355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Сворень » В просторы космоса, в глубины атома [Пособие для учащихся] » Текст книги (страница 7)
В просторы космоса, в глубины атома [Пособие для учащихся]
  • Текст добавлен: 17 марта 2017, 08:00

Текст книги "В просторы космоса, в глубины атома [Пособие для учащихся]"


Автор книги: Рудольф Сворень



сообщить о нарушении

Текущая страница: 7 (всего у книги 13 страниц)

Но если нейтрино так легко проходят сквозь все и вся, то как можно их обнаружить на Земле? В какие сети поймать? В 1946 г. молодой в то время физик, ныне академик, лауреат Ленинской премии Бруно Максимович Понтекорво предложил хлор-аргоновый метод регистрации нейтрино, на основе которого развились нынешние системы детектирования (обнаружения) этих неуловимых частиц. Сущность метода состоит в следующем: некоторые нейтрино, попав в атомы вещества, все же взаимодействуют с их ядрами; при этом один из нейтронов ядра, выбросив электрон, превращается в протон; число положительных зарядов в ядре увеличивается на единицу; атом передвигается в следующую клеточку таблицы Менделеева; это значит, что происходит рождение нового химического элемента, т. е. именно то, о чем мечтали средневековые алхимики. Вот так нейтрино может превратить атом хлора-37 в атом аргона-37 (рис. 6 на цветной вклейке). Выделив из хлора атомы аргона и посчитав их, мы узнаем число нейтрино, пойманных веществом.


Почти через 10 лет после того, как был предложен этот метод, американский физик Рэй Девис построил первую установку с хлор-аргоновым детектором для регистрации нейтрино, вылетающих из атомного реактора. Основой установки был бак на 12 т перхлорэтилена – хлористого соединения, для которого была отработана технология извлечения атомов аргона-37. Первые же результаты, полученные на новой установке, оказались совершенно неожиданными – никаких нейтрино вообще не было обнаружено. Позже, через несколько лет, этому нашли объяснение – в реакторе образуются антинейтрино, а не нейтрино. Но еще до того, во времена, когда многие компетентные люди считали, что нужно бросить это пустое хлор-аргоновое предприятие, Девис, продемонстрировав пример удивительной целеустремленности, начал создание новой, значительно более крупной установки с 600-тонным перхлорэтиленовым детектором. Установка в этот раз была рассчитана на регистрацию солнечных нейтрино, строилась она 4 года, и в 1968 г. пошли первые результаты измерений. Эти результаты тоже были отрицательными – профессор Девис солнечных нейтрино не обнаружил.

Результаты Девиса, конечно же, вызвали поток идей и мнений, в том числе и самых экстремальных. Кое-кто считал, что наступил второй солнечный кризис, что нужно полностью отказаться от термоядерных циклов и признать свою полную несостоятельность – в звездах, в частности в Солнце, действуют какие-то незнакомые нам источники энергии. А может быть, там горит вакуум… Или полыхает время… Или тлеет еще какое-нибудь неизвестно что. И другая крайность – результаты Девиса вообще нельзя принимать всерьез. Где гарантия, что из детектора извлекается весь аргон? Может быть, атомы аргона просто «прилипают» к хлору и мы, таким образом, не получаем вообще никакой информации о действии нейтрино…

Что касается экспериментальной «грязи», то Девис, кажется, сделал все возможное, чтобы исключить ее. Он, например, поштучно вводил в бак атомы аргона-37, а затем извлекал их почти все до одного. Или превращал хлор в аргон, но уже не с помощью нейтрино, а совсем другим, тщательно контролируемым способом, и опять-таки извлекал все атомы, которые должны были появиться согласно расчетам. Кое-кто из скептиков еще пытается раздуть уголек сомнений, но вряд ли из "него разгорится пламя, способное ликвидировать проблему. И в то же время пока никак не скажешь, что проблема солнечных нейтрино переросла во второй солнечный кризис.

