Текст книги "У атомов тоже есть сердце. Резерфорд. Атомное ядро"
Автор книги: Роджер Оррит
сообщить о нарушении
Текущая страница: 2 (всего у книги 8 страниц)
Весьма вероятно, что мы никогда ничего не узнаем об атомах.
Антуан Лавуазье, французский химик
ДАЛЬТОН. ПЕРВООТКРЫВАТЕЛЬ АТОМА
Сын квакеров из Камберленда (Англия) Джон Дальтон (1766-1844) начал свою научную карьеру как метеоролог. Считается, что его представления об атоме происходят именно от исследований атмосферы. Дальтон был первым, кто обнаружил, что воздух являет собой неоднородную субстанцию и состоит в основном из азота (80%) и кислорода (примерно 20%). Он также описал дальтонизм, особенность зрения, названную его именем. Дальтон много внимания уделял преподаванию и основал академию. По поводу атомной теории в 1804 году он написал следующее:
«1. Существуют мельчайшие частицы, атомы, из которых состоит материя. 2. Атомы неделимы, их невозможно разрушить. 3. Атомы одного химического элемента имеют одинаковые химические свойства, не преобразуются и не изменяются в других элементах».
В концепции кратных отношений, предложенной Дальтоном, известной как закон Дальтона и до сих пор включенной в начальный курс химии, важен принцип сохранения массы. В любой химической реакции масса реактивов будет равна массе продуктов.

Ученым, наконец поместившим атомную теорию в центр химического знания своей эпохи, стал Джон Дальтон (1766– 1844). Он прибег к старой концепции атомизма для объяснения открытого им относительного атомного веса элементов.
Школьный учитель Дальтон в 1803 году провозгласил свой так называемый закон кратных отношений, согласно которому разные химические элементы комбинируются друг с другом, как небольшие целые числа. Закон сформулирован так:
«Если два элемента образуют друг с другом несколько химических соединений, то массы одного из элементов, приходящиеся на одну и ту же массу другого, соотносятся между собой как небольшие целые числа».
Дальтон интерпретировал кратные отношения как доказательство атомизма. Если представить, что определенное соединение состоит из атомов разных элементов, имеющих определенную массовую пропорцию, тогда даже если мы возьмем большое количество соединений, пропорция останется неизменной. Дальтон открыл макроскопическую характеристику – постоянное отношение масс компонентов гетерогенного вещества с массами компонентов вещества – и интерпретировал ее как следствие явлений, имевших место на микроскопическом уровне, и специфическую комбинацию разных видов атомов.
В отношении атомов Дальтон настаивал, что они неделимы, что их невозможно ни создать, ни уничтожить, то есть в химических процессах происходит лишь изменение комбинаций атомов. Он выяснил, что каждый элемент состоит из атомов одного типа, схожих между собой и различающихся с атомами других элементов. Одна из отличительных характеристик, которые Дальтон установил для них, относилась к атомному весу. Он также утверждал, что атомы комбинируются при создании химических соединений.
Его убежденность в том, что атомы невозможно разрушить, привела его к отстаиванию закона о сохранении материи (ранее предложенного Лавуазье): "Мы могли бы с таким же успехом попытаться внести в Солнечную систему новую планету или уничтожить одну из уже существующих, как и создать или уничтожить частицу водорода". Тем не менее труды Резерфорда, которые мы рассмотрим в следующей главе, позволили доказать, что представление Дальтона было неполным.
СПОР
В XIX веке многие ученые полагали, что переход от макроскопического к микроскопическому миру, понимание которого основывалось на научном эксперименте, неприемлем ввиду невозможности непосредственного наблюдения микроскопического мира. Критики атомизма нашли много аргументов, отстаивая свою позицию в рамках позитивизма. Для основателя этого философского движения, французского социолога Огюста Конта (1798-1857), наука опиралась на констатацию фактов. Любое утверждение, касающееся окружающей реальности, не подпитанное фактами, расценивалось как метафизическое размышление и отвергалось наукой. С точки зрения позитивизма атомизм обладал всеми чертами метафизического пустословия.
Одним из наиболее настойчиво противостоявших атомизму ученых был Жан-Батист Дюма (1800-1884):
«Что остается от амбициозного экскурса, совершенного нами в сферу атомов? Похоже, ничего основательного. Разве только убеждение, что химия сбивается с пути всякий раз, когда оставляет дорогу эксперимента и пытается продвигаться в потемках [...]. Если бы я мог, я бы вычеркнул слово „атом“ из науки, потому что убежден: это понятие выходит далеко за пределы экспериментов».
Критика атомов наталкивалась на полярное к ним отношение других химиков, например Уильяма Праута, который в 1815 году пришел к выводу, что все атомы на самом деле являются соединениями атомов водорода (что напрямую связано с доказательством Резерфорда).
Кто-нибудь когда-нибудь видел молекулу газа или атом?
Марселен Бертло (1827-1907), французский химик и историк
Появлялось все больше свидетельств существования атомов, но из-за отсутствия возможности прямой проверки ученые предпочитали отвергать гипотезу, стремясь исключить из науки чисто умозрительные измышления, к тому же многие из них считали прямую проверку чем-то выходящим за пределы человеческих возможностей.

Согласно кинетической теории газов газ состоит из атомов и молекул, находящихся в постоянном движении, сталкивающихся между собой и со стенками сосуда. При большем количестве накопленной энергии частицы двигаются быстрее, столкновений больше, а температура увеличивается.
ОЧЕРЕДЬ ЗА ФИЗИКОЙ
Острая полемика, возникшая в химической науке, распространилась и на физику. Теперь сторонники атомов включили в обсуждение термодинамику и изучение теплоты. Если в отношении теплоты еще можно отметить, что физики сконцентрировались на изучении макроскопических факторов и наблюдаемых в действительности явлений, то открытия Джеймса Клерка Максвелла и Людвига Больцмана перевернули данное представление. Оба ученых исследовали известные понятия с позиции движения атомов, при этом они не ограничились индивидуальной траекторией отдельного атома, а попытались рассчитать статистическое поведение множества атомов.
Согласно этой теории газ состоит из множества атомов, которые сталкиваются между собой и со стенками сосуда, в котором находится газ, как бильярдные шары (см. рисунок). Максвелл и Больцман установили, что средняя энергия отдельного атома газа в постоянном движении связана с давлением и температурой.
Так же как это происходило в химической науке, многие физики с недоверием относились к атомной теории. Тому имелось множество причин, среди которых, например, принцип экономии мысли. Объяснять то, что можно наблюдать, и отказываться от того, что наблюдать нельзя, многим ученым (в их числе австрийцу Эрнсту Маху) представлялось ошибкой.
В 1906 году Больцман, всю жизнь защищавший атомизм, совершил самоубийство, незадолго до того, как Резерфорд вторгся в мир атомов.
ИССЛЕДОВАТЬ ЧЕРНЫЙ ЯЩИК
Сомнения и конфронтации относительно атомов начали ослабевать в тот момент, когда были открыты составляющие внутренней структуры атома: сначала электроны, позже протоны, несколько десятилетий спустя – нейтроны. От химиков работа перешла в руки физиков (хотя часто сферы исследования обеих дисциплин пересекаются). Французский физик и философ науки Анри Пуанкаре (1854-1912) так охарактеризовал поворот, произошедший в отношении атомов:
«Атомная гипотеза в последнее время стала такой основательной, что больше не кажется гипотезой: атомы – не просто полезная выдумка, мы можем сказать, что видим их, так как способны их подсчитать».

РИС .6
АТОМНАЯ СТРУКТУРА
В 1897 году появилась возможность измерить удельный заряд электрона. Британский физик Джозеф Джон Томсон (1856-1940) впервые обнаружил отрицательно заряженные частицы, которые получили название электронов. Открытие их природы и основной характеристики стало большим достижением.

РИС. 7

РИС . 8

РИС . 9
Этот прорыв оказался возможным благодаря катодным лучам, представляющим собой электронные пучки, то есть поток электронов, испускаемых трубкой Крукса с небольшим количеством разреженного газа и впаянными в нее анодом и катодом (см. рисунок 6). При разности потенциалов появляются катодные лучи (электронные пучки), дающие зеленоватый флуоресцентный свет при прохождении через край стеклянной трубки. Их основная характеристика – прямолинейное перемещение – была обнаружена, когда посередине трубки установили объект и на дальней стенке появилась его тень (см. рисунок 7).
Также отмечалось, что при столкновении с объектом лучи могли сдвигать его вертушкой (см. рисунок 8). Это означало, что лучи состоят из частиц, обладающих массой. Затем выяснилось, что лучи обладают отрицательным зарядом, поскольку при воздействии на лучи магнитным полем проекция на стекле перемещалась относительно прямой траектории, так как лучи притягивались магнитом при наведении положительного полюса и отдалялись при приближении отрицательного (см. рисунок 9). Так Томсон идентифицировал электроны.
Ученый назвал их " корпускулами", а слово "электрон" было введено Джорджем Джонстоном Стони (1826-1911), их отличительная характеристика заключается в том, что они обнаруживались во всех элементах. Томсон доказал, что вне зависимости от происхождения корпускул и от выбора элементов, частицы демонстрируют одинаковые физические свойства. Томсон говорил об открытии следующее:
"Так как любой химический элемент способен производить электроны, мы можем заключить, что они входят в состав всех атомов.
Мы сделали первый шаг в понимании строения атомов".
Томсон первым увидел элемент структуры атома. Однако это открытие требовало поиска ответов на новые вопросы. Если у атома нейтральный заряд, что же внутри него противостоит отрицательно заряженным электронам?
РАЗМЕР АТОМОВ
Броуновское движение – это атомное явление, которое нетрудно увидеть, необходимы только микроскоп и частицы пыльцы. Однако в течение десятилетий ему не находилось объяснения. В 1827 году шотландский ботаник Роберт Броун наблюдал, как частицы пыльцы беспорядочно двигались без очевидной причины в воде, хотя должны были пребывать в состоянии покоя. Вот почему Броун заинтересовался этим движением. Только Альберт Эйнштейн рискнул дать ему объяснение в одной из своих статей, опубликованных в "чудесном· 1905 году. Эйнштейн пришел к выводу, что движение было вызвано воздействием атомов воздуха и воды на частицы пыльцы. Атомы газа находятся в постоянном движении, но их размер не позволяет нам наблюдать за ними.

Французский физик Жан-Батист Паррен, 1926 год.
Частицы пыльцы достаточно легкие, поэтому движение атомов воздействует на них; с другой стороны, они достаточно крупные, чтобы наблюдать за ними. Mo есть еще одно доказательство атомной теории.
Вклад Перрона
Идеи Эйнштейна требовали эмпирической поддержки. И эту поддержку дала работа Жана-Батиста Перрена (1870-1942), за которую в 1926 году тот был удостоен Нобелевской премии в области физики. Перрен использовал ультрамикроскоп, благодаря чему определил размер молекулы воды и составляющих ее атомов. В1913 году он опубликовал свои результаты: размер атома составляет 10-10 м. Перрен был привлечен к исследованиям строения атома и предложил изменить модель Томсона, отмечая, что электроны должны располагаться на внешней поверхности атома (иначе говоря, изюм должен находиться на поверхности пудинга). В любом случае речь шла об относительно корректной догадке.
А принимая во внимание низкую массу электронов, в чем содержится основная масса атома? В 1899 году Томсон так описал свои сомнения относительно заряда:
«Хотя автономно электроны ведут себя как отрицательно заряженные ионы, в составе атома нечто противопоставляется их отрицательному заряду; пространство, в котором они находятся, имеет положительный заряд, равный общей сумме отрицательных зарядов этих частиц».
Имея на руках такие аргументы, Томсон предложил модель атома, о которой мы уже говорили, – пудинговую модель. Он также хотел объяснить массу атома, отталкиваясь исключительно от электронов. Но по отдельности электроны обладают малой массой, это заставляло думать, что в атоме содержится чрезвычайно много электронов. Гипотезу отвергли, когда было установлено, что количество электронов в атоме должно совпадать с порядковым номером элемента в периодической системе. В модели Томсона не учитывалось слишком многое.
НЕСООБРАЗНАЯ ПЛАНЕТАРНАЯ СИСТЕМА
Осуществленный именно в этот момент эксперимент Резерфорда, который был описан в предыдущей главе, произвел эффект разорвавшейся бомбы. Новозеландский химик и физик попал в яблочко атомного ядра, навсегда изменив наше представление об атоме.
Строение атома, каким его обозначил Резерфорд, напоминало Солнечную систему в миниатюре. Ядро, занимающее центральное положение, было как звезда, а электроны, как планеты, вращались вокруг него. Концепция Резерфорда стала своеобразным каркасом, который на базовом уровне объясняет строение атомов. Но, как и всякое выдающееся научное открытие, это дало больше вопросов, чем ответов. В каком порядке располагаются электроны вокруг ядра? Из чего состоит ядро? Было и одно самое существенное неизвестное.
В 1911 году, создав эту модель, Резерфорд совершил величайшую со времен Демокрита перемену во взгляде на материю.
Сэр Артур Эддингтон (1882-1944), британский астрофизик
Согласно этой модели электрон вращается вокруг ядра, ввиду противоположного знака его заряда. Но по законам классической термодинамики, вращаясь, электрон должен испускать излучение и, соответственно, терять энергию. Это означает, что рано или поздно электрон должен упасть на ядро. Это стало бы катастрофой и разрушило бы всю окружающую нас реальность. Но материя стабильна, таким образом какой-то из известных законов или модель пребывает в явном противоречии. Проще всего было усомниться в предложенной модели атома, а не в принятых научным сообществом теориях, например в электромагнетизме. Однако имелись неоспоримые доказательства того, что модель Резерфорда верна. Согласно ей стабильность атома невозможна, но именно это мы и наблюдаем. Представляя свое открытие Королевскому обществу в 1911 году, он не скрывал собственного удивления подобному положению вещей. Для того чтобы объяснить строение атома, требовались новые законы, так как законы, управляющие объектами макроскопического мира, по видимости, здесь были неприменимы.

Эрнест Резерфорд, 1908 год.

Британский физик Джозеф Джон Томсон, руководитель Резерфорда в Кавеидишской лаборатории, первооткрыватель электрона, поставивший эксперимент с потоком частим (электронов) катодных лучей.

Немецкий физик Ханс Вильгельм Гейгер (слева) и Эрнест Резерфорд.
НИЛЬС БОР
Датский физик Нильс Хенрик Давид Бор (1885-1962) родился в Копенгагене. Его отец был врачом и дважды становился претендентом на Нобелевскую премию, мать происходила из состоятельной семьи. Бор изучал физику в Копенгагенском университете.
ГЛАВА 2
Альфа, бета и гамма
Вместе с Беккерелем и Марией Кюри Резерфорд разделяет славу открывателей природы радиоактивности. Ученый пришел к выводу, что это явление состоит из комплекса излучений, различающихся по электрическому заряду и способности проникновения в материю: заряд альфа-частицы положительный, а проникающая способность слабая; бета-частицы обладают гораздо большей проникающей способностью и отрицательным зарядом. Резерфорд также внес значительный вклад в обнаружение гамма-излучения.
Когда в 1895 году Резерфорд прибыл в Соединенное Королевство с далеких островов, он еще не знал о радиоактивности. Но спустя несколько лет стал одним из самых значительных исследователей в этой сфере.
Несмотря на то что в его распоряжении была стипендия имени Всемирной выставки 1851 года, проезд на корабле Резерфорду пришлось оплатить самостоятельно. Путешествие длилось два месяца, тогда же он начал писать письма своей невесте Мэри Ньютон. Переписка продолжалась в течение нескольких лет разлуки и теперь это ценный источник информации обо всех превратностях судьбы, с которыми молодой ученый столкнулся в этот поворотный для него период.
Резерфорд избрал работу в команде Джозефа Джона Томсона, директора Кавендишской лаборатории. Фортуна снова улыбнулась Резерфорду, так как в том же году было отменено постановление, запрещавшее поступать в аспирантуру Кембриджа тем, кто в нем не обучался. Так Резерфорд стал первым чужеземным аспирантом Кембриджа. И это было сопряжено с дополнительными сложностями в ходе его адаптации, поскольку другие студенты и преподаватели не признавали его своим.
РЕЗЕРФОРД В КАВЕНДИШСКОЙ ЛАБОРАТОРИИ
Вначале Эрнест продолжал свою работу над приемником электромагнитных сигналов, основываясь на имевшемся у него опыте, который так впечатлил преподавателей и студентов в Новой Зеландии. Резерфорд полностью сконструировал аппарат, включая батарейки. Его руководитель Дж. Дж. Томсон, а также другие исследователи университета, с интересом ждали результатов от нового студента. В автобиографии Дж. Дж. Томсон так описывал первые шаги Резерфорда в университете:
«Едва приступив к работе, он установил рекорд по расстоянию телеграфирования и успешно отправил несколько сообщений из лаборатории в жилые дома примерно в километре от университета».
Несмотря на то что изобретение было многообещающим и могло служить практическим целям (что сулило также неплохой доход), эти исследования отошли на второй план, как только Резерфорд начал изучать рентгеновские лучи.
ГОНКА ЗА БЕСПРОВОЛОЧНЫМ ТЕЛЕГРАФОМ
Первые опыты итальянского физика Гульельмо Маркони (1874-1937) по передаче беспроводных телеграфных сигналов датируются 1884 годом, но в Италии изобретение было принято без воодушевления. Тогда он отправился в Соединенное Королевство и в 1896 году получил первые патенты. Маркони сотрудничал с инженером почтовой компании и скоро смог открыть собственное предприятие. В 1901 году ему удалось передать радиосигнал на другой берег Атлантики, а в 1909 году он получил Нобелевскую премию за вклад в науку, который представляло собой его изобретение. Резерфорд в Новой Зеландии, а Маркони в Италии почти одновременно разрабатывали аппараты для передачи радиосигналов, получивших название беспроволочного телеграфа. Резерфорд создавал свой приемник сигналов параллельно с Маркони (по-прежнему неясно, кто из них настоящий отец изобретения). При проведении своих опытов Резерфорд заинтересовал исследователей в университете, многие увидели в его изобретении перспективы для стратегического применения, например для сообщения между судном и сушей. В 1896 году Резерфорд представил изобретение в Королевском обществе и объяснил принцип работы своего приемника радиоволн. Многочисленные возможности применения позволили ему мечтать о доходе, столь необходимом для женитьбы. Однако несмотря на появившиеся перед ним возможности (которыми Маркони в отличие от него воспользовался) интерес, который у Резерфорда вызвало открытие рентгеновских лучей, оттеснил финансовые заботы на второй план.

Гульельмо Маркони, около 1937 года.
РЕНТГЕНОВСКИЕ ЛУЧИ И БЕККЕРЕЛЬ
Резерфорд считал, что квантовая революция началась в 1896 году, когда Анри Беккерель открыл радиоактивность. Это открытие было сделано совершенно неожиданно, так как физика XIX века не предполагала, что внутри материи может заключаться такое количество энергии. Однако чтобы понять контекст событий, нужно перенестись на год назад, когда Вильгельм Конрад Рентген обнаружил икс-лучи.
Рентген был профессором Вюрцбургского университета (Германия) и изучал проникающую способность катодных лучей, точнее, хотел выяснить, могут ли они пронизывать алюминий. В ходе опыта он выключил лучи и поместил черный картон, закрывая трубку, чтобы лучи не исчезли. После подключения трубки катодных лучей он случайно заметил, что экран, находившийся вдалеке от флуоресцентного материала, начал блестеть. Вспышки прекращались при отключении тока от трубки. Очевидно, что из трубки испускались лучи отличной от катодных природы, так как катодные лучи картон должен был поглощать.
РЕНТГЕНОВСКИЕ ЛУЧИ
Рентгеновские лучи – вид электромагнитного излучения, характеризующегося высокой частотой (то есть высокой энергией). Они возникают в результате сильного ускорения или замедления электрически заряженных частиц. Хотя лучи невидимы, к их излучению чувствительны фотографические пластинки, так что прохождение лучей оставляет след. Так их впервые удалось увидеть Рентгену: лучи формируются в трубке Крукса, где электроны ускоряются под воздействием высокочастотного тока, затем лучи оставляют след на фотопластинке. Сегодня рентгеновские лучи получают в специальных ускорителях частиц, таких как синхротрон, где ускоренные частицы испускают свет синхротрона, включающий в себя ультрафиолетовое излучение, рентгеновские лучи и тому подобное.
Применение
Самый характерный вид применения рентгеновских лучей – в качестве диагностического инструмента для визуализации внутренней структуры организма, в первую очередь костной. Сегодня с помощью компьютерной томографии, в которой также используются рентгеновские лучи, кроме более плотных тканей можно наблюдать органы и другие структуры. Так как данный вид излучения относится к ионизирующим, в борьбе с раковыми заболеваниями используется и его свойство уничтожать живые клетки. При этом бесконтрольное получение высокой дозы излучения вредно для организма в целом. В пищевой промышленности рентгеновские лучи используются для продления срока хранения продуктов: облучение задерживает распространение бактерий. Так как рентгеновские лучи обладают маленькой длиной волны, того же порядка, что и размер атома, их используют для изучения кристаллов. Так, техника дифракции рентгеновских лучей позволила Розалинд Франклин (1920-1958) сфотографировать ДНК, что в 1953 году привело Джеймса Уотсона и Фрэнсиса Крика к открытию структуры двойной спирали ДНК.

Рентгеновские лучи входят в электромагнитный спектр. Вместе с гамма-лучами они обладают наибольшей энергией в спектре: у них самая высокая частота и наименьшая длина волны.
Конрад Рентген обнаружил, что новые лучи обладали особой характеристикой: они могли проходить сквозь твердые тела. Он назвал их икс-лучами, так как ничего не знал об их происхождении; сегодня они известны как «рентгеновские», по имени их открывателя. Тогда Рентген решил сделать с помощью икс-лучей изображение, ставшее впоследствии одним из самых известных в истории: снимок левой руки своей жены (на которой можно увидеть кольцо). Фотография обошла все лаборатории Европы и вызвала большой резонанс как в научном мире, так и в обществе в целом. Ученым было важно узнать природу, происхождение и характеристики лучей. Также не остались незамеченными многообещающие возможности их применения, особенно в сфере медицины.
УРАН
Одним из ученых, кого восхитило открытие рентгеновских лучей, был Антуан-Анри Беккерель, в 1892 году занимавший должность директора парижского Музея естественной истории. Беккерель происходил из семьи ученых, работавших в этом музее, а поскольку его отец был экспертом по флуоресцентным минералам, в коллекции их было предостаточно. Рентген высказал предположение, что икс-лучи могли быть связаны с флуоресценцией, так что Беккерель занимал наилучшую позицию для изучения этой гипотезы. На самом деле догадка была ошибочной, но она привела к знаковому открытию.
Внимание Беккереля привлекла интенсивность флуоресценции минерала, состоящего из солей урана (это был сульфат уранила-дикалия, в то время он использовался для окраски керамики и стекла). Для урана флуоресценция характерна в естественном состоянии, поэтому избранный материал идеально подходил для исследований. В 1886 году Беккерель поместил соль урана на фотопластинку (стекло, покрытое слоем светочувствительного материала), завернутую в черную бумагу. При воздействии солнечных лучей на минерал возникала флуоресценция. Черная бумага препятствовала попаданию солнечных лучей на фотопластинку, то есть если бы на пластинке и остался какой-либо след, то только рентгеновские лучи.
На ум приходит гипотеза, что эти лучи, эффект которых напоминает о лучах, изученных Филиппом Ленардом и Вильгельмом Рентгеном, невидимы...
Антуан-Анри Беккерель
После нескольких часов воздействия солнечных лучей минерал стал флуоресцентным. Беккерель проявил фотопластинку и, к своему удовлетворению, как и ожидал, обнаружил образ минерала запечатленным на ней. Его гипотеза полностью подтвердилась. Через неделю ученый захотел повторить эксперимент, но было облачно, и уран и фотопластинку пришлось убрать в ящик стола. Этот на первый взгляд совершенно незначительный момент стал ключом к великому открытию.
Через несколько дней Беккерель достал пластинку и минерал и с удивлением обнаружил, что контур минерала вновь отпечатался на ней. Минерал находился в ящике в полной темноте, поэтому отпечаток не мог быть связан с флуоресценцией. Ученый провел еще несколько опытов, чтобы убедиться, что это неслучайно: он выяснял, не может ли уран сохранять флуоресцентные свойства дольше, чем было принято считать, но в конце концов был вынужден признать, что первоначальная гипотеза потерпела крах. Беккерель все так же был убежден, что на пластинке отпечатались рентгеновские лучи, но природа их, должно быть, иная. Результат открытия был представлен на заседании Парижской академии наук в 1896 году, но никто не придал ему большого значения.
В действительности, не отдавая себе в этом отчета, Бекке– рель открыл радиоактивность. Если для получения рентгеновских лучей нужно было высокое напряжение, происхождение лучей Беккереля было неизвестно, и данная неизвестность привлекла многих исследователей.
ФЛУОРЕСЦЕНЦИЯ И ФОСФОРЕСЦЕНЦИЯ
Флуоресценция – характеристика некоторых объектов, поглощающих энергию (например, от видимого ультрафиолетового или рентгеновского излучения, от окружающей среды), а затем испускающих энергию на другой длине волн, отличной от первоначальной, в видимом спектре на очень короткий момент (на 10-8 секунды). Это явление происходит при любой температуре, поэтому данные минералы светятся даже при температуре окружающей среды; явление нельзя отнести к тепловым, например к накаливанию и термолюминесценции. Флуоресценция прекращается, когда источник энергии исчезает. Фосфоресценция тоже может обнаруживаться естественным образом в ответном испускании света минералами, при этом фосфоресцентные минералы имеют большую длительность остаточного свечения, даже когда источник света устранен. Продолжительность ответного свечения может составлять от одной секунды до нескольких лет. Соответственно, фосфоресцентные материалы способны светиться в темноте сами по себе.

Облученные коротковолновым ультрафиолетовым (УФ) излучением, урановый шар слева – флуоресцентный, кальцит – фосфоресцентный.
ИОНИЗАЦИЯ И РЕНТГЕНОВСКИЕ ЛУЧИ
Когда появилось известие об открытии рентгеновских лучей, Томсон принял решение немедленно приступить к их изучению и предложил своему ассистенту помочь ему в этом деле. В мае 1896 года Резерфорд написал будущей жене о новом направлении исследований:
«Томсон был очень занят изучением нового способа фотографирования, открытого Рентгеном [...]. Профессор пытается открыть истинную причину возникновения и природу волн, его цель – прежде других разобраться в теории материи, так как сейчас все исследователи Европы начали войну с этой проблемой».
В 1896 году Резерфорд и Томсон представили научному сообществу данные о том, что рентгеновские лучи ионизировали газы, то есть газ оказывался лучшим проводником электричества при рентгеновском облучении. Это свойство, которое начали использовать для идентификации рентгеновских лучей, было характерно и для других видов излучения, поэтому предположили, что рентгеновские лучи могли оказаться одним из видов электромагнитного излучения. Немецкий физик Макс фон Лауэ (1879-1960) смог подтвердить эту гипотезу спустя два десятилетия.
Томсон отдавал все силы исследованиям катодных лучей, и его работу венчало открытие: катодные лучи оказались отрицательно заряженными частицами, поток которых возникал из атомов. Сразу после этого открытия Томсон предложил свою модель атома.
Пока Томсон изучал атом, Резерфорд исследовал ионизацию газов другими видами излучения, в том числе ультрафиолетовым. Также он решил заняться и рентгеновскими лучами, сразу после того как пришли новости об их открытии. Но не одного его привлекло открытие Беккереля. В Париже супружеская чета Кюри также очень заинтересовалась им. Резерфорд и Кюри разделяли одни и те же научные интересы, что привело их не только к сотрудничеству, но и к соперничеству.

Студенты Кавендишской лаборатории, 1898 год. В центре первого ряда (со скрещенными руками) Дж. Дж. Томсон; во втором ряду четвертый слева – Резерфорд.

Первая радиография Рентгена, на которой мы видим руку его жены Берты.

Немецкий физик Вильгельм Конрад Рентген.
РАДИОАКТИВНОСТЬ И КЮРИ
Мария Склодовская (1867-1934) родилась в Варшаве. Чтобы поступить в университет (в Польше женщинам учиться не дозволялось), ей пришлось эмигрировать во Францию, где она стала первой женщиной, получившей степень доктора физики в Сорбонне. Выйдя замуж за ученого, Пьера Кюри, она взяла его фамилию.
Раздумывая над темой диссертации, Мария остановила свой выбор на излучении урана, открытого Беккерелем. В качестве детектора лучей тот использовал фотопластинки, что было удобно, однако не позволяло количественно измерить интенсивность радиации.
МАРИЯ КЮРИ
Младшая из пяти сестер, Мария Кюри родилась в Варшаве в 1867 году и впоследствии приняла французское гражданство. Она стала первой женщиной, получившей докторскую степень во Франции и Нобелевскую премию, и вошла в историю как первый человек, удостоившийся этой награды дважды. Ее отец был преподавателем математики и физики, и с детства Мария выделялась успехами в учебе.
В юности ей пришлось много работать, чтобы одна из ее сестер могла поехать в Париж изучать медицину, и был уговор, что сестра потом вернет ей долг.
В 1891 году Марии наконец удалось попасть в Сорбонну, где она стала лучшей студенткой своего потока, несмотря на постоянные материальные затруднения. Она получила диплом на кафедре физики в 1893 году, а через год – на кафедре математики. Затем она приступила к лабораторным исследованиям и познакомилась со своим будущим мужем, Пьером Кюри. Их свадьба в 1895 году была скромной.

Мария Кюри, 1920 год.
Но вскоре началась успешная работа в тандеме. Несмотря на их увлеченность исследованиями, у четы родились две дочери, Ирен и Ева, в 1897 и 1904 годах соответственно. В 1898 году ученые открыли полоний, затем радий, а также установили радиоактивность тория. Задача по вычислению атомного веса радия потребовала использования тонн урановой смолки. В опытах Кюри задействовали опасные кислоты для растворения металла в больших резервуарах, эти процессы развивались в течение нескольких лет, и сами исследователи вдыхали ядовитые пары. В 1903 году Беккерель, Пьер и Мария Кюри получили Нобелевскую премию по физике за открытие радиоактивности.








