Текст книги "У атомов тоже есть сердце. Резерфорд. Атомное ядро"
Автор книги: Роджер Оррит
сообщить о нарушении
Текущая страница: 6 (всего у книги 8 страниц)
Резерфорду предстояла сложная задача. С одной стороны, ему было необходимо финансирование, и в целом он получил его от государства в результате пробужденного войной интереса к науке. При этом он даже мог разорвать отношения с некоторыми частными спонсорами, считая, что наука должна избегать излишеств. Он выдерживал строгость как характерную черту своего научного центра, что иногда встречало непонимание сотрудников. Его собственная карьера была примером того, как далеко можно зайти при достаточно скромных средствах. С другой стороны, как раз тогда у ученого появились еще большие потребности. Новые исследования требовали значительных финансовых затрат на приобретение инструментов. Резерфорду необходимо было время, чтобы убедиться: для разгадки тайн атомного ядра нужны деньги и оборудование.
Как директор лаборатории Резерфорд должен был заниматься возросшим количеством студентов, исследователей, расширять имеющиеся помещения и структуры. Несмотря на это он уделял время своей команде исследователей, решал все вопросы и оказался прекрасным руководителем. Он был очень требователен к результатам, но в то же время вдохновлял сотрудников на дальнейшую работу. Таким образом он получал максимальную отдачу, вкладываясь в своих студентов. У него всегда была способность окружать себя лучшими учениками и исследователями, и те, кто были рядом с ним, неизбежно становились лучшими. Это был "питомник" для будущих Нобелевских лауреатов.
В тот период было необходимо позаботиться об исследователях, пытавшихся наладить жизнь после войны. Резерфорд занимался этим, и нередко требовалось его личное вмешательство. Чедвик – один из таких людей, и Резерфорд его очень высоко ценил. После окончания войны Чедвик освободился из заключения в концентрационном лагере, но его физическое состояние было тяжелым, и он находился в глубокой депрессии. Ему было только 27 лет, но он не видел никаких перспектив. Резерфорд взялся за него, и через десятилетие Чедвик обнаружил нейтрон и стал нобелевским лауреатом.
У нас нет денег, поэтому нам надо думать.
Эрнест Резерфорд
В звездной команде Кавендишской лаборатории этой эпохи не хватало математика. Развитие квантовой физики основывалось на математических абстракциях, требовавших умения выполнять сложные математические расчеты. Резерфорду был нужен математик, и он нашел место в лаборатории для одного из лучших математиков Кембриджа, Ральфа Говарда Фаулера.
Миссия нового сотрудника заключалась в математическом выражении теорий квантовой физики, над которыми работали Бор, Гейзенберг и Шредингер. Этот математик, служивший во время войны в артиллерии, даже стал членом семьи Резерфордов, когда в 1921 году женился на Эйлин. Вместе с Фаулером к проектам Резерфорда в Кавендишской лаборатории были привлечены Патрик Мейнрад Стюарт Блэкетт, Джон Кокрофт, Эрнест Уолтон и Петр Капица.
Когда Резерфорд возглавил Кавендишскую лабораторию, он оказался погруженным в административную работу, что принципиально отразилось на его исследованиях. Хотя он поддерживал собственную исследовательскую программу, большую часть времени отнимало руководство, а также обрушившаяся на него лавина международных премий и почестей.
Ему нужно было постоянно и на длительное время уезжать туда, где требовалось его присутствие. Среди почестей, которых он был удостоен, самыми важными являются назначение на должности президента Британской ассоциации научного развития (1923) и президента Королевского общества (1925). Свалившаяся на него ответственность снизила его научную активность: после невероятного ритма ежегодных публикаций настал период, когда издания практически прекратились.
Одна из немногих оригинальных научных теорий, которой Резерфорд занимался в 1920-е годы, оказалась ошибочной. Он считал, что само атомное ядро состоит из более мелкого ядра, вокруг которого вращаются субчастицы. То есть внутри ядра он надеялся обнаружить воспроизведение в меньшем масштабе строения атома, как будто бы речь шла о матрешке. Бор критиковал эту теорию, и в конце концов Резерфорд признал очевидность факта своей ошибки.
