Текст книги "Фейнмановские лекции по физике. 9. Квантовая механика II"
Автор книги: Ричард Фейнман
сообщить о нарушении
Текущая страница: 6 (всего у книги 16 страниц) [доступный отрывок для чтения: 6 страниц]
Начнем с того, что вектором состояния |х>обозначим состояние, в котором частица расположена в точности в точке с координатой х. Для каждого значения х вдоль прямой – для 1,73, для 9,67, для 10,00 и т. д.– имеется соответствующее состояние. Выберем эти состояния |х>в качестве базисных. Если это сделать для всех точек х прямой, то получится полная совокупность состояний для движения в одном измерении. Теперь положим, что имеется состояние другого рода, скажем |y>, в котором электрон как-то распределен вдоль прямой. Один из способов описать это состояние – задать все амплитуды того, что электрон будет также найден в каждом из базисных состояний |x>. Надо задать бесконечную совокупность амплитуд, по одной для каждого х. Запишем их в виде <x|y>. Каждая из этих амплитуд – комплексное число, и поскольку для каждого значения х существует одно такое число, амплитуда <x|y> является в действительности просто функцией х. Запишем ее также в виде С (х):
Мы уже рассматривали такие амплитуды, которые непрерывным образом меняются с координатами, говоря в гл. 5 (вып. 8) об изменениях амплитуд во времени. Мы, например, показали там, что следует ожидать, что частица с определенным импульсом будет обладать особым типом изменения своей амплитуды во времени. Если частица имеет определенный импульс р и соответствующую ему определенную энергию Е, то амплитуда того, что она будет обнаружена в любом заданном месте x, такова:
<x|y> = С (x) ~e+ipx/h. (14.15)
Это уравнение выражает важный общий принцип квантовой механики, который связывает базисные состояния, соответствующие различным положениям в пространстве, с другой системой базисных состояний – со всеми состояниями определенного импульса. В некоторых задачах состояния определенного импульса удобнее, чем состояния с определенным х. И любая другая система базисных состояний также годится для описания квантовомеханической ситуации. К связи между ними мы еще вернемся. А сейчас мы по-прежнему будем придерживаться описания на языке состояний |х>.
Прежде чем продолжать, прибегнем к небольшой замене обозначений, которая, надеемся, вас не слишком смутит. Форма функции С (х), определенной уравнением (14.14), естественно, будет зависеть от рассматриваемого состояния |y>. Это нужно как-то отметить. Можно, например, указать, о какой функции С (х) идет речь, поставив снизу индекс, скажем Сy(х). Хотя такое обозначение вполне подошло бы, но оно все же чуточку громоздко и в большинстве книг вы его не встретите. Обычно просто убирают букву С и пользуются символом y для определения функции
Поскольку это обозначение принято во всем мире, неплохо было бы и вам привыкнуть к нему и не пугаться, встретив его где-нибудь. Надо только помнить, что y теперь будет использоваться двояким образом. В (14.14) yобозначает метку, которой мы отметили заданное физическое состояние электрона. А в (14.16) слева символ yприменяется для определения математической функции от х, равной амплитуде, связываемой с каждой точкой х прямой. Надеемся, что это не слишком смутит вас, когда вы привыкнете к самой идее. Кстати, функцию y (х)обычно именуют «волновой функцией», потому что она очень часто имеет форму комплексной волны своих переменных.
