355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Фейнман » Фейнмановские лекции по физике. 9. Квантовая механика II » Текст книги (страница 5)
Фейнмановские лекции по физике. 9. Квантовая механика II
  • Текст добавлен: 5 октября 2016, 03:29

Текст книги "Фейнмановские лекции по физике. 9. Квантовая механика II"


Автор книги: Ричард Фейнман



сообщить о нарушении

Текущая страница: 5 (всего у книги 16 страниц) [доступный отрывок для чтения: 6 страниц]

Как же поступает химик в таких случаях? Он анализирует множество молекул сходного типа и выводит какие-то эмпирические правила. Он учит, например: для расчета энергии связи берите вот такое-то и такое-то значение А, а для получения приближенно верного спектра поглощения возьмите другое значение A. Вам может показаться, что это звучит слегка абсурдно. И впрямь, в ушах физика, который пытается объяснить всю природу из первоначальных принципов, это звучит довольно дико. Но перед химиком задача другая. Он обязан заранее догадаться, что произойдет с молекулами, которых до сих пор не было или которые до конца не поняты. Ему нужен ряд эмпирических правил и ему совершенно все равно, откуда они возьмутся. Так что теорией он пользуется совсем не так, как физик. Он берет уравнения, в которых отразился свет истины, а потом вынужден менять в них константы, делая эмпирические поправки.

В случае бензола основная причина несогласия лежит в нашем предположении, что электроны независимы; теория, из которой мы исходили, на самом деле незаконна. Тем не менее на нее падает какой-то отблеск истины, потому что результаты, по-видимому, идут в правильном направлении. При помощи таких уравнений плюс некоторые эмпирические правила (со множеством исключений) химик-органик прокладывает свой путь через чащу тех сложнейших вещей, которые он решился изучать. (Не забывайте, что в действительности причина, по которой физику удается выводить что-то из основных принципов, состоит в том, что он выбирает только простые задачи. Он никогда не решает задач с 42 или даже с 6 электронами. До сих пор он смог рассчитать с приличной точностью только атом водорода да атом гелия.)

§ 5. Еще немного органической химии

Можно ли применить все эти идеи для изучения других молекул? Рассмотрим такую молекулу, как бутадиен (1,3); она показана на фиг. 13.9 с помощью обычной картины валентных связей.

Фиг. 13.9. Изображение с помощью валентных связей молекулы бутадиена (1,3).

Мы можем опять затеять те же игры с лишней четверкой электронов, отвечающей двум двойным связям. Если ее убрать, то остается четыре атома углерода по одной линии. А как рассчитывать такую линию, вы уже знаете. «Но позвольте,– скажете вы,—я ведь только знаю, как решать бесконечную линию». Однако решения для бесконечной линии включают также и решения для конечной. Следите. Пусть N – число атомов на прямой; пронумеруем их 1, 2, ..., N (фиг. 13.10).

Фиг. 13.10. Отрезок прямой с N молекулами.

В уравнении для амплитуды в точке 1 у вас не появится член для перехода из точки 0. Точно так же уравнение для точки N будет отличаться от того, которым мы пользовались для бесконечной прямой, потому что никакого вклада точки N+1 не будет. Но представьте, что мы придумали решение для бесконечной прямой со следующим свойством: амплитуда оказаться вблизи атома 0 есть нуль и амплитуда оказаться вблизи атома N+1 тоже нуль. Тогда система уравнений для всех точек от 1 до N на конечной линии также будет удовлетворяться. Казалось бы, таких решений не бывает, ибо все наши решения имеют вид и обладают всюду одинаковой абсолютной величиной. Но вспомните, что энергия зависит только от абсолютной величины k, так что другим в равной мере законным решением было бы. И то же справедливо для любой суперпозиции этих двух решений. Вычитая их, мы получим решение sin kxn, а оно удовлетворяет требованию, чтобы амплитуда при х=0 была нулем. И оно все еще соответствует энергии Е0-2Аcoskb. Далее, подходящим выбором величины k можно также добиться, чтобы амплитуда в xN+1была тоже нулем. Для этого нужно, чтобы (N+1)kb было кратным p, т. е. чтобы