Пришел ли в это время закат его блестящей карьеры? Был ли это момент, когда Резерфорду можно было воздавать почести за его заслуги, но и не ожидать ничего большего? Его созидательная способность и энергичность не позволили его карьере сойти на нет. Уже в 1920 году на Бейкерианской лекции он показал, что еще способен на искры гениальности и может делать невероятные для своей эпохи открытия.
ИСТОРИЯ КАВЕНДИШСКОЙ ЛАБОРАТОРИИ
Лаборатория была основана в 1874 году в разгар Промышленной революции, в момент острейшей экономической конкуренции между Соединенным Королевством, Германией и Францией. В тот период существовало убеждение, что молодежь нужно готовить к проведению опытов и практическому применению научных идей, и способствовать таким образом развитию новых отраслей промышленности. В Берлине уже существовала лаборатория экспериментальной физики, когда Генри Кавендиш, герцог Девоншира и фабрикант, согласился финансировать кафедру в Кембридже, получившую его имя. Первым директором Кавендишской лаборатории стал блестящий шотландский физик Джеймс Клерк Максвелл, благодаря которому лаборатория была оснащена необходимым для работы оборудованием. Одна из целей состояла в стандартизации единицы измерения электрического сопротивления, и это исследование прославило лабораторию как учреждение, где приоритет отдавался решению практических задач. Максвелл умер через пять лет, на посту директора его сменил лорд Рэлей, наметивший курс экспериментальной физики, ставшей осью для всего учреждения. Рэлей ушел в отставку в 1884 году, и на его место пришел молодой малоизвестный физик и математик Дж. Дж. Томсон, при котором в лаборатории центральной темой стало раскрытие тайны атома. Несмотря на то что центр существовал в непростых экономических условиях – финансирование шло только от записи студентов, без государственного обеспечения, – лаборатория продолжала привлекать самых блестящих ученых. Резерфорд, ставший преемником Томсона в 1919 году, не имел серьезных финансовых проблем, так как лаборатория получила государственную поддержку. После него в 1938 году директором стал Уильям Брэгг, при котором развивалась рентгеновская кристаллография – фундаментальная техника, позволившая сфотографировать молекулу ДНК, что привело к разгадке ее структуры двойной спирали. В 1954 году под руководством Невилла Мотта начались исследования конденсатов. А в 1971 году, когда директором стал Брайан Пиппард, произошло значительное расширение лаборатории. А с 1984 года Сэм Эдвард направил усилия лаборатории на изучение мягкого конденсированного вещества. С 1995 года директором лаборатории является Ричард Френд, эксперт по инженерии углеродных полупроводников.
Кавендишская лаборатория Кембриджского университета просматривается за озером.
Вторая Бейкерианская лекция прошла практически незаметно, в том числе и для научного сообщества. Фредерик Жолио, супруг Ирен Кюри, позже признавал, что не поехал на эту лекцию, так как ожидал от нее «обычной демонстрации ораторского искусства без новых идей». Но это было далеко от правды, и, как мы увидим дальше, отношение самого Жолио к этой лекции стоило ему Нобелевской премии.
На лекции Резерфорд предвосхитил некоторые достижения науки последующих лет. Среди его прогнозов, полностью оправдавшихся, можно вспомнить, например, существование "более тяжелого" водорода с ядром с двойной массой обычного водорода, но имевшего строение с одним электроном. Дейтерий – так называется изотоп водорода – был открыт через 11 лет. Также он говорил о гипотетическом существовании более легкого изотопа гелия, который открыли через несколько лет. Но, несомненно, провидческой эту лекцию делает тот факт, что за десять лет до открытия он рассказал о нейтроне.
ЧЕДВИК И НЕЙТРОН
Резерфорд описал следующими словами характеристики нейтрона, ядерной частицы, которую до того момента никто не мог обнаружить:
«Весьма вероятно, что электрон вблизи ядра формирует некий нейтральный дублет. У этого атома были бы новые свойства. Его внешнее поле было бы практически нулевым, за исключением зоны, близкой к ядру, и он мог бы свободно перемещаться в материи. Обнаружить спектроскопом его было бы очень трудно, также невозможно удержать его в закрытом сосуде. С другой стороны, он может свободно входить в структуру атомов, присоединяться к ядру или дезинтегрироваться его интенсивным полем, освобождая место заряженному атому водорода, электрону или и тому и другому».