Действие шестое. Неожиданный результат нейтринных экспериментов пока может привести к одному только выводу – нужно работать. Начнем с того, что Девис, повысив точность метода, все же обнаружил нейтрино, хотя и в чрезвычайно малом количестве, пока оно согласуется с моделями Солнца не на много лучше, чем прежнее «ничего». Вместе с тем теоретики пересмотрели эти модели и заметно снизили свои требования касательно нейтринных потоков. Началось также конструктивное обсуждение некоторых, как казалось раньше, слишком смелых гипотез, которые могли бы объяснить низкий уровень нейтринных потоков, регистрируемых на Земле.

Одна из таких гипотез предполагает, что в недрах Солнца периодически происходит резкое перемешивание вещества, температура падает, интенсивность термоядерных реакций уменьшается, а значит, уменьшается и поток нейтрино. Если принять эту гипотезу, то Девису просто не повезло, не в ту эпоху он занялся измерениями – надо было взяться за это дело на несколько миллионов лет раньше или на несколько миллионов лет позже.

Снижение солнечной активности после перемешивания сказывается на тепловом режиме планет, возможно, именно оно и было причиной ледниковых периодов на Земле. При этом нужно учесть, что нейтрино быстро, без задержки пробираются через Солнце (слабые взаимодействия!), а тепловые излучения движутся к поверхности Солнца очень медленно.

А вот другая гипотеза, ее выдвинул академик Б. М. Понтекорво. Нам известны два вида нейтрино – их называют электронными и мюонными с учетом реакций, в которых эти нейтрино участвуют. В солнечных циклах рождаются электронные нейтрино, и только их умеют обнаруживать хлор-аргоновые детекторы. Но есть повод предположить, что нейтрино осциллирует, что оно переходит из одного вида в другой, подобно тому, скажем, как в электромагнитной волне или в колебательном контуре энергия перекачивается из электрического поля в магнитное и обратно. Если это так, то вполне вероятно, что вылетевшие из Солнца электронные нейтрино по пути превращаются в мюонные нейтрино, а их хлор-аргоновый детектор просто не замечает.

Теперь о самом, пожалуй, главном недосмотре сторонников второго солнечного кризиса: эксперименты Девиса ни в коем случае нельзя отнести ко всему комплексу солнечных циклов, так как многие нейтрино в этих экспериментах в принципе не могли быть обнаружены. Солнечные нейтрино рождаются в нескольких ядерных превращениях (рис. 5).


Основное из них – это рр-реакция. Нейтрино, которые появляются в этой реакции, могут иметь разную энергию, но не более 0,4 МэВ. И поэтому хлор-аргоновый детектор не может зарегистрировать нейтрино от рр-реакции– порог чувствительности этого детектора 0,816 МэВ. Иными словами, хлор может превратиться в аргон лишь в том случае, если за это дело возьмется нейтрино с энергией более 0,816 МэВ, а нейтрино рр-реакции для этого слишком слабы. Более того, оказывается, что из-за сложных процессов внутри ядра 0,816 МэВ – это, если можно так сказать, лишь формальный порог; реально же для «срабатывания» хлора нужны нейтрино с энергией около 5 МэВ. А поэтому результаты Девиса относятся лишь к двум веточкам солнечного термояда, эти результаты никак не приговор, а лишь призыв к размышлениям и исследованиям.

Действие седьмое. Мы отправляемся на Северный Кавказ, на строительство первой советской нейтринной обсерватории. Приборы для регистрации солнечных нейтрино и некоторых других частиц, прибывающих из космоса, размещают глубоко под землей. Земная толща – это фильтр, он защищает детекторы от «лишних» космических лучей, которые, в частности, могут вызвать ложное «срабатывание» атомов хлора. Девис установил свою аппаратуру в старой заброшенной шахте глубиной 1,5 км. Сейчас строятся нейтринные телескопы в ответвлении автомобильного тоннеля под Монбланом.