где s – целое число между 1 и N. (Берутся только положительные k, потому что каждое решение содержит и +k, и -k; перемена знака k опять дает то же состояние.) Для молекулы бутадиена N=4, так что имеется четверка состояний с

Уровни энергии можно теперь представить, пользуясь круговой диаграммой, похожей на бензольную. На сей раз возьмем полукруг, деленный на пять равных частей (фиг. 13.11).

Фиг. 13.11. Энергетические уровни бутадиена.

Точка внизу отвечает s=0, что не дает какого-либо состояния. То же самое справедливо для точки наверху, отвечающей s=N+1. Оставшиеся четыре точки дают четверку разрешенных энергий. Имеется четыре стационарных состояния, чего и следовало ожидать, судя по четырем базисным состояниям. В круговой диаграмме углы равны p/5, или 36°. Наинизшая энергия оказывается равной Е01,618A. (Каких только чудес не бывает в математике! Золотое сечение греков дает нам наинизшее энергетическое состояние молекулы бутадиена, как это следует из

нашей теории!)

Теперь уже ясно, как меняется энергия молекулы бутадиена, когда в нее вводят четверку электронов. Эта четверка заполнит два нижних уровня – каждый будет заполнен парой электронов с противоположными спинами. Полная энергия будет равна

Это выглядит вполне разумно. Энергия чуть пониже, чем просто у двух двойных связей, но связь не так сильна, как в бензоле. Во всяком случае, именно так химик анализирует некоторые органические молекулы.

Но в его распоряжении есть не только энергии, но и амплитуды вероятности. Зная амплитуды для каждого состояния и зная, какие состояния заполнены, он может сообщить нам, какова вероятность нахождения электрона в каком-нибудь месте молекулы. Те места, где пребывание электрона более вероятно, вступают в игру при таких химических замещениях, которые требуют, чтобы электрон обслуживал и другую группу атомов. Другие же места молекулы участвуют в таких замещениях, при которых молекула имеет тенденцию передать системе еще один электрон.

Подобные же идеи могут помочь нам получить правильное представление даже о таких сложных молекулах, как хлорофилл, один из вариантов которого показан на фиг. 13.12.

Фиг. 13.12. Молекула хлорофилла.

Обратите внимание, что двойные и одиночные связи образуют длинное замкнутое кольцо с двадцатью интервалами.

Лишние электроны двойных связей могут бегать по этому кольцу. При помощи метода независимых частиц можно получить всю совокупность энергетических уровней. От переходов между этими уровнями возникают сильные линии поглощения, которые лежат в видимой части спектра и придают этой молекуле ее густой цвет. И другие сложные молекулы, такие, как ксантофилл, от которого листья получают красную окраску, можно изучить таким же точно способом.

В органической химии при работе с подобного рода теорией используют еще одну идею. Она, пожалуй, самая удачная из всех (или по крайней мере в определенном смысле самая точная). Она отвечает на такой вопрос: в каких случаях получается особенно прочная химическая связь? Ответ очень интересен. Возьмем вначале для примера бензол и представим ряд событий, которые произойдут, если мы начнем с шестикратно ионизованной молекулы и примемся добавлять новые и новые электроны. Тогда нужно будет говорить о различных ионах бензола – отрицательных и положительных. Изобразим энергию иона (или нейтральной молекулы) как функцию числа электронов. Если мы примем Е0=0 (мы не знаем, чему равно E0), то получим кривую, показанную на фиг. 13.13.

Фиг. 13.13. Сумма всех энергий электронов, когда нижние состояния на фиг. 13.8 заполнены n электронами (принято E0=0).