Раз мы определили y (х)как амплитуду того, что электрон в состоянии y обнаружится в точке х, то хотелось бы интерпретировать квадрат абсолютной величины y как вероятность обнаружить электрон в точке х. Но, к сожалению, вероятность обнаружить электрон в точности в каждой данной точке равна нулю. Электрон в общем случае размазывается по какому-то участку прямой, и поскольку точек на каждом участке бесконечно много, то вероятность оказаться в любой из них не может быть конечным числом. Вероятность обнаружить электрон мы можем описать только на языке распределения вероятностей, которое дает относительную вероятность обнаружить электрон в различных неточно указанных местах прямой. Пусть Вер. (х, Dх) обозначает вероятность обнаружить электрон в узком интервале Dх: возле точки х. Если мы в каждой физической ситуации будем пользоваться достаточно мелким масштабом, то вероятность будет от точки к точке меняться плавно, и вероятность обнаружить электрон в произвольном конечном маленьком отрезке прямой Dх; будет пропорциональна Dх. И можно так изменить наши определения, чтобы это было учтено. Можно считать, что амплитуда <x|y> представляет своего рода «плотность амплитуд» для всех базисных состояний |х> 1 в узком интервале х. Поскольку вероятность обнаружить
iэлектрон в узком интервале Dх вблизи х должна быть пропорциональна длине интервала Dх, мы выберем такое определение <х |y>, чтобы соблюдалось следующее условие: Вер. (х, Dх)=|
Вер. (x, Dх)=| y (х)|2 Dх. (14.17)
Теперь надо изменить некоторые наши прежние уравнения, чтобы согласовать их с этим новым определением амплитуды вероятности. Пусть имеется электрон в состоянии |y>, а мы хотим знать амплитуду того, что он будет обнаружен в другом состоянии |y>, которое может соответствовать другим условиям размазанности электрона. Когда речь шла о конечной системе дискретных состояний, мы пользовались уравнением (14.5). До изменения нашего определения амплитуд мы должны были писать
А теперь если обе эти амплитуды нормированы так, как описано выше, то сумма по всем состояниям из узкого интервала х будет эквивалентна умножению на Dx, а сумма по всем значениям х превратится просто в интеграл. При наших измененных определениях правильная формула будет такой:
Амплитуда <x|y> – это то, что мы теперь называем y (х); точно так же амплитуду <x|y> мы обозначим j(х). Вспоминая, что
При наших новых определениях все формулы останутся прежними, если только всюду знак суммы заменить интегрированием по х.
К тому, что было сказано, нужно сделать одну оговорку. Любая подходящая система базисных состояний должна быть полной, если хотят, чтобы она сполна отражала все, что происходит. Для одномерного движения электрона в действительности недостаточно указать только базисные состояния |x>, потому что в каждом из этих состояний спин электрона может быть направлен вверх или вниз. Один из способов получить полную систему – взять две совокупности состояний по х: одну для спина вверх, другую для спина вниз. Мы, впрочем, пока не будем входить в такие подробности.
§ 3. Состояния с определенным импульсом
Пусть у нас имеется электрон в состоянии |y>, описываемом амплитудой вероятности (х|y>=y (х). Мы знаем, что y (х)обозначает состояние, в котором электрон размазан по прямой по какому-то закону, так что вероятность обнаружить его в узком интервале dx близ точки х попросту равна
Вер. (х, dx)=|y (х)|2dx.
Что можно сказать об импульсе этого электрона? Можно спросить, какова вероятность того, что импульс этого электрона равен р? Начнем с расчета амплитуды того, что состояние |y> присутствует в другом состоянии | имп. p>, которое мы определим как состояние с определенным импульсом р. Эту амплитуду можно найти, применяя наше основное уравнение для разложения амплитуд (14.20). В терминах состояний |имп. p>
А вероятность того, что у электрона будет обнаружен импульс р, выразится квадратом абсолютной величины этой амплитуды. Но опять возникает тот же вопрос насчет нормирования. Ведь вообще можно говорить только о вероятности обнаружить электрон с импульсом в узкой области dp близ значения р. Вероятность того, что импульс в точности равен р, равна нулю (разве что состояние |y> окажется состоянием с определенным импульсом). Только вероятность обнаружить импульс в интервале dp возле значения р может оказаться конечной. Нормировку можно делать по-разному. Мы выберем тот способ нормировки, который нам кажется особенно удобным, хотя вам сейчас это может так и не показаться.
Примем такую нормировку, чтобы вероятность была связана с амплитудой равенством
Это определение дает нам нормировку амплитуды <имп. р|x>. Амплитуда <имп. р|х>, естественно, комплексно сопряжена с амплитудой <х|имп. р>, а последнюю мы писали в (14.15). При нашей нормировке оказывается, что коэффициент пропорциональности перед экспонентной как раз равен единице, т. е.
Тогда (14.21) превращается в
Вместе с (14.22) это уравнение позволяет находить распределение импульсов для любого состояния |y>.
Возьмем частный пример: скажем, когда электрон расположен в некоторой области вокруг х=0. Пусть мы взяли волновую функцию вида
Распределение вероятности иметь то или иное значение х для такой волновой функции дается ее квадратом
Функция плотности вероятности Р(х) – это кривая Гаусса, показанная на фиг. 14.1.
фиг. 14.1. Плотность вероятности для волновой функции (14.24).
Большая часть вероятности сосредоточена между х=+sи х=-s. Мы говорим, что «полуширина» кривой есть а. (Точнее, а равняется средней квадратичной координате х, если разброс координат соответствует этому распределению.) Коэффициент К следовало бы выбрать так, чтобы плотность вероятности Р(х)не просто была пропорциональна вероятности (на единицу длины ж) обнаружить электрон, но имела бы такой масштаб, чтобы Р(х)Dx равнялось вероятности обнаружить электрон в Dx вблизи х. Коэффициент К, при котором так и получается, можно найти из требования
Р (х) dx=1, потому что вероятность обнаружить электрон
где попало равна единице. Мы находим, что К = (2ps2)-1/4.
Теперь найдем распределение по импульсу. Пусть j(p)
есть амплитуда того, что импульс электрона окажется равным р:
Подстановка (14.25) в (14.24) дает
что можно также переписать в форме
Сделаем теперь замену интеграл обратится в
Математикам, вероятно, не понравился бы такой путь расчета, однако итог, несмотря на это, верен:
Мы пришли к интересному результату – распределение амплитуд по р имеет в точности ту же математическую форму, как и распределение амплитуд по х, только ширина кривой Гаусса иная. Можно записать это так:
где полуширина h распределения по р связана с полушириной а распределения по х формулой
Наш результат утверждает: если сделать распределение по х очень узким, взяв s малым, то h станет большим и распределение по р сильно расползется. Или наоборот, если распределение по р узко, то оно соответствует широкому распределению по х. Мы можем, если угодно, рассматривать h и sкак некую меру неопределенности локализации импульса и координаты электрона в изучаемом нами состоянии. Если обозначить их соответственно Dр и Dx, то (14.33) обратится в
Интересно вот что: можно доказать, что при всяком ином
виде распределения по х или по р произведение DpDx не может
стать меньше, чем у нас получилось. Гауссово распределение
дает наименьшее возможное значение произведения средних
квадратичных. В общем случае
Это количественная формулировка принципа неопределенности Гейзенберга, который качественно нам уже давно известен. Мы обычно делали приближенное утверждение: наименьшее значение произведения DpDx – это число порядка h.
§ 4. Нормировка состояний с определенной координатой х
Теперь мы вернемся к обсуждению тех изменений в наших основных уравнениях, которые необходимо сделать для работы с континуумом базисных состояний. Когда имеется конечное число дискретных состояний, то фундаментальное условие, которому должна удовлетворять система базисных состояний, имеет вид
Если частица пребывает в одном базисном состоянии, то амплитуда пребывания в другом базисном состоянии равна нулю. С помощью подходящей нормировки можно так определить амплитуду j>, чтобы она была равна единице. Оба эти условия содержатся в (14.36). Теперь мы хотим понять, как надо видоизменить это соотношение, когда пользуются базисными состояниями частицы на прямой. Если известно, что частица пребывает в одном из базисных состояний |х>, то какова амплитуда того, что она пребывает в другом базисном состоянии |x'>? Если х и х' – две разные точки прямой, то амплитуда <x|х'>, конечно, есть нуль, что согласуется с (14.36). Но когда х и х' равны, то амплитуда <x|х' > не будет равна единице из-за той же старой проблемы нормировки. Чтобы увидеть, как надо все подправить, вернемся к (14.19) и применим это уравнение к частному случаю, когда состояние |j> – просто-напросто базисное состояние |х'>. Тогда получится
Далее, амплитуда
Уравнение должно выполняться для любого состояния y и, стало быть, для любой функции y (х). Это требование обязано полностью определить природу амплитуды <x|х'), которая, конечно, есть попросту функция, зависящая от х и х'.
Наша задача теперь состоит в том, чтобы отыскать функцию f(х, х'), которая после умножения на y (х)и интегрирования по всем х даст как раз величину y (х'). Но оказывается, что не существует математической функции, которая это умеет делать! По крайней мере не существует ничего похожего на то, что мы обычно имеем в виду под словом «функция».