Как предсказывал Резерфорд, нейтрон не имел электрического заряда и мог легко проникать в атомную структуру. Ученый описывал его как соединение протона и электрона, что в результате давало частицу с массой, аналогичной протону (масса электрона в сравнении представляется незначительной), и нейтральным электрическим зарядом.
Чедвик нацелил часть своих исследований и экспериментов на обнаружение этой частицы. Он ставил все возможные опыты. "Я проводил некоторые абсурдные эксперименты", – говорил он позднее, хотя затем добавлял: "Но самые абсурдные ставил Резерфорд". Несмотря на это первоначальное впечатление, после долгих лет работ и знакомства с экспериментами немецких и французских коллег его усилия были вознаграждены результатами.
Мать всегда говорила нам, что важно серьезно работать, быть независимыми и не искать только развлечений. Но она никогда не говорила, что наука должна быть единственной стезей, которой нужно следовать в жизни.
Ирен Кюри
В 1928 году немецкая команда, состоявшая из Вальтера Боте и Герберта Бекера, использовала альфа-частицы полония, воздействуя на бериллий. В результате они получили излучение с сильной проникающей способностью и нейтральным зарядом. Хотя уверенности в этом не было, немецкие ученые убедили себя, что они наблюдали гамма-излучение.
Четыре года спустя дочь Марии Кюри, Ирен, и ее муж Фредерик Жолио решили исследовать излучение, обнаруженное немецкими учеными. Французы выяснили, что при воздействии этого нейтрального излучения на парафин возникают протоны. Было ли возможно, чтобы гамма-излучение, не имеющее массы (речь шла об электромагнитном излучении, таком как видимый свет, только обладавшем большей энергией), извлекало протоны из элемента? Здесь что-то не состыковывалось, но Фредерик и Ирен только отметили, что это могло быть связано с эффектом Комптона (согласно которому при воздействии фотонов на металлическую поверхность из нее начинают. выбиваться электроны). Энергетически это было некорректное предположение, так как масса протона несопоставима с массой электрона. Гамма-излучение не могло вызвать такой эффект.
Снова наблюдалось несоответствие.
Чедвик получил известия о результатах немцев и французов. После их обсуждения с Резерфордом он был уверен, что где-то закралась ошибка. Тогда Чедвик принялся ставить те же эксперименты, чтобы обнаружить ошибку, он также увеличил количество целей, на которые воздействовал альфа-лучами, и использовал не только парафин, но и бериллий (см. рисунок). Сравнительные результаты, а также тот факт, что появляющееся излучение могло проникать в свинец, убедили его в том, что излучение состояло из нейтрально заряженных частиц с массой, подобной массе протона. У него было очевидное преимущество перед немцами и французами, его учитель предсказал существование нейтронов, и на эту тему они вели беседы неоднократно. Это позволило ему идентифицировать эти частицы, едва увидев их. Фредерик Жолио и Ирен Кюри не сталкивались прежде с такими частицами и не могли правильно интерпретировать информацию (что стоило им Нобелевской премии). И вот атомная головоломка казалась снова разгаданной. В 1932 году Чедвик опубликовал статью в журнале Nature "Возможное существован нейтрона*, в которой описал свое открытие.
Комментируя свой провал, Фредерик Жолио говорил, что хотя научный мир не знал об идеях Резерфорда, они всегда хранились в Кавендишской лаборатории, и именно это преимущество стало решающим для Чедвика, экспериментально доказавшего существование нейтрона. Ведь речь шла об ускользающей и трудно обнаруживаемой частице, именно в силу ее важной характеристики – отсутствия заряда. Говоря словами Фредерика Жолио:
В эксперименте Чедвика полоний используется как генератор альфа– излучения. Оно должно облучать бериллий, из которого будут вырываться нейтроны. Они попадут на мишень из свинца, а усилитель зарегистрирует количество попаданий.
«Старые лаборатории, имеющие долгую историю и традиции, всегда хранят тайные сокровища. Идеи, высказанные в прошлом нашими ныне живущими и умершими учителями, повторяются сотни раз, а затем наступает забвение. Но сознательно или подсознательно эти идеи проникают в мысли тех, кто работает в старых лабораториях, и периодически это дает свои плоды».