Для первых двух электронов наклон функции постоянен – это прямая линия. Затем для каждой очередной группы электронов он возрастает, меняясь скачком от одной группы к другой. Наклон изменяется тогда, когда заканчивается заполнение системы уровней с одной энергией и очередному электрону приходится переходить к очередной более высокой системе уровней.

В действительности истинная энергия иона бензола совершенно непохожа на фиг. 13.13 из-за взаимодействий электронов и из-за электростатических энергий, которыми мы пренебрегли. Эти поправки, однако, меняются с n довольно плавно. Даже если бы их все учесть, на окончательной энергетической кривой все равно остались бы изломы при таких и, при которых как раз заполняются отдельные уровни энергии.

Рассмотрим теперь очень гладкую кривую, на которой в среднем укладываются все точки (фиг. 13.14).

Фиг. 13.14. Точки с фиг. 13.13 и плавная кривая. Молекулы с n=2, 6, 10 устойчивее остальных.

Можно сказать, что точки над этой кривой обладают энергией «выше чем нормальной», а точки под нею «ниже чем нормальной». И в общем случае следует ожидать, что у конфигураций с «ниже чем нормальной» энергией средняя устойчивость окажется повышенной. Обратите внимание, что конфигурации, которые значительно ниже кривой, всегда оказываются в конце одного из прямолинейных отрезков, а именно там, где электронов как раз хватает на то, чтобы заполнить «энергетическую оболочку», как ее называют. Это очень точное предсказание теории. Молекулы и ионы особо устойчивы (по сравнению с прочими подобными конфигурациями), когда имеющиеся у них в наличии электроны как раз заполняют энергетическую оболочку.

Эта теория объяснила и предсказала некоторые весьма необычные химические факты. Вот очень простой пример. Возьмем кольцо из трех атомов. Почти невозможно поверить, что химик сможет из трех атомов составить кольцо и сделать его устойчивым. Но это было сделано. Энергетический круг для трех электронов показан на фиг. 13.15.

Фиг. 13.15. Энергетическая диаграмма для кольца из трех атомов.

Если поместить в нижнее состояние два электрона, то пойдут в дело только два из трех требуемых электронов. Третий электрон придется поместить на более высокий уровень. Отсюда следует, что молекула не будет слишком устойчивой. Зато двухэлектронная структура обязана быть устойчивой. И действительно, оказывается, что нейтральную молекулу трифенилциклопропанила сделать очень трудно, но зато сравнительно легко соорудить положительный ион, показанный на фиг. 13.16.

Фиг. 13.16. Катион трифенилииклопропанила.

Правда, кольцо из трех атомов никогда не бывает легко сделать, потому что, когда связи в органической молекуле образуют равносторонний треугольник, всегда появляются большие напряжения. Чтобы соединение было устойчиво, структуру нужно как-то стабилизировать. Оказывается, что, если поставить по углам три бензольных кольца, можно сделать положительный ион. (Отчего нужно добавлять бензольные кольца, непонятно.)

Подобным же образом можно также проанализировать и пятиугольное кольцо. Если вы начертите энергетическую диаграмму, то качественно сможете убедиться, что шестиэлектронная структура должна быть особо устойчива, так что такая молекула должна быть устойчивее всего в виде отрицательного иона. И вот кольцо из пяти атомов действительно хорошо известно, легко сооружается и действует всегда как отрицательный ион. Подобным же образом вы легко убедитесь, что кольцо из 4 и 8 атомов не очень интересно, а кольцо из 14 или 10 (как и кольцо из 6) должно быть особенно устойчиво в форме нейтрального объекта.

§ 6. Другие применения приближения

Есть два других сходных случая, на которых мы остановимся лишь вкратце. Говоря о строении атома, можно считать, что электрон заполняет последовательные оболочки. Теорию движения электрона Шредингера удается с легкостью разработать лишь для отдельного электрона, движущегося в «центральном» поле – поле, зависящем только от расстояния от точки. Но как же тогда разобраться в том, что происходит в атоме, в котором 22 электрона?! Один из путей – воспользоваться приближением независимых частиц. Сперва вы подсчитываете, что происходит с одним электроном. Получаете сколько-то там уровней энергии. Помещаете электрон в нижнее энергетическое состояние. В грубой модели вы продолжаете игнорировать взаимодействия электронов и продолжаете заполнять последовательные оболочки, но еще лучшие ответы получатся, если учесть (хотя бы приближенно) влияние электрического заряда электрона. Добавляя электрон, каждый раз вычисляйте амплитуду того, что он будет обнаружен в различных местах, и затем с ее помощью прикидывайте вид сферически симметричного распределения заряда. Поле этого распределения (совместно с полем положительного ядра и всех предыдущих электронов) используйте для расчета состояний, доступных очередному электрону. Таким путем вы можете получить вполне разумные оценки энергий нейтрального атома и различных ионизованных состояний. Вы увидите, что и здесь имеются энергетические оболочки, так же как у электронов в кольцевой молекуле. При не совсем заполненной оболочке атом иногда охотнее присоединяет к себе один или несколько электронов, а иногда охотнее их теряет, чтобы прийти в устойчивое состояние, когда оболочка заполнена.

Эта теория объясняет механизм, лежащий в основе самых фундаментальных химических свойств, проявляющихся в периодической таблице элементов. Инертные газы – это те элементы, у которых как раз закончилось заполнение оболочки, и их особенно трудно заставить вступать в реакцию. (В действительности, конечно, некоторые из них реагируют, например, с фтором или с кислородом, но в таких соединениях связь очень слаба; так называемые инертные газы инертны лишь отчасти.) Атом, у которого на один электрон больше или на один меньше, чем у инертного газа, легко теряет или присоединяет этот электрон, чтобы оказаться в особо устойчивых (низкоэнергетических) условиях, какие возникают от того, что оболочка заполнена до конца,– они являются очень активными химическими элементами с валентностью +1 и -1.

В ядерной физике можно встретиться с другим подобным случаем. В атомном ядре протоны и нейтроны очень сильно взаимодействуют друг с другом. Но и при этом модель независимых частиц опять полезна для анализа структуры ядра. Сперва было открыто экспериментально, что ядра особо устойчивы, если в них содержится определенное число нейтронов – а именно 2, 8, 20, 28, 50, 82. Ядра, содержащие в таком же количестве протоны, тоже особенно устойчивы. Поскольку вначале объяснения этим числам не было, их назвали «магическими числами» ядерной физики. Хорошо известно, что нейтроны и протоны друг с другом сильно взаимодействуют; поэтому люди были чрезвычайно поражены, когда выяснилось, что модель независимых частиц предсказывает оболочечное строение ядра, причем сами собой возникают несколько первых магических чисел. Модель эта предполагала, что каждый нуклон (протон или нейтрон) движется в центральном потенциальном поле, создаваемом средним влиянием всех прочих нуклонов. Однако модели не удавалось верно предсказать другие магические числа. Но затем Мария Майер и независимо Йенсен с сотрудниками открыли, что, принимая модель независимых частиц и добавляя только поправку на так называемое «спин-орбитальное взаимодействие», можно в этой усовершенствованной модели получить все магические числа. (Спин-орбитальное взаимодействие приводит к тому, что энергия нуклона оказывается ниже, если его спин направлен туда же, куда направлен его орбитальный момент количества движения в ядре.) Теория дает даже больше – ее картина так называемой «оболочечной структуры» ядра позволяет предсказывать некоторые характеристики ядер и ядерных реакций.

Приближение независимых частиц оказалось полезным для широкого круга явлений – от физики твердого тела до химии, от биологии до ядерной физики. Такое приближение часто очень грубо, но оно в состоянии помочь нам понять, отчего бывают особо устойчивые условия – отчего возникают оболочки. Но поскольку оно опускает всю сложность взаимодействий между индивидуальными частицами, нас не должно удивлять, что часто ему не удается правильно предсказать многие важные детали.

