355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Роберт Хейзен » История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет » Текст книги (страница 7)
История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет
  • Текст добавлен: 14 сентября 2016, 22:21

Текст книги "История Земли. От звездной пыли – к живой планете. Первые 4 500 000 000 лет"


Автор книги: Роберт Хейзен



сообщить о нарушении

Текущая страница: 7 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]

Первая твердь

По причине громадного выброса тепловой энергии в космос, формирование твердой земной коры было неизбежно. Скорее всего, поблизости от одного из полюсов Земли, наименее затрагиваемого приливными силами, расплавленная поверхность охладилась настолько, что смогли образоваться первые кристаллы. Но эти процессы протекали отнюдь не просто. Большинство обычных веществ имеет четко определенную температуру перехода из жидкого состояния в твердое – так называемую точку замерзания. Жидкая вода замерзает при 0 °С, серебристый металл ртуть – при –38 °С, а этанол (обычный питьевой спирт) – при –117 °С. С магмой все обстоит иначе. Любопытная особенность магмы состоит в том, что у нее нет определенной точки замерзания (вообще понятие точки замерзания для магмы, раскаленной свыше 1300 °С, можно считать чем-то вроде оксюморона).

Начнем непосредственно с пекла сразу же вслед за великим столкновением 4,5 млрд лет назад, когда Земля и Луна были окружены силикатным паром при температурах, превышающих 5000 °С. Это адское пекло быстро охлаждалось, газ конденсировался в капли и проливался магматическим дождем на новорожденных космических близнецов, чья температура неуклонно снижалась до 3000 °С, затем до 2000 °С и до 1500 °С. Именно тогда начали формироваться первые кристаллы.

Такие представления о появлении первых горных пород на Земле царят в среде петрологов-экспериментаторов, изобретающих все новые лабораторные опыты, нагревая и сжимая горные породы, дабы воспроизвести условия земных глубин. Попытки раскрыть тайну происхождения горных пород сталкиваются с двумя техническими сложностями. Во-первых, необходимо работать с невероятно высокими температурами, в тысячи градусов, до которых не разогревается ни одна бытовая печь. Для достижения таких температур ученые разработали катушки из тщательно уложенной платиновой проволоки, через которые пропускается сильный ток. Еще более сложным техническим условием является необходимость поддерживать такие температуры одновременно с давлением, превышающим десятки, а то и сотни тысяч атмосфер. Для выполнения таких задач исследователи применяют массивные гидравлические прессы и мощные насосы.

Вот уже более века центром таких героических подвигов во славу земных глубин служит моя родная Геофизическая лаборатория Института Карнеги. Некоторое, увы, короткое время я работал вместе с Х. С. Йодером-младшим (вплоть до его безвременной кончины), одним из инициаторов экспериментальной петрологии и крупнейшим в мире специалистом по происхождению базальтов. Внимательный к людям, Йодер был человеком увлеченным, импозантным и энергичным – в буквальном смысле слова выдающимся. Во время Второй мировой войны он служил в ВМС США и близко познакомился с гигантскими металлическими механизмами. В 1950-е годы Йодер пришел на работу в Геофизическую лабораторию Института Карнеги, где использовал отработанные детали боевых орудий с линкоров, орудийные дула и бронированную обшивку, сохранившие серую окраску, для создания лаборатории высокого давления, которая определила судьбу Йодера на полвека, а также позволила нам кое-что узнать о земле, по которой мы ходим.

Центром установки, созданной Йодером, была «бомба» – массивный стальной цилиндр 30 см в диаметре и 50 см в длину, с внутренним диаметром примерно 2,5 см. Один конец бомбы соединялся с рядом насосов, компрессоров и усилителей давления, способных выработать до 12 тыс. атмосфер. Именно такое давление существует на глубине 40 км от поверхности Земли – эквивалент энергии от взрыва динамитной шашки (если бы устройство, не дай бог, взорвалось). На другом конце бомбы находился 30-сантиметровый контейнер для образцов и огромная шестигранная гайка. Мы герметично закупоривали этот контейнер, закручивая гайку гаечным ключом метровой длины и 9 кг весом.

Вся прелесть этого устройства состояла в том, что мы помещали каменный порошок и образцы минералов в маленькие золотые трубки, загружали эти трубки в нагреваемый цилиндрический контейнер и помещали все это в барокамеру-бомбу. Дальше надо было только обеспечить нужное давление, включить электронагреватель, а «бомба» проделывала все остальное. На каждый цикл уходило до шести золотых трубок; длился такой цикл от нескольких минут до нескольких дней. Замечательное изобретение Йодера идеально подходило для исследования условий возникновения горных пород в коре и мантии Земли.

