактивов, кроме этого выдавало дурно пахнувшие копии на толстой бумаге с закручивающимися углами, что создавало трудности для хранения.

Патентовед Честер Карлсон изобрел технологию, которая позволила использовать простую бумагу. Изобретение Карлсона, известное нам под названием Ксерокс, произвело революцию в деловом мире, а через десять лет оказалось в самом центре титанического противостояния правительств и разведслужб.

Если бы Маркони не придумал беспроводной аппарат, передающий сигналы на большие расстояния, это, наверняка, сделал бы кто-нибудь другой. Так же можно сказать о производстве бумаги, печатном станке и почти обо всех последующих открытиях в области передачи информации. Почти все эти изобретения, сколь бы чудесными они ни выглядели, основаны на законах физики и являются усовершенствованием вновь открытых технологий. Карлсон же радикально порвал с прежними методами копирования. Если бы большую часть своей взрослой жизни он не провел в ожидании фотокопий, его изобретение, возможно, и вовсе бы не состоялось.

Однажды он наткнулся на статью венгерского физика Пала Селеньи, в которой рассказывалось о применении ионного луча для перенесения структуры электростатических разрядов на вращающийся барабан. Использование дорогой и массивной ионной пушки в офисе не представлялось возможным, но образование Карлсона позволяло смотреть глубже. Он вспомнил о фотоэлектрическом эффекте Альберта Эйнштейна, при котором в определенных субстанциях лучи света порождают электрический разряд.

Селеньи не догадался использовать свет, а вот Карлсон сообразил, что может применить фотоэффект Эйнштейна и добиться того же результата при помощи фотографических линз, а затем преобразовать электростатическую картину на барабане в чернильное изображение на простой бумаге. Начинал он работу в примитивной домашней лаборатории, а потом получал все лучше оборудованные помещения, все более квалифицированных помощников, все более надежное и масштабное финансирование, и это принесло результат. Постепенно Карлсон создал работоспособное устройство для компании «Галоид», основным бизнесом которой был выпуск фотобумаги. В 1958 году фирма стала называться «Галоид ксерокс», а в 1961-м – просто «Ксерокс».

В 1959 году компания выпустила первую действующую модель – модель 914, которая, буквально, покорила информационный мир. Восхищениям не было предела, аппарат превратил прежде трудоемкий, изматывающий процесс фотокопирования в приятную работу, выполняемую простым нажатием кнопки.

Еще с детства Клод Шеннон показал склонность к освоению механических вещей. Больше всего ему удавалась математика. Дома он собирал модели самолетов, которые управлялись по радио, или систему телеграфа от своего дома к другу на расстояние в почти километр.

Шеннон стал известен тем, что предложил теорию информации в научной статье, опубликованной еще в 1948 году. Студентом Массачусетского технологического института он написал диссертацию, в которой заявил, что с помощью электрического применения Булевой алгебры можно сконструировать и решить любые логические и числовые связи.

Почти все, чем мы с удовольствием пользуемся в наш цифровой век, базируется на этой идее, хотя мало кто знает о том, кто ее автор или что лежит в основе простой и элегантной теории информации. Многим ли известно, что информационная эпоха – это творение не Билла Гейтса или Стива Джобса, а Клода Шеннона? Скромный человек, разносторонний мыслитель сторонился публичных выступлений и интервью. Блестящий математик, генетик и крипто-аналитик, сформулировал основы концепции, которой суждено было вырасти в информационную теорию. Он сделал это вскоре после окончания Второй мировой войны, когда стало очевидно, что ее сражения уже не сводятся к пулям и бомбам.

Если Первая мировая оказалась первой механизированной войной, то Вторую мировую можно считать первым силовым конфликтом, завязанным на информационные технологии. Быстрая координация между удаленными друг от друга подразделениями перенесла войну на все континенты. Стала активно развиваться криптография, поскольку требовалось сохранять передаваемые депеши в тайне от противника. Шеннон разработал систему прицельного уничтожения самолетов и систему контроля огня, которые могли напрямую взаимодействовать с радаром.

После войны это позволило Шеннону и многим другим специалистам задуматься о природе фильтрации и распространения информации, будь то радарные сигналы, голос из телефона или видеоматериалы из телевизора. Шум оказался врагом связи, так что любые способы хранения и передачи информации, снижавшие уровень шума, весьма интересовали работодателей Шеннона.

Шеннон особенно хорошо понимал основы теории о том, как следует обращаться с информацией, используя знания из самых разных дисциплин. К 1948 году он сформулировал свой главный тезис, простой и сильный: «Информация – преодоление неопределенности». Если человек может передать что-нибудь, то это «что-нибудь» уже снижает неопределенность. Такова, по мнению Шеннона, фундаментальная природа информации. Звучит очевидно, однако это важнейшее умозаключение, если вспомнить, что люди говорят на огромном разнообразии языков и определенное сочетание звуков может оказаться полным смысла для одного человека и совершенно непонятным для другого.

Шеннон пришел к выводу, что информацию любого типа можно закодировать, как серию ответов «да» и «нет». В наши дни такие ответы мы называем битами цифровой информации, то есть единицами и нулями. Ими представлено все – от текста электронного письма до цифровых фотографий, музыки на CD и видео высокого разрешения. То, что совершенно любую информацию можно представить и закодировать отдельными битами не приблизительно, а идеально точно, без шумов и ошибок, явилось поистине революционной идеей. Она поразила даже его коллег и других ученых, отчаянно пытавшихся создать простую и универсальную теорию информации.