* Отношение сторон прямоугольника, который можно разбить на квадрат и на подобный ему прямоугольник.

* Когда имеется пара состояний (с разными распределениями амплитуд) с той же энергией, мы говорим, что эта пара состояний «вырождена». Заметьте, что энергией E 0 -А могут обладать четыре электрона.

* Могло бы показаться, что при четном N есть N+1 состояний. Это не так, ибо s = ±.N/2 дают одно и то же состояние.

* Квазичастицы обсуждаемого типа могут действовать и как бозе-и как ферми-частицы; и, как и у свободных частиц, частицы с целым спином суть бозоны, с полуцелым—фермионы. «Магнон» символизирует, что электрон со спином, направленным вверх, перевертывается вниз. Спин меняется на единицу. Значит, у магнона спин целый и он – бозон.

* Основное состояние здесь на самом деле «вырождено». Существуют и другие состояния с той же энергией, например, когда все спины смотрят вниз или в любую другую сторону. Но наложение самого слабого внешнего поля в направлении z снабдит все эти состояния различной энергией, и истинным основным состоянием окажется как раз то, которое мы выбрали.


Глава 14
ЗАВИСИМОСТЬ АМПЛИТУД ОТ МЕСТА

§ 1. Как меняются амплитуды вдоль прямой

§ 2. Волновая функция

§ 3. Состояния с определенным импульсом

§ 4. Нормировка состояний с определенной координатой х

§ 5. Уравнение Шредингера

§ 6. Квантованные уровни энергии

§ 1. Как меняются амплитуды вдоль прямой

Выясним теперь, как в квантовой механике амплитуды вероятности меняются в пространстве. В некоторых предыдущих главах у вас могло возникнуть смутное чувство, что кое о чем мы умалчиваем. Например, когда мы толковали о молекуле аммиака, мы решили описывать ее через два базисных состояния. За одно из них мы выбрали случай, когда атом азота находится «выше» плоскости трех атомов водорода, а в качестве другого базисного состояния выбрали такие условия, когда атом азота стоит «ниже» плоскости трех атомов водорода. Почему же мы выбрали именно эту пару состояний? Почему бы не считать, что атом азота может оказаться либо на расстоянии 2Е от плоскости трех атомов водорода, либо на расстоянии 3Е, а может, и 4Е. Ведь атом азота может занимать множество положений. Или, когда шла речь о молекулярном ионе водорода, в котором имеется электрон, распределенный между двумя протонами, мы тоже вообразили два базисных состояния. Одно – когда электрон находится по соседству с протоном № 1, и другое, когда он пребывает в окрестностях протона № 2. Ясно, что многие детали мы упустили. Электрон ведь находится не точно у самого протона № 2, а только в его окрестностях. Он может оказаться и где-то повыше протона, и где-то пониже, и где-то слева, и где-то справа.

Мы намеренно избегали уточнения таких деталей. Мы говорили, что нас интересуют только определенные стороны проблемы, и воображали, что если уж электрон находится поблизости от протона № 1, то он принимает некоторое довольно определенное положение.

На самом деле в этих условиях вероятность обнаружить электрон обладает каким-то определенным распределением в пространстве вблизи протона. Но нас такие детали не заботили. Можно представить дело и иначе. Когда мы рассматривали молекулярный ион водорода, то избрали приближенный подход, описывая положение вещей на языке двух базисных состояний. В действительности же таких состояний уйма. Электрон может попасть вблизи протона в свое наинизшее, или основное, состояние, но имеется еще и множество возбужденных состояний. В каждом из них электрон как-то по-особому распределен вблизи протона. Эти возбужденные состояния мы игнорировали, говоря, что нас интересуют лишь условия при наинизшей энергии. Но как раз они-то, эти возбужденные состояния, и приводят к тому, что возможны различные распределения электрона вокруг протона. Если мы хотим детально описать молекулярный ион водорода, то следует принять во внимание и эти прочие допустимые базисные состояния. Это можно сделать многими способами, и один из них – детальнее рассмотреть состояния, когда расположение электрона в пространстве описывается более тщательно.

Мы уже достаточно подготовлены, чтобы заняться более трудоемкой процедурой, которая позволит нам обстоятельнее говорить о местоположении электрона, задавая амплитуду вероятности того, что он будет обнаружен в каком угодно месте в данной ситуации. Эта более полная теория позволит подкрепить те приближения, которыми мы раньше пользовались. Наши прежние уравнения в каком-то смысле смогут быть выведены как своего рода приближения к более полной теории. Вас может удивить, почему мы не начали прямо с более полной теории и не делали приближений по мере движения вперед. Но мы считали, что, отправившись от приближения двух состояний и постепенно подходя к более полной теории, вам будет легче достичь понимания всей механики квантовой механики. Наш подход, по-видимому, противоположен тому, который вы найдете во многих книгах.

Когда мы обратимся к теме этой главы, вы заметите, что мы нарушаем правило, которому в прошлом неизменно следовали. Какой бы темы мы ни касались, мы всегда пытались более или менее полно представить вам физику дела, указывая как можно полнее, куда ведут эти идеи. Мы стремились наряду с описанием общих следствий теории представить и некоторые характерные детали, чтобы вам было ясно, куда ведет эта теория. А теперь нам придется нарушить это правило. Мы расскажем об амплитудах вероятности пребывания электрона где-то в пространстве и продемонстрируем вам дифференциальные уравнения, которым они удовлетворяют. Но у нас не будет времени углубиться и обсудить многие очевидные выводы, следующие из теории.

Более того, нам даже не удастся связать эту теорию с некоторыми приближенными формулировками, к которым мы раньше прибегали, скажем, когда изучали молекулу водорода или молекулу аммиака. На этот раз придется бросить дело на полпути, не окончив его. Курс наш близится к концу, и хочешь не хочешь, придется обойтись одним только введением в общие представления. Мы укажем связь с тем, о чем говорилось раньше, и, кроме того, некоторые другие подходы к задачам квантовой механики. Надеемся, что этих представлений вам хватит, чтобы потом двинуться самостоятельно и уже по книгам узнать многие выводы из приведенных здесь уравнений. Все-таки нужно оставить кое-что и на будущее.

Вспомним еще раз, что нам известно о том, как электрон может продвигаться вдоль линии атомов. Когда электрон может с какой-то амплитудой перепрыгивать от одного атома к соседнему, то имеются состояния определенной энергии, в которых амплитуда вероятности обнаружить электрон распределяется вдоль решетки в виде бегущей волны. Для длинных волн (малых значений волнового числа К) энергия состояния пропорциональна квадрату волнового числа. Для кристаллической решетки с постоянной b, в которой амплитуда того, что электрон в единицу времени перепрыгнет от одного атома к следующему, равна iA/h, энергия состояния связана с k (при малых kb) формулой

E=Ak2b2 (14.1)

(см. гл. 11, § 1). Мы видели также, что группы таких волн с близкими энергиями образуют волновой пакет, который ведет себя как классическая частица с массой mэфф:

Раз волны амплитуды вероятности в кристалле ведут себя как частицы, то естественно ожидать, что общее квантовомеханическое описание частицы выявит такое же волновое поведение, какое мы наблюдали в решетке. Предположим, мы взяли одномерную решетку и вообразили, что постоянная решетки b становится все меньше и меньше. В пределе получилось бы, что электрон может оказаться в любой точке линии. Нам пришлось бы перейти к непрерывному распределению амплитуд вероятности. У электрона появилась бы амплитуда оказаться в любом месте линии. Таков был бы один из путей описания движения электронов в вакууме. Иными словами, если мы вообразим, что все пространство можно пронумеровать бесконечным числом очень тесно расположенных точек, и сможем вывести уравнения, связывающие между собой амплитуды в одной точке с амплитудами в соседних, то получим квантовомеханические законы движения электрона в пространстве.