Йодер со своими коллегами выяснил, что расплавленный металл, включавший большую шестерку элементов, обычно начинает твердеть, образуя кристаллы силиката магния – оливина, при охлаждении до 1500 °С. Как на Луне, так и на Земле в те далекие времена, когда шел процесс охлаждения, в раскаленной магме начинали вырастать красивые зеленые кристаллики, словно крошечные семена, которые постепенно увеличивались до размера дробинок, потом горошин, потом виноградин. Но оливин, как правило, плотнее жидкой среды, в которой он вырастает, и потому первые кристаллы начинали тонуть, причем чем больше они вырастали, тем быстрее тонули, скапливаясь в плотную массу кристаллов и образуя потрясающей красоты зеленого цвета породу – дунит. Этот камень представляет исключительную редкость на Земле, появляясь на поверхности в основном во время горообразовательных процессов или эрозии, когда обнажаются глубинные скопления оливина.

Процесс погружения кристаллов оливина медленно изменял остывающую магму в глубинах Земли и Луны. Оставшиеся расплавленные металлы меняли структуру; постепенно теряя магний, они становились более насыщенными кальцием и алюминием. На Луне по мере остывания магматического океана начал формироваться второй минерал. Анортит, или полевой шпат, состоящий из алюмосиликата кальция, кристаллизировался наряду с оливином, образуя светлые скопления. В отличие от оливина, анортит легче окружающей его жидкой среды и потому оставался на плаву. На Луне анортит в огромных количествах всплывал на поверхности магмы и образовывал обширный верхний слой: целые плавучие горы полевого шпата простирались грядой в несколько километров над расплавленной поверхностью. Эти белесовато-серые массы до сих пор покрывают около 65 % поверхности Луны и называются Лунным нагорьем. Поднявшись первыми над поверхностью океана магмы, они являются древнейшими горными образованиями на Луне. Судя по образцам лунного грунта, доставленным «Аполлонами», возраст анортитов составляет от 3,9 млрд лет (самые молодые) до 4,5 млрд (самые древние), т. е. они образовались вскоре после Великого столкновения.

На Земле, где влаги было больше и океаны магмы глубже, а соответственно внутренние температуры и давление были гораздо выше, события развивались по-другому. Небольшое количество анортита образовалось в ранний период остывания Земли, в основном ближе к поверхности, где давление было ниже, но этот минерал сравнительно редок. Зато в больших масштабах формировался богатый магнием пироксен, самый распространенный из числа силикатов, который, смешиваясь с оливином, образовал толстый слой кристаллической шуги. Древнейшие породы на Земле включали оливин и пироксен в виде твердой зеленовато-черной породы под названием перидотит. Разновидности перидотита начали формироваться на глубине примерно 80 км от поверхности Земли, возможно, более 4,5 млрд лет назад, и процесс этот продолжался многие сотни миллионов лет.

Несмотря на относительное обилие в начале процесса охлаждения, перидотит в настоящее время редко встречается на поверхности Земли. Согласно одной модели, массы перидотита затвердели и остыли, образовав кратковременную твердую поверхность Земли. Но остывающий перидотит, подобно своему предшественнику, дуниту, был значительно плотнее магмы, в которой он формировался. В результате слой твердого перидотита раскалывался и погружался в мантию, вытесняя на поверхность магму, которая, в свою очередь, остывая, образовывала новые массы перидотита. На протяжении сотен миллионов лет земная мантия постепенно твердела, превращаясь в своего рода конвейерную ленту, простирающуюся на 80 км из глубины до поверхности Земли. Соотношение между плотным перидотитом и магмой изменялось в сторону увеличения перидотита, пока почти весь верхний слов мантии не превратился в твердую оливин-пироксеновую породу.

Правда о ядре

Под земной корой, на глубине 80–320 км охлаждение и кристаллизация магмы в мантии происходят в похожем режиме, разве что помедленнее. Подробности этого процесса остаются неясными – необходимы более совершенное оборудование высокого давления и высоких температур для установления истины. По всей видимости, отделение кристаллов от расплавленной массы в процессе погружения и всплытия играет такую же значимую роль, что и в верхних слоях магмы.