ОТ ПОЗИТРОНА К РАСЩЕПЛЕНИЮ ЯДРА
Фредерик Жолио и Ирен Кюри упустили прекрасную возможность получить Нобелевскую премию, и это случилось с ними не единожды. Британский физик-теоретик Поль Дирак (1902– 1984) предсказал существование позитрона в 1928 году. Через четыре года в 1932 году американский физик Карл Андерсон, изучая космические лучи с помощью пузырьковой камеры, открыл существование частицы, имевшей равную с электроном массу, но в то же время обладавшую положительным зарядом. Это был антиэлектрон, или, как в конце концов его назвали, позитрон, частица антиматерии Дирака. Андерсон смог наблюдать ее, когда понял, что при воздействии магнитного поля она имеет такую же траекторию, как электроны, но обладая такой же массой, отклоняется в другую сторону из-за наличия у нее положительного заряда. Ее масса идентична электрону, но их заряды противоположны. Аппараты Жолио – Кюри также обнаружили эту необычную частицу, но она вновь осталась незамеченной ими. После открытия супруги решили, что позитроны представляют интересное поле для исследований. Они вновь воспользовались полонием как источником альфа– частиц и начали бомбардировку алюминиевой пластины. В определенный момент испускались позитроны, но внимание ученых привлек другой факт: после прекращения альфа-излучения алюминий – в ходе воздействия на него превратившийся в фосфор – продолжал испускать радиацию. Они проверяли свой прибор вновь и вновь, но все работало верно. Таким образом им удалось искусственно трансформировать стабильный материал, каким был алюминий, в радиоактивный. В результате наблюдений они также пришли к выводу, что распад, который приводил к радиоактивности, мог быть источником электронов и позитронов (β+– и β-радиоактивность). На этот раз их усилия были вознаграждены Нобелевской премией по химии в 1935 году.
Открытие Чедвика, с другой стороны, привело к развитию исследований по расщеплению ядра, в котором нейтроны играют решающую роль. Отто Ган и Лиза Мейтнер, сотрудничавшие с Резерфордом, были первыми, кому удалось осуществить это. Расщепление ядра основано на бомбардировке нейтронами разных материалов, таких как уран, который выбрали, потому что он был самым распространенным в ту эпоху. Как предсказал Резерфорд, нейтрон с большей легкостью мог проникать в ядро, воздействие нейтрона приводило к делению и расщеплению первоначального ядра. Это высвобождало большое количество энергии, а в результате реакции вместо одного атома урана возникали два атома меньшей массы: барий и криптон (см. рисунок 1). Это вызвало большое удивление Отто Гана, так как оба элемента были значительно более легкими по сравнению с ураном. На самом деле когда Ган впервые обнаружил барий, он не знал, откуда взялся этот элемент. Но в беседе они с Мейтнер установили, что его происхождение было связано с бомбардировкой урана нейтронами.
Еще одним продуктом деления атома являются нейтроны, которые используются для расщепления многих других атомов урана. Таким образом, можно вызвать цепную реакцию радиоактивного распада (см. рисунок 2).
УСКОРИТЕЛЬ ЧАСТИЦ
Капица, Уолтон и Кокрофт... Эти имена связаны со строительством первого ускорителя частиц. Тогда и началась эпоха Большой науки, названная так по количеству и качеству задействованного оборудования, финансирования, а также сотрудничества и координации многочисленных научных групп.
Сам Резерфорд сказал в 1927 году на собрании Королевского общества: "Будущее за Большой наукой". Далее он отметил, что получение "электронов на большой скорости и атомов на большой скорости откроет необыкновенно интересное поле для исследований".
РИС. 1:
В процессе расщепления ядра уран бомбардируется нейтронами. Ядро разделяется на две почти равные части, образуя атом бария (Ва) и атом криптона (Kr).
РИС. 2:
Когда уран расщепляется нейтроном, кроме разделения атома на две части, возникают три нейтрона, которые, в свою очередь, могут вызывать расщепление трех атомных ядер. За несколько мгновений эта цепная реакция может высвобождать невероятное количество энергии, что положено в основу атомной бомбы.
Ускоритель стал необходимостью. Резерфорд, гений манипулирования естественными альфа-частицами в деле разгадки тайн атома, признавал, что этот метод исследования фундаментальных частиц достиг предела своих возможностей. Для получения дальнейших знаний было необходимо приложить к частицам большую энергию искусственным путем.