Начнем с того, что напомним некоторые общие принципы квантовой механики. Пусть имеется частица, которая может в квантовомеханической системе существовать в разных условиях. Любые заданные условия, в которых может быть обнаружен электрон, мы называем «состоянием» и отмечаем их при помощи вектора состояния, скажем |j>. В каких-то других условиях и метка будет другая, скажем вектор состояния |y>. Затем мы вводим идею о базисных состояниях. Мы говорим, что имеется совокупность состояний | 1 >, | 2>, | 3>, | 4> и т. д., обладающая следующими свойствами. Во-первых, все эти состояния совершенно различны – мы говорим, что они ортогональны. Под этим мы понимаем, что для любой пары базисных состояний | i> и |j> равна нулю амплитуда <i|j> того, что электрон, будучи в состоянии | j>, окажется также и в состоянии <i| , если только, конечно, |i> и |j> не обозначают одного и того же состояния. Все это символически представляется

так:

<i|j>=dij (14.3)

Вспомните, что dij=0, если i и j различны, и dij=1, если i и j одинаковые числа.

Далее, базисные состояния |i>обязаны быть полной совокупностью, так чтобы любое состояние могло быть выражено на их языке. Иначе говоря, любое состояние |j> может быть полностью описано заданием всех амплитуд <i|j> того, что частица в состоянии |j> обнаружится также в состоянии |i>. Вектор состояния |j> представляется суммой базисных состояний, умноженных каждое на коэффициент, являющийся амплитудой того, что состояние |j> находится также в состоянии |i>:

Наконец, если рассмотреть любые два состояния |j> и |y>, то амплитуду того, что состояние |y>окажется также в состоянии |j>, можно найти, проецируя сперва состояние |y> на базисные состояния, а затем каждое из базисных состояний – на состояние |j>. Это записывается так:

Суммирование, конечно, проводится по всей совокупности базисных состояний | i>.

В гл. 11, когда мы рассчитывали, что бывает с электроном, помещенным в линейную цепочку атомов, вы выбрали совокупность базисных состояний, в которых электрон был расположен близ того или иного из атомов цепочки. Базисное состояние |n> представляло электрон, локализованный (расположенный) возле атома номер п. (Конечно, неважно, обозначать ли наши базисные состояния |n> или |i>.) Чуть позже мы нашли, что базисные состояния удобнее метить координатой атома, а не номером атома в цепочке. Состояние | хn> – это просто другой способ записи состояния |n>. Тогда, следуя общему правилу, любое состояние |y> можно описать заданием того, что электрон в состоянии |y> находится также в одном из состояний |хn>. Для удобства мы решили обозначать эти амплитуды символом

Cn=<xn|y>. (14.6)

Поскольку базисные состояния связаны с местоположением электрона на линии, то амплитуду Сnможно рассматривать как функцию координаты х и писать ее в виде С(хn). Амплитуды С(хn)будут в общем случае меняться во времени и поэтому суть также функции от t, но мы не будем отмечать эту зависимость явно.

Кроме того, в гл. 11 мы предположили, что амплитуды С(хn) обязаны меняться во времени так, как положено по гамильтонову уравнению (11.3). В нашем новом обозначении это уравнение имеет вид

Два последних слагаемых в правой части представляют такой процесс, когда электрон, находившийся возле атома (n+1) или возле атома (n-1), окажется возле атома (n).

Мы нашли, что (14.7) имеет решения, отвечающие состояниям определенной энергии. Мы записывали их в виде

У состояний с низкой энергией длины волн велики (k мало) и энергия связана с k формулой

или, если выбрать нуль энергии так, чтобы было 0-2А)=0, то энергия дается формулой (14.1).

Посмотрим, что бы произошло, если бы мы позволили расстоянию b между атомами решетки стремиться к нулю, сохраняя волновое число постоянным. Если бы больше ничего не случилось, то последнее слагаемое в (14.9) обратилось бы просто в нуль, и никакой физики бы не осталось. Но предположим, что А и b вместе изменяются так, что при стремлении b к нулю произведение Ab2поддерживается постоянным: с помощью (14.2) мы запишем Аb2в виде постоянной h2/2mэфф. При этом (14.9) не изменится, но что произойдет с дифференциальным уравнением (14.7)?

Перепишем сперва (14.7) так:

При нашем выборе Е0первое слагаемое выпадет. Далее, представим себе непрерывную функцию С(х), которая плавно проходит через значения С(хn)в точках хn. Когда расстояние b стремится к нулю, точки хnсближаются все теснее и теснее и [если С(х)меняется достаточно плавно] величина в скобках попросту пропорциональна второй производной С(х). Можно написать (в чем легко убедиться, разложив в ряд Тэйлора каждый член) равенство

Тогда в пределе, когда b стремится к нулю, а b2A поддерживается равным h2/2mэфф, уравнение (14.7) переходит в

Перед нами уравнение, утверждающее, что скорость изменения С(х)амплитуды того, что электрон будет обнаружен в х– зависит от амплитуды того, что электрон будет обнаружен в близлежащих точках так, что эта скорость пропорциональна второй производной амплитуды по координате.

Правильное квантовомеханическое уравнение движения электрона в пустом пространстве впервые было открыто Шредингером. При движении по прямой оно имеет вид (14.12); надо только mэфф заменить на m – массу электрона в пустом пространстве. При движении по прямой в пустом пространстве уравнение Шредингера имеет вид

Мы не хотим, чтобы вы считали, будто мы сейчас вывели уравнение Шредингера; мы только показываем вам один из способов, каким его можно осмыслить. Когда Шредингер впервые написал его, он привел какой-то вывод, опиравшийся на эвристические доводы и блестящие интуитивные догадки. Некоторые из его доводов были даже неверны, но это не имело значения; важно то, что окончательное уравнение дает правильное описание природы. И цель нашего обсуждения состоит просто в том, чтобы показать вам, что правильное фундаментальное квантовомеханическое уравнение (14.13) имеет ту же самую форму, какая получается в предельном случае электрона, движущегося вдоль цепочки атомов. Это значит, что можно считать, что дифференциальное уравнение (14.13) описывает диффузию амплитуды вероятности от точки к точке вдоль прямой. Иначе говоря, если электрон имеет некоторую амплитуду того, что он будет в одной точке, то чуть позже у него появится амплитуда того, что он будет в близлежащих точках. Уравнение действительно напоминает уравнения диффузии, которыми мы пользовались в начале курса. Но есть и одно важное отличие: мнимый коэффициент перед производной по времени приводит к поведению, в корне отличному от обычной диффузии (например, от диффузии газа, распространяющегося по длинной трубе). Обычная диффузия приводит к действительным экспоненциальным решениям, а решения (14.13) суть комплексные волны.

§ 2. Волновая функция

Чтобы получить некоторое представление о том, как теперь все будет выглядеть, вернемся к самому началу и изучим проблему описания движения электрона по прямой, не рассматривая состояний, связанных с атомами решетки. Мы хотим возвратиться к самому началу и посмотреть, какими представлениями нужно пользоваться, чтобы описать движение свободной частицы в пространстве. Раз нас интересует поведение частицы вдоль континуума точек, то придется иметь дело с бесконечным множеством возможных состояний и, как вы увидите, идеи, которые были развиты для конечного числа состояний, потребуют некоторых технических видоизменений.


    Ваша оценка произведения:

Популярные книги за неделю