Обсуждается и очень дорогой проект ДЮМАНД – укрытая в океане под многометровой толщей воды система фотоэлектронных приборов, которые караулят слабые вспышки света, вызванные в самой морской воде космическими частицами. Проект обсуждается уже много лет, но к его осуществлению пока еще никто не приступает. Очень возможно, что путь от идеи этого проекта к реальности резко сократится благодаря сравнительно недавнему предложению советских физиков Г. Аскарьяна и Б. Долгошеина. Они предложили регистрировать не световые вспышки, а звуковые импульсы, сопровождающие рождение ливней космических частиц в воде. Такие ливни возникают, когда нейтрино гигантских энергий разрушает ядро. Регистрировать звук значительно удобней, чем свет, в частности, потому, что звуковая волна хорошо распространяется в воде и индикаторы звука можно располагать на значительно большем расстоянии, чем индикаторы света, увеличив тем самым общий объем подводного детектора. Или можно уменьшить число индикаторов, сделать «сеть» более редкой при том же контролируемом объеме роды. Именно от этого объема зависит число пойманных нейтрино Предложение советских физиков вызвало большой интерес, предполагается, что оно может в сотни и тысячи раз повысить эффективность системы.

Уникальное сооружение нейтринной астрофизики создается в нашей стране на Северном Кавказе – в долине реки Баксан строится крупная многоцелевая нейтринная обсерватория Института ядерных исследований АН СССР, для нее сооружается четырехкилометровый горизонтальный тоннель с большими лабораторными залами.

Это будут лаборатории с чрезвычайно низким и даже рекордно низким уровнем радиационного фона (рис. 2) – с верху они закрыты тысячеметровой гранитной крышей, а изнутри облицованы особыми сортами бетона с очень слабой собственной радиоактивностью. А снижение фона есть прямой путь к регистрации слабых «сигналов» – в тихой комнате можно услышать тиканье карманных часов, но вряд ли это удастся сделать в салоне самолета.


Нашу экскурсию на Баксанскую станцию комментируют директор Института академик АН Грузинской ССР А. Н. Тавхелидзе, члены-корреспонденты АН СССР Г. Т. Зацепин и А. Е. Чудаков, доктор физико-математических наук А. А. Поманский – физики, отдавшие новому делу годы жизни и мегаджоули энергии. Здесь наверняка уместно вспомнить и коллектив Института ядерных исследований, взявший на себя большой комплекс работ – от расчета сечений ядерных реакций до организации строительства в горных условиях, с тем чтобы крупнейшие в мире установки нейтринной астрофизики стали реальностью. И конечно же, когда речь заходит о Баксанской обсерватории, непременно должно быть названо имя секретаря Отделения ядерной физики АН СССР академика М. А. Маркова, который от самого начала вдохновляет и направляет эти работы как в чисто научном, так и в организационном плане.

Осмотрев входные тоннели и вспомогательные помещения (обсерватория– это не только научные приборы, это еще и системы энергоснабжения, искусственного холода, отопления, вентиляции, обработки данных, транспорта, связи, пожарной безопасности), мы попадаем в первый лабораторный зал. Это владения огромной многоэтажной установки для регистрации космических мю-мезонов высоких энергий и некоторых энергичных нейтрино. Каждый из 3200 детекторов установки (рис. 3) – это бак с жидким сцинтиллятором, в который неотрывно всматривается электронный глаз ФЭУ – фотоэлектронного умножителя. Под действием прорвавшейся в детектор частицы в нем может произойти событие, так физики называют интересующую их ядерную реакцию. В веществе сцинтиллятора событие вызовет слабую световую вспышку, вспышку заметит ФЭУ и выдаст электрический импульс в систему регистрации; если частица прошьет несколько детекторов, то можно будет определить, откуда она пришла и с какой скоростью. Этот гигантский сцинтилляционный телескоп будет участвовать в целом комплексе астрофизических исследований.


Во второй лабораторный зал мы не пойдем по уважительной, наверное, причине – туда еще не добрались строители, и этот зал существует пока лишь в виде чертежей, планов и опытных образцов аппаратуры. Мы видим действующую модель будущего гигантского хлор-аргонового детектора – это будет бак высотой с трехэтажный дом и длиной более 30 м (рис. 2, А). В баке – 3000 т тетрахлорэтилена, в 5 раз больше, чем у Девиса; это позволит более точно оценить количество некоторых разновидностей солнечных нейтрино.