Шеннон стал профессором Массачусетского технологического института и в течение многих лет его студенты сделали большое количество революционных открытий, во многом определивших лицо информационной эпохи. К ним можно отнести модемы, компьютерную графику, сжатие данных, искусственный интеллект и беспроводную цифровую связь. Информационная теория преобразила почти все стороны нашей повседневной жизни, от работы до отдыха, насытив их «цифрой». Красиво, изящно и невероятно эффективно.

Теорией информации, которую изобрел Шеннон, стал раздел математики, изучающий процессы хранения, преобразования и передачи информации. Это и напрямую тесно связано со многими другими дисциплинами, такими как коммуникационные системы, теория вероятности и криптография.

Специальный термин «избыточность», в качестве своего рода обратной стороны информации пустил в обращение Шеннон. Когда избыточность присутствует в сообщении, то оно может быть записано более экономно без потери информации, хотя и с некоторым снижением возможности исправления ошибок.

Указанная теория держится на нескольких законах, которые изобрел и сформулировал Шеннон. Его работа «Теория связи в секретных системах» вышла с грифом «секретно», но ее рассекретили и опубликовали уже в 1949 году, и это стало началом широких исследований в теории кодирования и передачи информации. Указанная книга, по мнению специалистов информационной безопасности, предоставила криптографии статус науки. Именно Шеннон первым начал изучать криптографию, используя системный подход.

Главной заслугой Клода Шеннона является исследование абсолютно тайных систем и доказательство их существования. Вместе с этим, он вывел существование крипто-стойких шифров и необходимые для них требования. Ученый очертил основные требования, необходимые для определения надежности шифров. Шеннон ввел термины рассеивания и смешивания, которые сейчас привычны для нашего слуха, и создал методы построения систем шифрования на основе простых операций. Кодирование, по мнению ученого, представляет собой процесс преобразования сообщения на входе канала связи к коду сообщения на выходе, при этом информационная ценность сообщения должна оставаться неизменной.

Великий ученый работал до конца 20-го века, а умер в 2001 году от болезни Альцгеймера.

Крупный украинский ученый Вячеслав Петров родился в 1940 году в Воронежской области. Позже окончил Харьковский политехнический институт по специальности инженер-электромеханик.

Всемирную известность Петрову принесли его научные исследования, посвященные созданию физических основ, принципов, методов и систем оптической регистрации информации и созданию материалов для оптической регистрации информации и управления оптическим излучением. Гораздо позже, развивая свою научную школу, академик Петров создал технологии долгосрочного хранения цифровой информации, разработал методы создания баз данных информации с раритетных носителей и баз данных научной реферативной информации.

Направления исследований ученого вызывают неизменный интерес научной общественности. Он входит в число 5-ти ученых Украины, которые произвели наибольшее количество научных докладов на заседаниях Президиума НАН Украины. Уважение общества к Петрову вылилось в многочисленные награды от Национальной Академии Наук Украины, государства и международного сообщества.

Среди главных его достижений привлекает внимание разработанная и внедренная система массового распространения компьютерной информации через широкополосные телевизионные каналы, которая работает в Украине уже почти 10 лет. Петров изобрел и практически внедрил метод изготовления оптических носителей информации на сапфире с большим сроком хранения.

Общественная жизнь Петрова посвящена разработке Программы информатизации города Киева. Под его руководством создана Концепция информатизации Киева и в HAH Украины разработана корпоративная компьютерная сеть Киевской городской государственной администрации.

Вячеслав Петров создал научную школу, которая изучает проблемы регистрации, долгосрочного хранения и надежной передачи информационных данных. Сейчас в его Институте проблем регистрации информации НАН Украины собраны наиболее значимые научные направления, имеющие большое значение для создания информационно-аналитических систем и систем регистрации информации безопасными методами. Именно эта работа важна для создания технологий, необходимых для дальнейшей информатизации Украины и укрепления ее безопасности.

Известный британский физик-теоретик Стивен Хокинг, известный своими популярными книгами об астрофизике и черных дырах, привлек внимание автора тем, что несмотря на свою болезнь, которая привела к его смерти в 2018 году, не сосредотачивался исключительно в пределах своей науки. Круг его интересов колебался от теоретической и квантовой физики до современной философии, социологии и политики. Кроме этого, Хокинг выступал за колонизацию других планет и совершенствование космических перелетов через обеспокоенность тем, что жизни на Земле угрожает много опасностей. Его беспокоили возможная ядерная война, генетически модифицированные вирусы, глобальное потепление, перенаселение планеты и другие опасности.

Последняя работа ученого, имеющая ценность для исследований автора в области информационной безопасности, получила название «Энтропия черной дыры и мягкие волосы». Эта работа заключает долгосрочный проект Хокинга о больших диффеоморфизмах, «мягких волосах» и квантовую структуру черных дыр. В ней говорится, что определенная информация может пережить засасывания в черную дыру.

Всем известно, что из-за колоссальной гравитации даже свет не может уйти от таких космических тел, как черные дыры. Любое материальное тело или просто материя, которые достигли горизонта событий черной дыры, то есть места невозможности повернуть назад, будут затянуты внутрь нее без всякого шанса вырваться. Но Хокинг отклонил эту идею. Он отметил, что только информация может сохраниться в, так называемом, «мягком волосе», который теоретически существует на краю черной дыры.

В 2015 году на конференции Хокинг сказал: «Я предполагаю, что информация хранится не внутри черной дыры, как кто-то мог ожидать, а на ее границах, скорее всего на горизонте. Идея заключается в том, что супер-трансляции – это голограммы входящих частиц. А значит, они содержат всю информацию, которая иначе была бы потеряна. Информация о поступлении новых частиц воспроизводится, но только в хаотичной и бесплодной форме. Это решает информационный парадокс. Для всех других практических целей информация потеряна».


    Ваша оценка произведения:

Популярные книги за неделю