Выберем какое-нибудь значение х', например 0, и определим амплитуду <0|x> как некую функцию х, скажем f(х). Тогда (14.38) обратится в
Какого же вида функция f(х)могла бы удовлетворить такому уравнению? Раз интеграл не должен зависеть от того, какие значения принимает y (х)при х, отличных от нуля, то ясно, что f(х)должна быть равна нулю для всех значений х, кроме нуля. Но если f(х)всюду равна нулю, то интеграл будет тоже равен нулю, и уравнение (14.39) не удастся удовлетворить. Возникает невозможная ситуация: нам нужно, чтобы функция была нулем всюду, кроме одной точки, и давала все же конечный интеграл. Что ж, раз мы не в состоянии сыскать функцию, которая так поступает, то простейший выход – просто сказать, что функция f(х) определяется уравнением (14.39). И именно f(х) – такая функция, которая делает (14.39) правильным. Функция, которая умеет это делать, впервые была изобретена Дираком и носит его имя. Мы обозначаем ее d (х). Все, что о ней утверждается – это что функция d(х)обладает странным свойством: если ее подставить вместо f(х)в (14.39), то интеграл выберет то значение, которое y (х)принимает при х=0; и поскольку интеграл не должен зависеть от y (х)при х, отличных от нуля, то функция d(х)должна быть нулем всюду, кроме х=0. Словом, мы пишем
<0|x>=d(x), (14.40)
где d (х)определяется соотношением
Посмотрите, что выйдет, если вместо y в (14.41) поставить частную функцию «1». Тогда получится
Иначе говоря, функция d(х)обладает тем свойством, что всюду, кроме х=0, она равна нулю, но интеграл от нее конечен и равен единице. Приходится вообразить, что функция d(х) обладает в одной точке такой фантастической бесконечностью, что полная площадь оказывается равной единице.
Как представить себе, на что похожа d-функция Дирака? Один из способов – вообразить последовательность прямоугольников (или другую, какую хотите функцию с пиком), которая становится все уже и уже и все выше и выше, сохраняя все время единичную площадь, как показано на фиг. 14.2.
Фиг. 14.2. Последовательность функций, ограничивающих единичную площадь, вид которых все сильнее и сильнее напоминает d-функцию.
Интеграл от этой функции от -Ґ до +Ґ всегда равен единице. Если вы умножите ее на произвольную функцию y(х)и проинтегрируете произведение, то получите нечто, приближенно совпадающее со значением функции при х=0, причем приближение становится все лучше и лучше, по мере того как прямоугольники становятся уже и уже. Если хотите, можете представлять d-функцию посредством такого рода предельного процесса. Но единственно здесь важно то, что d-функция определена так, что (14.41) справедливо для каждой волновой функции y (х).
Это однозначно определяет d-функцию. Ее свойства тогда получаются такими, как было сказано.
Заменим аргумент d-функции с х на х– х', и соотношения обратятся в d(х-x')=0,
Если в (14.38) вместо амплитуды <x|х'> подставить d(x– х'), то это уравнение будет выполнено. В итоге получаем, что для наших базисных состояний с координатой х условие, соответствующее формуле (14.36), имеет вид
<x'|x>=d(x-х'). (14.44)
Теперь мы завершили все необходимые видоизменения наших основных уравнений, нужные для работы с континуумом базисных состояний, соответствующих точкам на прямой. Обобщение на три измерения вполне очевидно: во-первых, координата х заменяется вектором r; во-вторых, интегралы по х заменяются на интегралы по х, у и z (иными словами, они становятся интегралами по объему); в-третьих, одномерную d-функцию надо заменить просто произведением трех d-функций от x, от y и от z: d (х-х') d (у– у') d (z-z'). Собирая все вместе, получаем следующую совокупность уравнений для амплитуд частицы в трехмерном мире:
А что бывает, когда частиц не одна, а больше? Мы расскажем вам, как управляться с двумя частицами, и вы сразу поймете, что нужно делать, если вам понадобится оперировать с несколькими частицами. Пусть имеются две частицы; назовем их № 1 и № 2. Что применить в качестве базисных состояний? Одну вполне приемлемую совокупность можно задать, сказав, что частица № 1 находится в х1, а частица № 2 – в х2, и записав это в виде
|x1, х2>. Заметьте, что указание координаты только одной частицы не определяет базисного состояния. Каждое базисное состояние обязано определять условия всей системы целиком. Вы не должны думать, что каждая частица движется независимо как трехмерная волна. Всякое физическое состояние |y> можно определить, задав все амплитуды <x1, х2|y> того, что пара частиц будет обнаружена в х1и x2. Эта обобщенная амплитуда поэтому является функцией двух совокупностей координат x1 и x2. Вы видите, что такая функция – это уже не волна в смысле колебания, которое разбегается в трех измерениях. Точно так же это и не простое произведение двух самостоятельных волн, по одной для каждой частицы. Это в общем случае какая-то волна в шести измерениях, определяемых числами х1и x2. Если в природе имеются две взаимодействующие частицы, то не существует способа описать то, что происходит с одной из частиц, попытавшись выписать волновую функцию для нее одной. Известные парадоксы, которые мы рассматривали в первых главах (где объявлялось, что измерения, проделанные над одной частицей, в состоянии предсказать, что будет с другой, или что они могут разрушить интерференцию), причинили людям много неприятностей, потому что они пытались придумывать волновую функцию одной отдельной частицы вместо правильной волновой функции координат обеих частиц. Полное описание можно правильно провести только в терминах функций координат обеих частиц.