ГЕНЕРАТОРЫ
Секрет заключался в получении достаточной энергии для расщепления ядер атомов. Хотя первоначальные расчеты показывали, что количество энергии, необходимой для разделения ядра, получить невозможно, некоторые исследователи не пасовали перед этими пессимистичными оценками, и среди них был Петр Капица. Побывав в Кавендишской лаборатории в 1921 году, он остался работать с Резерфордом, и их сотрудничество длилось в течение 15 лет.
Это совершенно необыкновенный физик и весьма оригинальный человек.
Слова П. Л. Капицы, демонстрирующие его восхищение своим учителем Э. Резерфордом
Капица был очень активным и хорошо умел убеждать, так что на его проекты Резерфорд выделял большие суммы, чем на проекты других членов команды. Этот факт дифференцированного подхода к участникам группы вызвал не один возглас недовольства. При этом Капица устраивал неформальные встречи ученых для обмена мнениями. В его клубе царила расслабленная атмосфера, и именно здесь Чедвик впервые рассказал об открытии нейтрона. Капица состоял в отличных отношениях с Резерфордом и был одним из немногих, кто мог шутить и критиковать его идеи в его присутствии. Оба они разделяли одну концепцию науки и связи теории с практикой. Для Капицы «отделение теории от практики, от экспериментальной работы негативно сказывалось на самой теории». Капица ясно понимал, что для исследования материи нужно было получить очень интенсивные магнитные поля, для этого требовались мощные динамо-машины. Благодаря генерируемым магнитным полям можно было изменить траекторию любых частиц, имеющих электрический заряд. Он добивался самых мощных магнитных полей в свою эпоху, его результат смогли превзойти только через несколько десятилетий. Исследования Капицей магнитного поля были использованы Уолтоном и Кокрофтом для создания ускорителя частиц.
КОКРОФТ и УОЛТОН
Британский физик Джон Дуглас Кокрофт (1897-1967), ассистент Капицы в лаборатории Монда, получил математическое образование и работал также в электропромышленности. Этот опыт сыграл важнейшую роль, когда он перешел в Кавендиш– скую лабораторию. Ирландский физик Эрнест Томас Синтон Уолтон (1903-1995) специализировался на гидродинамике. Он был восхищен исследованиями Резерфорда, и несмотря на то что ему не хватало опыта и необходимых знаний о строении атома, он был убежден, что ускоритель частиц станет величайшим проектом эпохи, поэтому хотел участвовать в нем. В 1927 году он показал Резерфорду одну из своих работ, связанную с цилиндрами и течениями воды, сделанную благодаря стипендии имени Всемирной выставки 1851 года (той, которую в свое время получил Резерфорд). Профессор убедился, что сотрудничество будет успешным.
Совместная деятельность Резерфорда, Кокрофта и Уолтона продолжалась пять лет, и ее целью было искусственное деление атома с помощью ускорителя частиц (см. Приложение Б). Сначала они работали вместе с Капицей и пытались ускорить электроны, используя высокое напряжение. Казалось, что для получения результата надо задействовать напряжение в несколько миллионов вольт, и задача выглядела недостижимой. Но Кокрофт прочитал работу советского физика и астрофизика Георгия Гамова (1904-1968), в которой говорилось, что достичь такой цели можно с меньшим напряжением. Гамов пришел к выводу, что учитывая квантовые феномены, частицы, которые априори не имеют достаточной энергии, чтобы вылетать из ядра согласно классическим законам физики, на самом деле могут достигнуть своей цели благодаря так называемому "туннельному эффекту". Цель команды стала реальной.
ПЕРЕЧЕНЬ ЧАСТИЦ
Когда в 1932 году Чедвик открыл нейтрон, казалось, что был обнаружен последний фрагмент пазла. Найденная частица дополняла открытие электрона. сделанное Томсоном, и открытие протона, сделанное Резерфордом. Создалось впечатление, что открыты самые элементарные компоненты материи. Однако развитие ускорителей частиц в 1950-х привело к возникновению идеи, что ядерные частицы – протоны и нейтроны – имеют некоторую внутреннюю структуру. Это означало возможность существования более фундаментальных частиц. В 1964 году американский физик Марри Гелл-Ман в ответ на экспериментальные данные ввел понятие кварка. Дальнейшие исследования позволили установить, что имеется шесть типов (их еще называют «ароматы») кварков: верхний (u), нижний (d), очарованный (с), странный (s), верхний (t), нижний (b). Согласно Гелл-Ману. когда кварки объединены в триаду, они генерируют протоны и нейтроны (то. что называется также «барионной материей»). Например, комбинация двух верхних кварков и одного нижнего составляет протон; одного верхнего кварка и двух нижних – нейтрон (см. рисунок ниже).