Почти все, что нам известно об этих скрытых, глубинных процессах, мы получаем из наблюдений сейсмологов, которые изучают распространение звуковых волн в земных недрах. Земля постоянно гудит, как колокол: сокрушительные приливы, громыхающий транспорт и землетрясения, большие и малые, – все это сотрясает Землю и распространяет сейсмические волны. Подобно звуковым волнам в узком ущелье с крутыми склонами, сейсмические волны порождают эхо, отражаясь от поверхности. Изучение сейсмических волн показывает, что внутренность Земли представляет собой сложную и многослойную структуру.

В самом общем виде в строении Земли можно выделить три слоя: тонкая, с низкой плотностью кора на поверхности, более толстая и плотная мантия посредине и плотное металлическое ядро в центре. Каждая из этих структур, в свою очередь, состоит из нескольких слоев. Мантия, например, делится на три слоя: верхняя мантия, переходная зона и нижняя мантия. Верхний слой, состоящий преимущественно из перидотита, простирается на глубину примерно 660 км. В этих глубинах давление заставляет атомы оливина сблизиться, что приводит к образованию более плотной разновидности кристаллов силиката – вадслеита, минерала, преобладающего в переходной зоне мантии. Для нижней мантии, занимающей следующие 2900 км, характерны еще более плотные разновидности силикатов магния. Давление в нижней мантии настолько велико – в сотни тысяч раз больше атмосферного, что кремниево-кислородные соединения переходят в еще более плотную форму, с более оптимальной упаковкой атомов, под общим названием перовскит.

Сейсмические наблюдения регистрируют природу и протяженность каждого из этих различающихся минералогическим составом слоев мантии, и в целом оказывается, что переходы между ними носят достаточно выраженный характер. Точная глубина залегания переходных границ между слоями мантии в разных местах слегка варьирует, где-то в пределах 16–32 км. Например, под континентами глубина границ одна, под океанами – другая, но всюду эти границы пологие и «правильные». В отличие от «идиллии» с внутримантийными границами, сейсмические данные о границе между мантией и ядром свидетельствуют о чрезвычайно сложной структуре. На первый взгляд, эта граница порождает, как и должно быть, сильное эхо. В самом деле, разница плотностей силикатной мантии и металлического ядра настолько велика, что создает физическую границу такую же резкую, как граница между водой и воздухом, что вызывает мощнейший сейсмический сигнал из глубин Земли. Эту границу – как одну из первых скрытых в глубине Земли тайн – сейсмологи зафиксировали более 100 лет назад.

Идеально гладкая и ровная граница должна была бы дать явный, сфокусированный сейсмический сигнал – эхо, которое сейсмограф зафиксировал бы в виде отчетливого пика. Однако сейсмические сигналы, отражающие границу между мантией и ядром, чаще всего носят смазанный, беспорядочный и прерывистый характер. Выглядит так, будто там, в глубине, встречаются неровные глыбы или кучи обломков. Геофизики, известные своим пристрастием к невыразительной терминологии, назвали эту бугристую и хаотичную зону слоем D², т. е. D-два-штриха. (Астрофизики придумывают куда более образные термины, например, коричневый карлик, красный гигант, темная энергия или черная дыра; они более изобретательны в игре названий.)

Сложность этого слоя D² отчасти объясняется значительной разницей в плотности между однородным железом металлического ядра и многообразием состава насыщенных кислородом минералов мантии. Минералы мантии плавают на поверхности плотного ядра, как пробка на поверхности воды, но сами эти минералы сильно различаются между собой по удельному весу. В первичном океане магмы некоторые силикаты тонули, другие всплывали. В результате большие куски кристаллизованного твердого вещества погружались к основанию мантии и подобно плотам плавали на поверхности металлического ядра. Некоторые сейсмологи говорят о возможных «горах» в несколько сотен километров высотой и нагромождениях плотных минералов, скопившихся на границе между мантией и ядром: именно они хаотически преломляют сейсмические сигналы.

По-видимому, на границе ядра и мантии возможны также бассейны и лужи необычайно плотной силикатной жидкости, богатой алюминием и кальцием, а также массой «несовместимых элементов», которые вообще отсутствуют во внешних слоях Земли. Проверить это чрезвычайно трудно, но сейсмологи указывают на существование в слое D² локальных «зон низких скоростей», непосредственно над границей между мантией и ядром, где сейсмические волны распространяются со скоростью примерно на 10 % ниже, чем в области соседних плотнотельных сред. Замедление сейсмических волн – это вернейший признак жидкой среды. Эти жидкие образования и пруды жидкости подсказывают также решение частной проблемы недостающих элементов: просто нужно искать все несовместимые элементы в недосягаемом слое D², где они навечно спрятаны в этой загадочной, разнородной по составу зоне минералогического старья.

Что же представляет собой само ядро? В пору ранней юности у Земли было плотное, богатое железом ядро диаметром более 3000 км, правда, еще расплавленное (в отличие от того ядра, которое мы знаем сегодня – в виде постоянно растущего шара из твердых кристаллов железа диаметром примерно 1200 км). Температура на границе между ядром и мантией могла тогда превышать 5000 °С, при давлении миллион атмосфер.

Раскаленное ядро с самого начала (и по сей день) является довольно подвижным образованием – в нем движутся завихряющиеся потоки жидкого металла. Одним из важных последствий движения этих потоков является формирование первичного магнитного поля Земли – магнитосферы, похожей на гигантский электромагнит. Магнитные поля отклоняют электрически заряженные частицы, так что магнитосфера Земли служит невидимым щитом-отражателем, защищающим Землю от интенсивного бомбардирования солнечным ветром и космическими лучами. Возможно, этот барьер был необходимым условием для зарождения и сохранения жизни.

Ядро является также важным источником тепловой энергии, помогая поддерживать конвекцию в мантии. По сей день мантийные потоки из пластичных горных пород поднимаются из глубины более 3000 км, с границы между мантией и ядром, в вулканических горячих зонах, таких как Гавайи или в Йеллоустоун. Примечательно, что выявленные места выбросов магмы на поверхность могут предопределяться глубинной топографией. Упомянутые многокилометровые горы слоя D² могут выполнять роль своеобразных теплоизоляторов, лежащих на горячем ядре. Вполне вероятно, что в самых глубоких долинах, разделяющих эти величественные скрытые горы, теплопоток выше, что приводит к образованию известных нам вулканических горячих зон.

Базальт

По существу, эволюция минералов основывается на предопределенной последовательности формирования горных пород, где каждая последующая стадия логически вытекает из предыдущей. Образование первой перидотитовой земной коры, порожденной первичной магмой, было критически важной, но промежуточной фазой развития Земли. Окончательно охлажденная и затвердевшая, она оказалась слишком плотной и не могла сохраниться на поверхности магмы, а потому снова погрузилась в недра Земли. Для того чтобы опоясать планету, требовалась менее плотная порода. Такой породой оказался базальт.

Во всех планетах земного типа черный базальт преобладает среди близких к поверхности пород. Изрезанный шрамами от атак астероидов, верхний слой Меркурия состоит преимущественно из базальта. То же самое можно сказать о выжженной, гористой коре Венеры и выветрелой[6]6
  Изменившейся в процессе выветривания. – Прим. ред.


[Закрыть]
красной поверхности Марса. Темные пятна на Луне («моря») контрастируют с бледно-серыми анортозитовыми нагорьями и являются не чем иным, как остатками огромных озер черного базальта; 70 % поверхности Земли, включая дно всех океанов, подстилается базальтовой корой.

Базальты состоят из разных минералов, среди которых явно выделяются два силикатных минерала. Один из таких важнейших минералов – полевой шпат плагиоклаз, между прочим, самый главный алюмосодержащий минерал на планетах земного типа и их спутниках и самый распространенный минерал в земной коре. Преподаватель MIT, профессор Дейв Воунз однажды посоветовал, если мне покажут какой-нибудь загадочный камень с целью определить, из каких минералов он состоит, смело отвечать «из плагиоклаза» – и я окажусь прав в 90 % случаев. Второй важнейший минерал в составе базальта – это пироксен, обычный силикат, входящий также и в перидотит. Пироксен входит в число самых простых минералов, которые способны вмещать всю «большую шестерку» (а также множество более редких элементов).

Чтобы понять происхождение плагиоклаза и пироксена, двух основных минералов в составе базальта, вспомните странные свойства, которыми сопровождается остывание и плавление горных пород. Четыре с половиной миллиарда лет назад, когда остывал океан магмы на Земле, первым образовался оливин, потом анортит и, наконец, в большом количестве – пироксен. В результате получился перидотит, силикат магния, который и составил большую часть верхнего слоя мантии. Большие массы перидотита погружались в магму, где снова нагревались и частично плавились.

Наше знакомство с процессом плавления подсказывает, что переход из твердого состояния в жидкое происходит при определенных температурах. Лед плавится (тает) при 0 °С, свечной воск – около 60 °С, а тяжелый свинец – при 327 °С. Однако с горными породами дело обстоит не так просто: большинство пород не имеет постоянной температуры плавления. Если нагреть перидотит свыше 1000 °C, он начнет плавиться (плавление может начаться и раньше, если в перидотите содержится много воды и углекислого газа). Состав первых микроскопических капель существенно отличается от основной массы породы. В начале плавления капли содержат гораздо больше кальция и алюминия, немного больше железа и кремния и гораздо меньше магния, чем основная порода. Первоначальные капли также отличаются гораздо меньшей плотностью. Поэтому даже 5 % расплавленного перидотита порождают в мантии большое количество магмы, которая накапливается вдоль границ минеральных блоков, заполняет трещины и карманы и поднимается к поверхности, чтобы впоследствии превратиться в базальт. За миллиарды лет существования Земли частичное плавление перидотита породило сотни миллионов кубических километров базальтовой магмы.

Расплавленный базальт поднимается к поверхности планеты двумя дополняющими друг друга путями. Один – это величественное зрелище извержения вулканов, как на Гавайях или в Исландии, когда над горой вздымаются огненные фонтаны и реки магмы стекают вниз потоками лавы. Такие драматические извержения происходят из-за содержания в породе воды и других летучих веществ, которые остаются жидкими в силикатной среде при высоких давлениях на большой глубине, но резко переходят в газообразное состояние, приближаясь к поверхности. При таких взрывах пепел и токсичные газы поднимаются вверх, достигая стратосферы, а вулканические бомбы размером с автомобиль разлетаются на километры, уничтожая все вокруг.

Слой за слоем, базальтовые лавы и пепел образуют черные горы, высотой на многие тысячи метров, покрывая тысячи квадратных километров. Такой тип потоков базальтовой лавы и вулканического пепла отличается чрезвычайно мелкозернистой структурой и обилием стекла вследствие того, что охлаждение жидкой породы происходит так быстро, что не успевают сформироваться кристаллы. В результате получается ровная, черная кора застывшей лавы. Другие характерные оливиновые базальты, возникающие, если только перидотит плавится лишь частично, на сравнительно небольших глубинах порядка 30 км, содержат небольшое количество блестящих кристаллов оливина, которые образуются еще на глубине, на первой стадии отвердения. Эти зеленые кристаллы украшают невыразительную черную породу.

Нужна огромная энергия для того, чтобы магма могла пробиться к поверхности, поэтому значительная часть базальтовой магмы никогда не поднимается на поверхность. Эти раскаленные докрасна жидкие массы застревают глубоко под поверхностью Земли, где они остывают медленнее, образуя столбчатые кристаллы полевого шпата и пироксена в составе диабаза или габбро. Иногда магма внедряется в узкие, субвертикальные трещины в массивах горных пород, образуя доскообразные заполнения с гладкой поверхностью (дайки). Если вмещающая дайку горная порода мягкая, то в результате миллионов лет эрозии может появиться длинная, прямая диабазовая стена, которая выглядит зловеще, как разрушенный археологический объект. Напротив, если магма внедряется между слоями осадочных пород, залегающими горизонтально, образуются тела, напоминающие толстое одеяло (силлы). Обрывистые скалы Палисады, которые можно наблюдать вдоль западного берега реки Гудзон чуть выше Нью-Йорка, являются как раз одной из таких базальтовых силл, которые плавно погружаются к западу, образуя параллельные возвышенности в северном Нью-Джерси и южной части штата Нью-Йорк (тут же расположены места самой дорогой недвижимости). В некоторых случаях магма охлаждается в магматических камерах неправильной формы, которые могут уходить глубоко вниз и тянуться на многие километры. Однако независимо от того, в какой геометрической форме в конце концов окажется застывшая магма, на самом деле диабаз и габбро ничем не отличаются от базальта.

Неизбежное образование базальтовой коры впервые осчастливило Землю устойчивой, твердой поверхностью, способной плавать поверх магмы. До образования коры, когда поверхность планеты формировалась только магмой и перидотитом, ничто не могло возвышаться над земной поверхностью сколько-нибудь заметно и достаточно долго. Раскаленная докрасна перидотитовая каша не годилась для поддержки гор. Совсем другое дело – прочный базальт относительно малой плотности. Средний удельный вес базальта примерно на 10 % ниже, чем у перидотита. Благодаря этому плавающий в магме массив базальта мощностью 16 км мог выступать из океана магмы более чем на 1,6 км. Быстро нарастающие вулканические конусы могли подниматься еще выше, вероятно, выше 3 км над средним уровнем поверхности. Итак, исполненная хаоса поверхность Земли начала приобретать более-менее отчетливые очертания.


    Ваша оценка произведения:

Популярные книги за неделю