§ 5. Уравнение Шредингера
До сих пор мы просто заботились о том, как бы записать состояния, которые бы учитывали, что электрон может находиться в пространстве где угодно. Теперь же следует позаботиться о включении в наше описание физики того, что может произойти в тех или иных обстоятельствах. Как и прежде, надо подумать о том, как состояния будут меняться со временем. Если у нас есть состояние |y>, которое несколько позже переходит в другое состояние |y>, то положение в любой момент мы сможем описать, сделав волновую функцию (т. е. попросту амплитуду <r|y>) функцией не только координат, но и времени. Частицу в данных условиях можно будет тогда описывать, задавая меняющуюся во времени волновую функцию y (r, t) =y (х, у, z, t). Эта меняющаяся во времени волновая функция описывает эволюцию последовательных состояний, которая происходит с течением времени. Это так называемое «координатное представление»; оно дает проекции состояния |y> на базисные состояния |r> и не всегда может считаться самым удобным, но мы с него
и начнем.
В гл. 6 мы описали на языке гамильтониана Нij., как состояния меняются во времени. Мы видели, что временная вариация различных амплитуд дается матричным уравнением
Это уравнение говорит, что изменение во времени каждой из амплитуд Сiпропорционально сумме всех прочих амплитуд Сj
с коэффициентами Нij.
Как должно выглядеть (14.49) при континууме базисных состояний |x>? Вспомним сперва, что (14.49) можно также записать в виде
Теперь ясно, что делать. Для x-представления следует писать
Сумма по базисным состояниям |j> заменяется интегралом по х'. Поскольку <х|Н^|х'>должна быть какой-то функцией от x и х', запишем ее как Н (х, х'), что соответствует Н ifв (14.49). Тогда (14.50) это то же самое, что
где
Согласно (14.51), быстрота изменения y в точке х зависела бы от значений y во всех других точках х'; множитель Н(х, х') – это амплитуда (в единицу времени) того, что электрон перепрыгнет из х' в x. Оказывается, однако, что в природе эта амплитуда всюду, кроме точек х' , очень близких к х, равна нулю. Это означает, как мы видели на примере цепочки атомов в начале главы [см. (14.12)], что правая часть (14.51) может быть полностью выражена только через y и ее производные по z в точке х.
Для частицы, которая свободно движется в пространстве, не подвергаясь действию каких-либо сил и возмущений, правильный физический закон таков:
Откуда это получается? Это невозможно вывести из чего-либо нам уже известного. Это рождено в голове Шредингера, это выдумано им в битве за понимание экспериментальных наблюдений реального мира. Может быть, какой-то ключ к тому, почему так должно быть, вам дадут размышления по поводу нашего вывода уравнения (14.12), которое проистекло из рассмотрения распространения электрона в кристалле.