Еще открытия
В любом случае кварки не были единственными элементарными частицами. открытыми тогда. В 1937 году исследование космического излучения позволило обнаружить новую частицу, которую назвали мю. или мюон. Так же как у электрона, у нее был отрицательный заряд, но она была в 200 раз тяжелее. В 1975 году к ней добавилась частица тау, также отрицательно заряженная, но в 3500 раз более тяжелая, чем электрон. Электроны, мюоны и частица тау стали называться пептонами. К этой группе также относятся три типа нейтрино, каждый из которых симметрично компенсирует предшествующие частицы: электронное нейтрино, мюонное нейтрино, тау-нейтрино. Кроме этих частиц, физики указали на существование частиц, появляющихся при взаимодействии частиц между собой. Самая известная из них – фотон, к которой нужно добавить глюон, возникающий при сильных взаимодействиях и объясняющий причину, почему ядерные частицы крепко связаны между собой и преодолевают электростатические силы отталкивания. Частицы, возникающие при взаимодействии, называют бозонами, к перечисленным бозонам нужно добавить бозоны W и Z, появляющиеся при слабых взаимодействиях (в таблице показаны эти «новые» элементарные частицы). Когда Резерфорд и Томсон приоткрыли завесу, скрывавшую элементарные частицы атома, никто не мог предположить, что за ней будет обнаружен кипящий котел частиц.
Уолтон и Кокрофт взялись за дело, и в 1928 году в подвал Кавендишской лаборатории стали приходить первые детали для ускорителя частиц. В этот период между несколькими лабораториями в разных частях света началась ожесточенная конкуренция.
В начале 1930 года насчитывалось не менее пяти участников в этой гонке за ускорением частиц и за возможностью продолжать разгадывать атомное ядро. Только в Соединенных Штатах, например, было несколько проектов, один из них под руководством Эрнеста Лоуренса в Калифорнийском университете.
ПЕТР КАПИЦА
Петр Леонидович Капица (1894-1984) родился в Кронштадте, его отец был военным, а мать учительницей. Он учился на инженерном факультете в университете Петрограда и пережил революцию. Его жена и двое детей умерли в 1918 году от ужасной пандемии гриппа, которая в тот год коснулась многих стран по всему миру. В 1919 году Капицу пригласили на работу в университет. Два года спустя его включили в университетскую делегацию, которая должна была проехать по всей Европе, собрать материалы и обменяться идеями с коллегами. Попав в Кавен– дишскую лабораторию, Капица остался работать с Резерфордом. Он получил докторскую степень в Кембридже в 1923 году и был назначен ассистентом директора по магнитным исследованиям. В 1929 году он стал членом Королевского общества. Капица открыто говорил о своей родине и поддерживал связь с Советским Союзом, ему удавалось совмещать успешную профессиональную карьеру и постоянные поездки домой. Резерфорд поставил ему только одно условие: запрет на разговоры о политике в лаборатории. Капица убедил Резерфорда в необходимости построить лабораторию для своих исследований. Резерфорд согласился использовать часть средств из бюджета Королевского общества на строительство, и в 1932 году началось возведение лаборатории Монда Королевского общества. На одной из ее стен Капица попросил изобразить крокодила в честь своего учителя, воплотившего в жизнь его мечты о блистательной научной карьере. На самом деле он и наградил этим ласковым прозвищем Резерфорда. В новой лаборатории Капица создал первый ожижитель гелия. В 1978 году это исследование принесло ему Нобелевскую премию за открытия в области магнетизма, жидкого гелия и физики низких температур.