На действующей модели видны все основные этапы извлечения атомов аргона (рис. 4): тетрахлорэтилен продувается гелием и из бака выходит смесь газов; в нее входят и единичные атомы аргона-37, образовавшиеся из хлора под действием нейтрино; для начала смесь газов охлаждают, тетрахлорэтилен конденсируется и возвращается обратно в бак; оставшиеся газы дополнительно очищаются, проходя через молекулярное сито; затем все инертные газы собирают в большую ловушку из активированного угля; сравнительно маленькие атомы гелия беспрепятственно проходят через ловушку и возвращаются обратно в бак. Это уже физика плюс экономика. После нескольких недель экспонирования, нескольких часов продувки систему на короткое время перекрывает заслонкой 31 и перегоняют смесь газов в малую ловушку, а ее переносят в другую установку; здесь хромотографическая колонка отделяет аргон от других инертных газов, а титановый фильтр окончательно очищает его; аргон-37 – элемент неустойчивый, он постепенно распадается, и каждый распад регистрируется сверхчувствительным счетчиком; чтобы исключить ложные срабатывания счетчика, его защищают массивными металлическими экранами и, кроме того, окружают сцинтилляционными счетчиками. Если они срабатывают одновременно с основным, значит, событие вызвано какой-то внешней помехой и импульс не засчитывается. Импульс засчитывается только в том случае, если при срабатывании основного счетчика остальные молчат. Это значит, что срабатывание вызвано не внешним, а внутренним событием – распадом аргона.


Даже в этом гигантском детекторе солнечные нейтрино будут создавать в неделю всего несколько атомов аргона-37. Чтобы собралось заметное количество этих атомов, хлор приходится экспонировать около месяца (чем меньше яркость объекта, тем большую выдержку устанавливает фотограф). Подсчет числа атомов тоже длится довольно долго – период полураспада аргона-37 почти 35 дней.

Во втором лабораторном зале будут еще два нейтринных телескопа (рис. 2, Б, В): один – с галлиево-германиевым детектором, а второй – с большим сцинтилляционным детектором, он позволит изучать вспышки сверхновых звезд по резким всплескам нейтринного излучения.

В галлиево-германиевом детекторе (его предложили и обосновали советские физики) в принципе происходит то же, что и в хлор-аргоновом: нейтрино превращает атом галлия-71 в атом германия-71 обычным своим приемом – превратив один из нейтронов атомного ядра в протон, т. е. увеличив на единицу положительный заряд ядра (рис. 6); германий-71 выделяют подобно тому, как раньше выделяли аргон; подсчитывают все атомы германия и узнают таким образом число пойманных нейтрино. Но вот что очень важно – порог «срабатывания» у галлия примерно 0,2 МэВ, т. е. значительно ниже, чем у хлора. И практически все виды солнечных нейтрино, в том числе и нейтрино от рр-реакции, могут быть зарегистрированы галлиево-германиевым детектором – лишь несколько человек в мире могут перепрыгнуть через двухметровый барьер, но перешагнуть через полуметровый барьерчик сумеет любой из нас. Очень может быть, что именно этот инструмент внесет ясность в нынешнюю, мягко говоря, запутанную картину солнечных циклов.

Эпилог.Каждый, кто когда-нибудь пытался отвернуть большой проржавевший болт перочинным ножичком, понял, наверное, что такое инструмент. Хороший, совершенный инструмент – это первая мечта и первая забота токаря, монтажника, хирурга. И конечно, ученого, исследователя – как часто он видит путь к великому открытию и только ждет инструмента, без которого невозможно продвинуться от драматичного «я так думаю» к спокойному «я это знаю».

Физики связывают немало надежд с созданием уникальных научных инструментов Баксанской нейтринной обсерватории. Вот лишь несколько строк из последних научных публикаций:

– новые нейтринные телескопы помогут понять важные детали процессов, которые происходят в центре Солнца, определить структуру его глубинных областей, получить точные данные о давлении и температуре;

– могут появиться новые данные для прогнозов солнечной активности;

– могут выясниться подробности эволюции звезд, такие, например, как образование массивного железного ядра, взрыв сверхновой или катастрофическое сжатие звезды в «черную дыру»;

– скорее всего только нейтринная астрономия поможет выяснить, осциллируют ли нейтрино: нейтрино от ускорителей слишком быстро попадают в детектор, заметные изменения свойств нейтрино за такое короткое время, возможно, и не успеют произойти;

– нейтринные телескопы, возможно, обнаружат некоторый остаточный нейтринный фон, нейтрино гигантских энергий, блуждающие в космосе миллиарды лет и хранящие сведения о далеком прошлом Вселенной – об эпохе формирования галактик и звезд.

И еще одна возможность, в последнее время о ней часто напоминают зловещие слова «энергетический кризис».

Сейчас, как медные пятаки на ладони, мы считаем оставшиеся на Земле запасы угля и нефти, в то время как где-то в наших карманах лежит банкнота миллионного достоинства. Вот несколько цифр: если бы Солнце светило за счет сжигания химического топлива и целиком состояло из чистого кислорода и лучших сортов угля, то всей солнечной массы хватило бы лишь на 1500 лет горения. В то же время термоядерные реакции, израсходовав лишь 1 % солнечной массы, могли бы поддерживать нынешнюю яркость нашей звезды на протяжении 10 млрд. лет.

Изучение солнечного термояда, проникновение в недра других звезд, в их термоядерные реакторы – это не только прорисовка важнейших деталей в нашей картине мира. Вполне вероятно, что это еще и шаги к решению первейшей житейской задачи – к изысканию новых источников энергии.

Экспедиция за короной

Природа как будто специально по заказу астрономов подогнала размеры Солнца и Луны, открыв тем самым возможность важных исследований во время солнечных затмений.

Мы всегда торопимся, люди атомного века. Мы всегда торопимся, нам всегда некогда. Мы годами не можем выкроить нескольких минут, чтобы поднять голову и взглянуть на звездное небо – на эту бесконечную арену, где Миры разыгрывают свой фантастический спектакль, или чтобы проводить взглядом уходящий за горизонт огненный шар – пылающую звезду Солнце, которая дает нам жизнь. Только сенсационные сообщения о грозных шутках природы – о кометах, о столкновении галактик, о падении гигантских метеоритов на какое-то мгновение отодвигают в нашем сознании земные дела на второй план и заставляют вспомнить о большом космосе, в котором песчинкой несется планета Земля.

Удобный, во всяком случае, необременительный повод для обращения к космической тематике – солнечные затмения. Необременительный потому, что полное солнечное затмение в данном географическом районе – явление довольно редкое. Даже для такой огромной страны, как наша, перерывы между затмениями достаточно велики – на территории Советского Союза полные затмения наблюдаются обычно лишь раз в несколько лет.

Если для большинства людей затмение – это красивое зрелище и повод к размышлениям, то для астрономов оно хотя и очень редкий, но зато очень и очень удачный объект исследований. Несколько слов об этом самом «очень и очень».

Когда вам понадобится пример поразительного случайного совпадения, можете смело обратиться к схеме солнечного затмения. Хорошо известно, что затмение происходит тогда, когда Луна становится между Землей и Солнцем и закрывает для земного наблюдателя солнечный диск. Луна в этом случае напоминает картонную заслонку, которую вы держите недалеко от глаз для того, чтобы прикрыть очень далекий яркий источник света. И вот что поразительно: сам этот источник (Солнце) и прикрывающая его картонка (Луна) видятся вам одинаковыми, хотя в действительности они резко различаются по размерам. Диаметр Солнца dс составляет примерно 1,4 млн. км, диаметр Луны dл– всего около 3,5 тыс. км, т. е. соотношение dс:dл примерно равно 400. Приблизительно таким же получается соотношение между средними расстояниями Земля – Солнце (lзс ~= 150 000 000 км) и Земля – Луна (lзл ~= 380 000 км). В том-то и состоит поразительное, почти неправдоподобное совпадение, что в процессе эволюции Солнечной системы все перечисленные величины непонятно почему оказались связанными равенством

dс:dл = lзc:lзл

Итак, Солнце примерно в 400 раз больше Луны (по диаметру), но во столько же раз дальше от Земли, и поэтому оба объекта видятся нам одинаковыми. Именно поэтому Солнце во время затмения очень и очень удачный объект исследований: Луна аккуратно закрывает его, оставляя в чистом виде лишь корону. (Здесь необходима оговорка: расстояния lзc и lзл в некоторых пределах меняются. Поэтому в ряде случаев наблюдается так называемое кольцеобразное затмение, когда Солнце закрыто Луной не полностью и видно узкое – толщиной не более 2 % от закрытой части – яркое кольцо солнечного диска.)

Как видите, в отношении «согласования» размеров Солнца и Луны и расстояний до них природа неплохо поработала на астрономов. Но она явно не довела своего дела до конца, не совместила плоскости вращения Луны вокруг Земли и Земли вокруг Солнца. Если бы Земля и Луна вращались в одной плоскости, то мы наблюдали бы полное солнечное затмение каждый месяц. Пока же ученые имеют возможность наблюдать это интересное явление, как правило, с перерывами в несколько лет, и практически каждое затмение привлекает большое число научных экспедиций.

О своей работе во время одного из солнечных затмений рассказывает руководитель экспедиции Государственного астрономического института имени П. К. Штернберга (ГАИШ) профессор Г. Ф. Ситник:

– Скажите, пожалуйста, Григорий Федорович, сохранили ли свое значение наблюдения во время затмений? Не уменьшилась ли их роль в связи с развитием техники наблюдений за «нормальным» Солнцем, не закрытым Луной?

– В последнее время в основном благодаря созданию новой совершенной аппаратуры действительно появились дополнительные возможности исследования незатемненного Солнца. И сейчас в любое время можно проводить ряд важных измерений, которые раньше делались только во время затмений. Однако это не уменьшило роли затмений хотя бы потому, что они нужны для корректировки новых приборов и методов, а также для определения комплексов измерений, которые можно производить в период между затмениями. И еще, конечно, для проверки полученных результатов.

Кроме того, затмения резко улучшают условия наблюдений, позволяют получить результаты, практически недостижимые во внезатменное время. Затмение прежде всего позволяет избавиться от рассеянного света самой фотосферы, т. е. той части Солнца, которая образует его яркую, видимую поверхность, образует то, что мы называем солнечным диском. А избавившись от «подсветки» фотосферы, мы получаем возможность производить очень тонкие исследования солнечной атмосферы, в частности таких ее слоев, как корона и хромосфера. Даже такой популярный прибор, как внезатменный коронограф, лишь сильно ослабляет рассеянный свет фотосферы, в то время как затмение полностью устраняет эту подсветку.

Для большого числа измерений и исследований монополия солнечных затмений неоспорима. В качестве примера, может быть, не очень типичного, но зато наглядного, назову проверку теории относительности. Фотографируя определенный участок звездного неба вблизи «прикрытого» Солнца (при ярком Солнце звезды просто не видны) и ночью, можно по смещению звезд на снимках определить, насколько Солнце отклоняет их лучи – такое отклонение было предсказано Эйнштейном в его теории относительности. В этих исследованиях положительный результат (т. е. доказывающий, что теория относительности верна) был получен еще в 1922 г. и с тех пор неоднократно подтверждался. Однако не сразу удалось устранить значительные количественные расхождения, и эти тонкие и сложные измерения продолжаются.

Еще пример. Уже много лет астрономы пытаются обнаружить гипотетическую планету Вулкан, которая, если она, конечно, существует, находится настолько близко к Солнцу, что может быть замечена только во время затмения.

Возможно, есть еще одно, может быть, не самое важное, но, на наш взгляд, существенное достоинство затменных наблюдений: во время солнечного затмения, особенно после его центральной фазы, несколько понижается температура Земли и ослабляются местные тепловые колебания в земной атмосфере, которые, как известно, сильно искажают результаты астрономических наблюдений.

– Расскажите, пожалуйста, какие измерения производятся во время затмений и, в частности, какие измерения производила ваша экспедиция.

– Полный список конкретных наблюдений и измерений окажется слишком большим. Каждая группа исследователей старается разнообразить свою программу и работает над этим в течение долгого времени. Общие же направления исследований таковы: детальное изучение структуры и спектра различных участков Солнца, радиоастрономические наблюдения и регистрация влияния Солнца на различные процессы в околоземном пространстве.

Наша экспедиция работала лишь в первом направлении и выполнила довольно обширную программу. В качестве примера назову фотографирование короны и хромосферы через интерферометр (иногда говорят «эталон») Фабри – Перо. Основа этого прибора– две идеально обработанные и очень точно установленные полупрозрачные пластинки. Свет, распространяясь между ними, многократно отражается, и в итоге на снимке, сделанном через эталон Фабри – Перо, оказывается сложная интерференционная картина объекта, в нашем случае короны. На этой картине хорошо видны светлые и темные полосы, напоминающие веер, – это, разумеется, не какие-то невидимые наблюдателю выбросы солнечного вещества. Эти полосы появляются потому, что монохроматический свет (с помощью фильтров выделяется только одна световая волна – 5303 Å) от некоторых участков короны как бы усиливается интерферометром, а от других участков – ослабляется.

Можно представить себе, какой была бы эта картина в идеальном случае, если бы вся корона представляла собой во всех отношениях однородный излучатель света. И поэтому, изучая реальную фотографию, можно судить о некоторых процессах в том или ином участке короны. Например, об изменении средней скорости молекул, излучающих волну – 5303 Å, которое за счет эффекта Допплера приводит к некоторому изменению самой этой волны. Таким образом, полученная фотография позволяет как бы сканировать корону, судить о физических процессах в отдельных ее точках.

– А все ли ваши наблюдения были удачны?

– Не совсем. Мы, например, не смогли получить качественных снимков хромосферы, сделанных с интерферометром Фабри – Перо. На этих снимках также получились интерференционные полосы. Однако из-за неудачно выбранной экспозиции полосы эти трудноразличимы. Мы успели сделать два снимка – с экспозицией 5 и 15 с. Первый из них оказался полностью, а второй частично недодержанным. Нужно было бы сделать еще один снимок с большей экспозицией, но на него уже не хватило времени.

– Иными словами, время затмения для наблюдателей очень дорого…

– Это поистине бесценное время. Об этом очень хорошо рассказал известный астроном Д. Мензел в своей книге «Наше Солнце». Вот что он пишет: «Подготовка экспедиции занимает месяцы напряженной работы. Чем неприступнее место (создается впечатление, что затмения упорно выбирают пустынные области), тем больше необходимо застраховать себя от всяких возможных случайностей. Конечно, многие ученые желают только увидеть явление и едут с небольшой фотокамерой. Но полностью снаряженная экспедиция должна везти с собой 10–20 т всевозможного оборудования. Напряженность предварительной работы, неизбежные препятствия, тревоги по поводу возможной непогоды усложняют задачу. В момент полной фазы астроном часто настолько занят, что хорошо, если он может урвать какие-нибудь две свободные секунды, чтобы мельком взглянуть на корону. А если погода во время затмения окажется облачной, то месяцы усилий будут просто потеряны». Думаю, что нарисованная картина справедлива для всех экспедиций.

– Насколько результативны усилия наблюдателей? Дают ли наблюдения затмений какие-либо фундаментальные научные результаты?

– Такие результаты получались неоднократно. Так, например, в свое время затмения позволили определить, что наши земные сутки постепенно удлиняются, правда, на ничтожную величину – на тысячную долю секунды в столетие. Во время затмений удалось установить ряд важных зависимостей между процессами на Солнце и состоянием земной ионосферы, которая в сильнейшей степени влияет на распространение радиоволн. Несомненно, и сейчас ценная информация, которую дают солнечные затмения, складываясь по крупицам, готовит фундамент для новых важных открытий, касающихся физики Солнца.

Звезда, дающая нам жизнь, – наше Солнце… Мы уже многое знаем о нем благодаря изобретательности наблюдателей и смелости теоретиков. В то же время многие солнечные механизмы – от второстепенных до принципиальных, определяющих жизнь всей Солнечной системы, – остаются для нас тайной.

Но что такое тайна?

Как хорошо сказал замечательный физик Вильям Крукс, тайна – это всего лишь задача, которую нужно решить.


    Ваша оценка произведения:

Популярные книги за неделю