Конечно, от свободных частиц проку мало. Что будет, если к частице приложить силы? Что ж, если действующая на частицу сила может быть описана с помощью скалярного потенциала V(х)(что означает, что речь идет не о магнитных силах, а об электрических) и если мы ограничимся низкими энергиями, чтобы иметь право пренебрегать теми сложностями, которые возникают при релятивистском движении, то гамильтониан, который укладывается в реальный мир, таков:
Опять-таки некоторый ключ к происхождению этого уравнения вы получите, если вернетесь к движению электрона в кристалле и посмотрите, как надо изменить уравнения, если энергия электрона медленно меняется от атома к атому, как если бы к кристаллу было приложено электрическое поле. Тогда член Е0 в (14.7) будет медленно меняться в зависимости от места и будет соответствовать новому слагаемому, появившемуся в (14.52). [Вас может удивить, отчего мы сразу перешли от (14.51) к (14.52), а не дали правильного выражения для амплитуды Н(х, х')=<х|Н^|х'>. Да потому, что Н (х , х') можно написать только с помощью необычных алгебраических функций, а интеграл в правой части (14.51) выражается через привычные вещи. Если вам это в самом деле интересно, то вот смотрите: Н (х, х') можно записать так:
где d'' означает вторую производную 6-функции. Эту довольно странную функцию можно заменить чуть более удобным и полностью ей равнозначным алгебраическим выражением
Мы не будем пользоваться этими формулами, а прямо будем работать с (14.52).]
Если теперь взять выражение (14.52) и подставить в (14.50) вместо интеграла, то для y(х)=<х|y> получится дифференциальное уравнение
Совершенно очевидно, что надлежит поставить вместо (14.53),
если нас интересует трехмерное движение. Надо только d2/dx2
заменить на
а V(х)заменить на V(x, у, z). Для электрона, движущегося в поле с потенциалом V (х, у, z), амплитуда y(х, у, z) удовлетворяет дифференциальному уравнению
Называется оно уравнением Шредингера и было первым известным квантовомеханическим уравнением. Его написал Шредингер, прежде чем было открыто любое другое описанное в этом томе уравнение.
Хотя мы здесь пришли к нему совсем иным путем, но появление этого уравнения в 1926 г., когда Шредингер впервые его написал, явилось великим историческим моментом, отметившим рождение квантовомеханического описания материи. Многие годы внутренняя атомная структура вещества была великой тайной. Никто не был в состоянии понять, что скрепляет вещество, отчего существует химическая связь, и, особенно, как атомам удается быть устойчивыми. Хотя Бор и смог дать описание внутреннего движения электрона в атоме водорода, которое, казалось бы, объясняло наблюдаемый спектр лучей, испускаемых этим атомом, но причина, отчего электроны движутся именно так, оставалась тайной. Шредингер, открыв истинные уравнения движения электронов в масштабах атома, снабдил нас теорией, которая позволила рассчитать атомные явления количественно, точно и подробно. В принципе его уравнение способно объяснить все атомные явления, кроме тех, которые связаны с магнетизмом и теорией относительности. Оно объясняет уровни энергии атома и все, что касается химической связи. Но, конечно, это объяснение только в принципе. Математика вскоре становится столь сложной, что точно решить удается только простейшие задачи. Одни лишь атомы водорода и гелия были рассчитаны с высокой точностью. Однако путем различных приближений, порой весьма сомнительных, можно многое понять и в более сложных атомах и в химической связи молекул. Некоторые из этих приближений были показаны в предыдущих главах.
Уравнение Шредингера в том виде, в каком мы его записали, не учитывает каких-либо магнитных эффектов. Их, правда, можно приближенно принять во внимание, добавив в уравнение еще другие члены. Но, как мы убедились раньше, магнетизм – это эффект существенно релятивистский, так что правильное описание движения электрона в произвольном электромагнитном поле можно обсуждать только в рамках надлежащего релятивистского уравнения. Правильное релятивистское уравнение для движения электрона было открыто Дираком через год после того, как Шредингер придумал свое уравнение; оно имеет совершенно другой вид. Мы его не успеем здесь изучить.
Прежде чем перейти к рассмотрению некоторых следствий из уравнения Шредингера, хотелось бы продемонстрировать, как оно выглядит для системы многих частиц. Мы не будем им пользоваться, а просто хотим показать вам его, чтобы подчеркнуть, что волновая функция y не просто обычная волна в пространстве, а функция многих переменных. Если частиц много, уравнение превращается в
Потенциальная функция V – это то, что классически соответствует полной потенциальной энергии всех частиц. Если на частицы не действуют внешние силы, то функция V есть попросту электростатическая энергия взаимодействия всех частиц. Иначе говоря, если заряд i-й частицы равен Ziqe, то функция V просто равна
§ 6. Квантованные уровни энергии
В одной из последующих глав мы на каком-нибудь примере более подробно разберем решение уравнения Шредингера. А сейчас мы хотим показать вам, как получается одно из самых замечательных следствий из уравнения Шредингера – тот поразительный факт, что из дифференциального уравнения, в которое входят только непрерывные функции непрерывных пространственных переменных, могут возникнуть квантовые эффекты, как, например, дискретные уровни энергии в атоме. Нам надо понять следующий существенный факт: как это может быть, что энергия электрона, попавшего в потенциальный «колодец» и вынужденного оставаться в определенной области пространства, с необходимостью принимает значения только из точно определенной дискретной их совокупности.
Пусть речь идет об одномерном случае движения электрона, когда потенциальная энергия меняется по х так, как показано па фиг. 14.3.
Фиг. 14.3. Потенциальная яма для частицы, движущейся вдоль оси х.
Предположим, что потенциал является статическим: со временем он не меняется. Как уже мы делали много раз, поищем решения, отвечающие состояниям определенной энергии, т. е. определенной частоты. Испытаем такую форму
решения:
Если мы эту функцию подставим в уравнение Шредингера, то увидим, что функция а(х) обязана подчиняться следующему дифференциальному уравнению:
Это уравнение говорит, что, каково бы ни было х, вторая производная а(х) по х пропорциональна а(х) с коэффициентом пропорциональности V-Е. Вторая производная от а (х) это скорость изменения наклона а (х). Если потенциал V больше энергии Е частицы, то скорость изменения наклона а (х) будет иметь тот же знак, что и а (х). Это значит, что кривая а(х) повернута выпуклостью к оси х, т. е. более или менее следует ходу положительной или отрицательной экспоненты е±x. Это означает, что на участке слева от х1(см. фиг. 14.3), где V больше предполагаемой энергии Е, функция а (х) будет напоминать одну из кривых на фиг. 14.4, а.
Фиг. 14.4. Возможные формы волновой функции а(х) при V>E и при V
Если же потенциальная функция V меньше энергии Е, то знак второй производной а (х) по х противоположен знаку самой а(х)и кривая a(х)будет всегда вогнута к оси х, подобно одной из линий на фиг. 14.4, б. Решение на этом участке приобретет форму кусочков синусоид.
Теперь поглядим, можем ли мы графически построить решение для функции а(х), отвечающей частице с энергией Еа при потенциале V, показанном на фиг. 14.5. Раз нас интересует такое положение, когда частица заключена внутри потенциальной ямы, то мы будем искать решения, при которых амплитуда волны принимает после удаления х за пределы потенциальной ямы очень малые значения. Мы очень легко можем представить себе кривую наподобие изображенной на фиг. 14.5, стремящуюся к нулю при больших отрицательных х и плавно поднимающуюся при приближении к х1. Поскольку V в точке х1равно Еа, то кривизна функции в этой точке равна нулю. Между х1и х2 величина V-Еавсегда отрицательна, так что функция а(х) все время вогнута к оси, а кривизна тем больше, чем больше разность между Еаи V. Если продолжить кривую в область между x1и x2, ей придется идти примерно так, как на фиг. 14.5.
Фиг. 14.5. Волновая функция для энергии Е а , стремящаяся к нулю при удалении х в отрицательную сторону.
Теперь протянем эту кривую правее х2. Там она искривляется прочь от оси и движется к большим положительным значениям (фиг. 14.6).
Фиг. 14.6. Волновая функция а(х) (см. фиг. 14.5), продолженная за x 2 .
Для выбранной нами энергии Еарешение a(х)с ростом х растет все сильнее и сильнее. Действительно, ведь и кривизна решения а(х)тоже возрастает (если потенциал остается почти постоянным). Амплитуда круто вырастает до гигантских масштабов. Что это означает? Просто что частица не «связана» потенциальной ямой. Обнаружить ее вне ямы бесконечно более вероятно, чем внутри. Для изготовленного нами решения гораздо более вероятно встретить электрон в x=+Ґ, чем где-либо еще. Найти решение для связанной частицы нам не удалось.