Сталинский режим
В 1934 году по приказу Сталина власти запретили Капице выезд из страны и сообщили ему, что отныне его научная карьера будет развиваться на родине. Резерфорд развернул кампанию по возвращению Капицы, но советские власти дали ему безапелляционный ответ: «Несомненно, Кембриджу хотелось бы, чтобы один из величайших ученых в мире работал в его лабораториях, так же и Советскому Союзу хотелось бы иметь в распоряжении лорда Резерфорда». Капица был назначен директором Института физических проблем в Москве, туда он перевез все оборудование из своей лаборатории в Кембридже (фактически было перевезено все здание целиком, и в Кембридже затем построили его копию). В 1938 году на основании наблюдения за гелием, не имевшим вязкости, он открыл состояние материи, известное как сверхтекучесть. Также он изобрел аппарат по промышленному производству жидкого кислорода. Капица смог установить дружеские отношения со Сталиным, который пообещал ему, что его лаборатория будет иметь некоторые привилегии. Капица работал вместе со Львом Ландау, советским физиком, который смог объяснить сверхтекучесть с точки зрения квантовой теории. Однако когда в 1945 году Капица отказался участвовать в советском проекте разработки атомной бомбы, его сместили со всех постов. Только после смерти Сталина в 1953 году ученому удалось вновь занять место главы Института физических проблем. Капица умер в Москве в 1984 году.
Там началось строительство циркулярного ускорителя, который позже стал называться циклотроном. В Карнеги Мер– ле Туве планировал создать настолько большой ускоритель, что он не помещался ни в какое здание. Ему пришлось строить его несмотря на непогоду, в результате чего постоянно портилось оборудование.
Высокое напряжение должно было создать интенсивные электромагнитные поля, которые, в свою очередь, должны подтал кивать частицы к вступлению в поле действия. Эти частицы должны были двигаться к фиксированной цели, такой как тонкая металлическая пластина. В проекте Кокрофта – Уолтона под контролем Резерфорда ученые стремились достичь ускорения протонов, для того чтобы те сталкивались с литиевой пластинкой (самый легкий металл). Когда ускоренная частица ударялась об атомы, ее высокая скорость давала основания полагать, что некоторые из ее ядер испытывают воздействие. Не было понятно, удастся ли разделить ядро, как предсказывал Резерфорде 1917 году. Никто по сути не знал, будет ли эксперимент успешным, но все же существовало глубокое убеждение, что он откроет путь к более глубокому пониманию природы.
Посередине этой интенсивной и волнующей гонки Резерфорд перенес один из сильнейших ударов судьбы. В 1930 году во время родов четвертого ребенка умерла его дочь Эйлин. Эрнест так и не оправился после трагедии. Он быстро состарился и посвятил себя внукам. Его поездки за границу переносились или вовсе отменялись. Лаборатория и интеллектуальные занятия привлекали его, но уже в меньшей степени. Через несколько недель после смерти дочери он получил титул барона и стал именоваться лордом Резерфордом Нельсоном. На гербе по его желанию поместили изображения воина маори и птицы киви в память о его родине. Также он выбрал образ греческого бога Гермеса Трисмегиста, покровителя алхимиков, и девиз на латинском: Primordia quaerere rerum, что означает: "Доискивайся первоосновы вещей".
В это время Кокрофт и Уолтон начали осознавать, что им необходима большая разность потенциалов, чем они рассчитывали изначально. Их соперникам удавалось достичь напряжения более миллиона вольт, поэтому казалось, что они проигрывают. Однако пока никому не удалось расщепить атомное ядро, поэтому надежда оставалась. Резерфорд, со своей стороны, настойчиво требовал результатов. Кроме того, он подозревал, что его ученики намеренно откладывали начало испытаний, опасаясь провала.
В 1930 году циклотрон заработал под напряжением в 1,2 миллиона вольт. Причем с его помощью не удалось расщепить ни один атом. Аппарат Уолтона и Кокрофта представлял собой башню высотой 4,5 м, и вместе с генератором он с трудом умещался в подвале. В 1932 году они сообщили, что получили напряжение в 800 тысяч вольт и, по их расчетам, его будет достаточно для разделения атома.
Ирен Кюри и Фредерик Жолио, 1935 год. В этом году паре получила Нобелевскую премию.
Резерфорд (в центре), Уолтон (справа) и Кокрофт вместе работали в лаборатории над разрешением проблемы искусственного разделении атома.
Когда 14 апреля 1932 года Уолтон запустил ускоритель, других свидетелей первых проблесков, которые начала улавливать машина, рядом не было. Уолтон знал, что происходит нечто важное, и немедленно известил Кокрофта и Резерфорда, чтобы те посмотрели результаты. Резерфорд сразу же стал проверять природу вспышек и обнаружил, что это были альфа– частицы, его старые знакомые, вновь навестившие его. В этот момент Резерфорд сказал: