Текст книги "Фейнмановские лекции по физике. 3a. Излучение. Волны. Кванты"
Автор книги: Ричард Фейнман
сообщить о нарушении
Текущая страница: 3 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]
фактора сокращения (1-v/c). Итак, наблюдаемая частота равна
(34.10)
Можно, конечно, объяснить этот эффект и другими способами. Пусть, например, тот же атом испускает не синусоидальную волну, а короткие импульсы (пип, пип, пип, пип) с некоторой частотой ш1. С какой частотой мы будем их воспринимать? Первый импульс к нам придет спустя определенное время, а второй импульс придет уже через более короткое время, потому что атом за это время успел к нам приблизиться. Следовательно, промежуток времени между сигналами «пип» сократился за счет движения атома. Анализируя эту картину с геометрической точки зрения, мы придем к выводу, что частота импульсов увеличивается в 1/(1-v/c) раз.
Фиг, 34.10. Движение осциллятора в плоскости х—z и в плоскости x'—t.
Будет ли наблюдаться частота w= w0/(1-v/c), если атом с собственной частотой ш0 движется со скоростью v к наблюдателю? Нет. Нам хорошо известно, что собственная частота движущегося атома w1 и частота покоящегося атома w0 – не одно и то же из-за релятивистского замедления хода времени. Так что если w0 – собственная частота покоящегося атома, то частота движущегося атома будет равна
(34.11)
Поэтому наблюдаемая частота w окончательно равна
(34.12)
Изменение частоты, возникающее в таком случае, называется эффектом Допплера: если излучающий объект движется на нас, излучаемый им свет кажется более синим, а если он движется от нас, свет становится более красным.
Приведем еще два других вывода этого интересного и важного результата. Пусть теперь покоящийся источник излучает с частотой w0, а наблюдатель движется со скоростью v к источнику. За время t наблюдатель сдвинется на новое расстояние vt от того места, где он был при t = 0. Сколько радиан фазы пройдет перед наблюдателем? Прежде всего, как и мимо любой фиксированной точки, пройдет ю0t, а также некоторая добавка за счет движения источника, а именно vtk0 (это есть число радиан на метр, умноженное на расстояние).
Отсюда число радиан за единицу времени, или наблюдаемая частота, равно w1=w0+k0v. Весь этот вывод был произведен с точки зрения покоящегося наблюдателя; посмотрим, что увидит движущийся наблюдатель. Здесь мы снова должны учесть разницу в течении времени для наблюдателя в покое и движении, а это значит, что мы должны разделить результат на Ц( 1-v2/с2). Итак, пусть k0 есть волновое число (количество радиан на метр в направлении движения), а со0 – частота; тогда частота, регистрируемая движущимся наблюдателем, равна
(34.13)
Для света мы знаем, что k0 = w0/c. Следовательно, в рассматриваемом примере искомое соотношение имеет вид
(34.14)
и, казалось бы, не похоже на (34.12)!
Отличается ли частота, наблюдаемая при нашем движении к источнику, от частоты, наблюдаемой при движении источника к нам? Конечно, нет! Теория относительности утверждает, что обе частоты должны быть в точности равны. Если бы мы были достаточно математически подготовлены, то могли бы убедиться, что оба математических выражения в точности равны! В действительности требование равенства обоих выражений часто используется для вывода релятивистского замедления времени, потому что без квадратных корней равенство сразу нарушается.
Раз уж мы начали говорить о теории относительности, приведем еще и третий способ доказательства, который покажется, пожалуй, более общим. (Суть дела остается прежней, ибо не играет роли, каким способом получен результат!) В теории относительности имеется связь между положением в пространстве и временем, определяемым одним наблюдателем, и положением и временем, определяемым другим наблюдателем, движущимся относительно первого. Мы уже выписывали эти соотношения (гл. 16). Они представляют собой преобразования Лоренца, прямые и обратные:
(34.15)
Для неподвижного наблюдателя волна имеет вид cos(cot-kx); все гребни, впадины и нули описываются этой формой. А как будет выглядеть та же самая физическая волна для движущегося наблюдателя? Там, где поле равно нулю, любой наблюдатель при измерении получит нуль; это есть релятивистский инвариант. Следовательно, форма волны не меняется, нужно только написать ее в системе отсчета движущегося наблюдателя:
Произведя перегруппировку членов, получим
(34.16)
Мы снова получим волну в виде косинуса с частотой w' в качестве коэффициента при t' и некоторой другой константой k' – коэффициентом при х'. Назовем k' (или число колебаний на 1 м) волновым числом для второго наблюдателя. Таким образом, движущийся наблюдатель отметит другую частоту и другое волновое число, определяемые формулами
(34.17)
(34.18)
Легко видеть, что (34.17) совпадает с формулой (34.13), полученной нами на основании чисто физических рассуждений.
§ 7. Четырехвектор (w, k)
Соотношения (34.17) и (34.18) обладают весьма интересным свойством: новая частота w' линейно связана со старой частотой w и старым волновым числом k, а новое волновое число представляется в виде комбинации старого волнового числа и частоты. Далее, волновое число есть скорость изменения фазы с расстоянием, а частота – скорость изменения фазы со временем, и сами соотношения обнаруживают глубокую аналогию с преобразованиями Лоренца для координаты и времени: если со сопоставить с t, a k с х/с2, то новое w' сопоставляется с t', a k' – с координатой х'/с2. Иначе говоря, при преобразовании Лоренца w и k изменяются так же, как t и х. Эти величины w и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координаты, и есть четырехвектор. Здесь все правильно, за исключением одного – четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, со и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве.
Пусть задана система координат х, у, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть К, а направление распространения волны не совпадает ни с одной осью координат.
Фиг. 34.11. Плоская волна, движущаяся под углом.
Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos (a>t-ks), где k = 2п/X a s (расстояние вдоль направления движения волны) – проекция вектора положения на направление движения. Запишем это следующим образом: пусть r есть вектор точки в пространстве, тогда s есть г-еk, где ek – единичный вектор в направлении движения волны. Иначе говоря, s равно rcos(r-ek), проекции расстояния на направление движения. Следовательно, наша волна описывается формулой cos(wt-kek·r).
Оказывается очень удобным ввести вектор k, называемый волновым вектором', величина его равна волновому числу 2p/l, а направление совпадает с направлением распространения волны
(34.19)
Благодаря введению этого вектора волна приобретает вид cos(wt-k·r), или cos(wt-kxx-kyy-kzz). Выясним смысл проекций k, например kx. Очевидно, kx есть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла a между осью х и направлением движения истинной волны:
(34.20)
Следовательно, скорость изменения фазы, обратно пропорциональная Xх, в направлении х оказывается меньше на множитель cos а; но этот же множитель содержит и kx, равный модулю k, умноженному на косинус угла между k и осью х!
Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины со, kx, ky, kz преобразуются в теории относительности как четырехвектор, причем со соответствует времени, a kx, ky, kz соответствуют х, у и z и компонентам четырехвектора.
Еще раньше, когда мы занимались теорией относительности (гл. 17), мы выяснили, что из четырехвекторов можно составить релятивистское штрихованное произведение. Взяв вектор положения xm (где m, нумерует четыре компоненты – время и три пространственные) и волновой вектор km (где и. снова пробегает четыре значения), образуем штрихованное произведение хm и km , записываемое в виде S'km хm. Это произведение есть инвариант, не зависящий от выбора системы координат. Согласно определению штрихованного произведения,
можно записать S'km хm. следующем виде:
(34.21)
Поскольку km есть четырехвектор, то, как мы уже знаем, Skmxm есть инвариант по отношению к преобразованиям Лоренца. Под знак косинуса в нашей формуле для плоской волны входит именно это произведение, и оно обязано быть инвариантом относительно преобразований Лоренца. У нас не может появиться формула, у которой под знаком косинуса стоит неинвариантная величина, потому что мы знаем, что значение фазы не зависит от выбора системы координат.
§ 8. Аберрация
При выводе формул (34.17) и (34.18) мы взяли простой пример, когда k лежит в направлении движения системы координат; но мы можем обобщить теперь эти формулы на другие возможные случаи. Пусть источник посылает луч света в определенном направлении; это направление фиксируется неподвижным наблюдателем, а мы движемся, скажем, по поверхности Земли в горизонтальном направлении (фиг. 34.12,а). В каком направлении падает луч света с нашей точки зрения? Можно получить ответ, записав четыре компоненты kм и совершив преобразования Лоренца. Но можно воспользоваться и следующим рассуждением: чтобы увидеть луч, следует наш телескоп повернуть на некоторый угол (фиг. 34.12, б). Почему? Потому что свет падает сверху со скоростью с, а мы движемся горизонтально со скоростью у, и свет пройдет «прямо» через телескоп, если последний наклонить на некоторый угол. Легко понять, что расстояние по горизонтали равно vt, а по вертикали ct, и, обозначив угол наклона через q', мы получим tgq'=v/c. Замечательно! В самом деле, замечательно, если бы не одна маленькая деталь: q' не есть тот угол, под которым надо установить телескоп по отношению к поверхности Земли, потому что наш анализ проводился с точки зрения неподвижного наблюдателя.
Фиг, 34.12. Удаленный источник света S.
а – наблюдаемый через неподвижный телескоп; б – наблюдаемый через телескоп, движущийся в боковом направлении.
Горизонтальное расстояние, которое мы считали равным vt, неподвижный по отношению к Земле наблюдатель найдет равным совсем другой величине, так как он пользуется, с нашей точки зрения, «сжатой» линейкой. Из-за эффекта сокращения возникает совсем другое соотношение:
(34.22)
что эквивалентно
(34.23)
Полезно вам самим получить это соотношение с помощью преобразования Лоренца.
Описанный выше эффект кажущегося изменения направления луча называется аберрацией и обнаружен на опыте. Казалось бы, как он может проявиться? Ведь никто не знает, где на самом деле расположена звезда. Пусть мы действительно смотрим на звезду в неправильном, кажущемся направлении, откуда нам известно, что оно неправильное? Известно; потому, что Земля обращается вокруг Солнца. Сегодня мы устанавливаем телескоп под одним углом, а через шесть месяцев мы должны его уже повернуть. Вот откуда мы знаем о существовании этого эффекта.
§ 9. Импульс световой волны
Займемся теперь другим вопросом. В прошлых главах мы ни разу не говорили о магнитном поле световой волны. Обычно эффекты, связанные с магнитным полем, очень малы, однако есть один интересный и важный эффект, возникающий под влиянием магнитного поля. Пусть имеется луч света, посылаемый каким-то источником, который действует на заряд и заставляет его колебаться вверх и вниз. Предположим, что электрическое поле направлено вдоль оси х; тогда колебания заряда будут происходить тоже вдоль оси х: положение заряда дается значением х, а скорость заряда есть v (фиг. 34.13).
Магнитное поле направлено перпендикулярно электрическому. Электрическое поле, воздействуя на заряд, заставляет его раскачиваться вверх и вниз, а как действует магнитное поле? Магнитное поле действует только на движущийся заряд (пусть это будет, например, электрон); но электрон действительно движется, ведь он разгоняется электрическим полем, следовательно, оба поля действуют совместно. Двигаясь вверх и вниз с некоторой скоростью, электрон испытывает действие силы, равной по величине произведению Bvq, а каково направление
Фиг. 34.13. Движущийся под действием электрического поля заряд, на который со стороны магнитного поля действует сила, направленная по световому лучу.
этой силы? Направление силы совпадает с направлением распространения, света. Следовательно, падающий на заряд луч света заставляет его колебаться и, кроме того, тянет его с некоторой силой в направлении движения световой волны. Это явление носит название давления электромагнитных волн, или светового давления.
Определим величину светового давления. Она, очевидно, равна F = qvB или, поскольку заряд и поле осциллируют, равна среднему по времени от F, т. е.
Следовательно, сила («толкающий импульс»), сообщаемая заряду за 1 сек, равна поглощаемой энергии света за 1 сек, деленной на с! Этот закон носит общий характер, поскольку нам не надо было знать силу осциллятора, а также взаимное уничтожение действия разных зарядов. В каждом случае, когда происходит поглощение света, возникает давление. Импульс, сообщаемый светом, всегда равен поглощаемой энергии, деленной на с:
(34.24),
Мы уже знаем, что свет переносит с собой энергию. Теперь мы приходим к выводу, что свет несет также и импульс и, кроме того, импульс световой волны всегда равен энергии, деленной на с.
И наоборот, при испускании света источник испытывает отдачу. Если атом излучает энергию W в некотором направлении, возникает импульс отдачи р = W/c. Пучок света, падающий по нормали к зеркалу, при отражении сообщает зеркалу в два раза большую силу.
Все сказанное находится в рамках классической теории света. Мы, конечно, знаем, что существует квантовая теория и что свет во многих отношениях ведет себя как частица. Энергия света – частицы – равна частоте, умноженной на постоянную
(34.25)
Раз свет переносит импульс, равный энергии, деленной на с, то эффективные частицы, фотоны, несут импульс
(34.26)
Направление импульса совпадает, разумеется, с направлением распространения света. Следовательно, можно записать это в векторной форме
(34.27)
Мы знаем также, что энергия и импульс частицы образуют четырехвектор. Мы уже выяснили, что со и k тоже составляют четырехвектор. И очень хорошо, что в оба равенства (34.27) входит одна и та же константа; это означает, что квантовая теория и теория относительности согласуются друг с другом.
Уравнению (34.27) можно придать более элегантный вид: р =fik (релятивистское уравнение для частицы, которая сопоставляется волне). Хотя это соотношение написано нами для фотонов, у которых k (модуль k) равно со/с, а р = W/c, на самом деле оно имеет гораздо более общий характер. В квантовой механике все частицы, а не только фотоны проявляют волновые свойства, причем частота и волновое число соответствующих волн связаны с энергией и импульсом частицы соотношениями (34.27) (они называются соотношениями де-Бройля), даже в случае р, не равного W1с.
В предыдущей главе мы видели, что свет с– правой и левой круговой поляризацией также переносит момент количества движения, по величине пропорциональный энергии $ волны. С квантовой точки зрения пучок света с круговой поляризацией представляется в виде потока фотонов, каждый из которых несет момент количества движения i/t, направленный по или против движения. Вы видите, во что превращается поляризация с корпускулярной точки зрения – фотоны обладают моментом количества движения, как вращающиеся пули винтовки. Но картина с «пулями» столь же не полна, как и «волновая» картина, и нам предстоит обсудить эти представления более подробно в последующих главах, посвященных квантовым явлениям.
Глава 35
ЦВЕТОВОЕ ЗРЕНИЕ
§ 1. Человеческий глаз
§ 3, Цвет зависит от интенсивности
§ 3. Измерение восприятия цвета
§ 4:. Диаграмма цветности
§ 5. Механизм цветового зрения
§ 6. Физико-химические свойства цветового зрения
§ 1. Человеческий глаз
Явление цвета отчасти обусловлено физическими процессами. Мы уже говорили о цветовой гамме мыльных пленок, вызванной интерференцией. Но цвет, кроме того, связан еще с функцией глаза и с тем, что происходит позади него, т. е. с деятельностью мозга. Физика изучает поведение света, пока он находится вне человеческого глаза, а наши ощущения, после того как свет попал в глаз, возникают в результате фотохимических и нервных процессов, а также психологических рефлексов.
С восприятием света связано множество интересных явлений, в которых тесно переплетаются и физические, и физиологические процессы, так что познавание явлений природы, воспринимаемых через зрение, выходит за рамки физики как таковой. Мы не станем извиняться за то, что собираемся несколько вторгнуться в другие области науки, потому что, как мы уже подчеркивали, науки разделены не естественным путем, а лишь из соображений удобства. Природа вовсе не заинтересована в подобном разделении, и многие интересные явления лежат именно на стыке разных областей науки.
В гл. 3 мы в общих чертах говорили о связях физики с другими науками; теперь мы хотим более подробно исследовать ту область явлений, где физика и другие науки исключительно тесно связаны между собой. Эта область – восприятие света, зрение. Особое внимание мы уделим цветовому зрению. В этой главе мы в основном будем говорить о явлениях, связанных со зрением человека; следующая глава будет посвящена физиологическим аспектам зрения как у человека, так и у животных.
Фиг. 35.1. Строение глаза
Зрение начинается с глаза; чтобы понять, как мы видим, нужно разобраться в устройстве самого глаза. В следующей главе мы довольно подробно будем говорить о функции отдельных частей глаза и их связи с нервной системой. А пока кратко опишем, как функционирует глаз.
Свет попадает в глаз через роговицу (фиг. 35.1); мы уже рассказывали раньше, как свет преломляется и отображается на задней поверхности глаза, на слое, который называется сетчаткой; разные части сетчатки воспринимают лучи от различных областей поля зрения вне глаза. Сетчатка не вполне однородна: в ее центре есть участок – пятно, который мы используем, когда нам необходимо видеть предметы особенно четко; в этом участке острота зрения особенно велика, называется он – желтое пятно, или центральная ямка. Легко убедиться непосредственно на опыте, что боковые участки глаза различают детали рассматриваемого предмета не столь эффективно, как центральный участок. В сетчатке имеется еще один участок, где зрительные нервы, несущие всю информацию, собираются вместе и выходят из глаза; этот участок называется слепым пятном. Сетчатка там не имеет чувствительности, и если, например, закрыть левый глаз и посмотреть перед собой, а затем медленно отодвигать палец (или другой небольшой предмет) из поля зрения, то в каком-то месте поля зрения этот предмет неожиданно исчезнет. Известен пока лишь один случай, когда из этого эффекта была извлечена реальная польза. Один физиолог, показавший действие слепого пятна, стал любимцем при дворе французского короля; на утомительных заседаниях со своими придворными король развлекался, «отрубая им головы»: он смотрел на одного из них и следил, как в это время «исчезала» голова другого.
Фиг. 35.2, Структура сетчатки (свет входит снизу}
На фиг. 35.2 в увеличенном масштабе показана структура сетчатки. Различные части сетчатки имеют разную структуру. На периферических частях сетчатки наиболее часто встречаются удлиненные объекты, называемые палочками. Ближе к желтому пятну, кроме палочек, попадаются еще колбочки. Позже мы опишем структуру этих элементов. Чем ближе к желтому пятну, тем больше становится колбочек, а в самом желтом пятне фактически имеются одни только колбочки, лежащие столь тесно, что здесь они много мельче, или уже, чем в других местах сетчатки. Следовательно, в центре поля зрения мы видим с помощью колбочек, а на периферии в восприятии света участвуют палочки. Интересно, что любая чувствительная к свету клетка в сетчатке не связана со зрительным нервом непосредственно, а соединена с другими клетками, которые в свою очередь соединены между собой. Существует несколько типов клеток: одни несут информацию к зрительному нерву, а другие связаны между собой в основном в «горизонтальном» направлении. Всего имеется четыре типа клеток, но мы сейчас не будем об этом говорить подробно, а только подчеркнем основную идею: что световой сигнал уже на этом этапе «продумывается». Иначе говоря, информация, полученная от различных клеток, не сразу поступает в мозг от каждой точки в отдельности, а частично осмысливается в сетчатке путем комбинирования информации от нескольких зрительных рецепторов. Важно понять, что сам глаз выполняет часть функций осмысливания, свойственных головному мозгу.
§ 2. Цвет зависит от интенсивности
Одним из самых примечательных свойств зрения является способность глаза привыкать (адаптироваться) к темноте. Когда из ярко освещенной комнаты мы входим в темную, то некоторое время мы ничего не видим, и лишь постепенно окружающие предметы начинают вырисовываться все явственнее, и в конце концов мы начинаем замечать то, чего раньше совсем не видели. При очень слабом свете предметы кажутся лишенными окраски. Было установлено, что зрение в условиях темновой адаптации осуществляется почти исключительно с помощью палочек, а в условиях яркого света – с помощью колбочек. В результате мы распознаем целый ряд явлений, связанных с передачей функции зрения от палочек и колбочек, действующих совместно, к одним только палочкам.
Во многих случаях объекты, которые считаются одноцветными, при увеличении интенсивности света могут приобрести окраску и стать изумительно красивыми. Например, изображение какой-нибудь слабой туманности в телескопе обычно кажется «черно-белым», однако астроному Миллеру из обсерваторий Маунт Вильсон и Паломар удалось благодаря своему терпению получить цветные снимки нескольких туманностей. Никто никогда не видел окраски туманностей своими глазами, но это не значит, что цвета созданы искусственным путем, просто интенсивность света была слишком мала, чтобы колбочки наших глаз могли определить цвет. Особенно красивы Кольцевидная и Крабовидная туманности. На снимке Кольцевидной туманности центральная часть окрашена в прекрасный синий цвет и окружена она ярким красным ореолом, а на снимке Крабовидной туманности на фоне голубоватой дымки перемежаются яркие красно-оранжевые нити.
При ярком свете чувствительность палочек, по-видимому, очень мала, но в темноте с течением времени они приобретают способность видеть. Относительные изменения интенсивности, к которым глаз может приспосабливаться, превышают один миллион раз. Природа придумала для этой цели два рода клеток: одни видят при ярком свете и различают цвета – это колбочки, другие приспособлены видеть в темноте – это палочки.
Отсюда возникают интересные следствия: первое – это обесцвечивание предметов (в слабом свете), а второе – различие в относительной яркости двух предметов, окрашенных в разные цвета. Оказывается, палочки видят синий конец спектра лучше, чем колбочки, но зато колбочки видят, например, темно-красный цвет, тогда как палочки его совершенно не могут увидеть. Поэтому для палочек красный цвет – все равно что черный. Если взять два листка бумаги, скажем красный и синий, то в полутьме синий будет казаться ярче красного, хотя при хорошем освещении красный листок гораздо ярче синего.
Фиг. 35.3. Спектральная чувствительность глаза. Сплошная кривая – на свету; пунктирная – в темноте.
Это совершенно поразительное явление. Если мы в темноте рассматриваем ярко раскрашенную обложку журнала и представляем себе ее расцветку, то на свету все становится совершенно неузнаваемым. Описанное выше явление называется эффектом, Пуркинье.
На фиг. 35.3 пунктирная кривая характеризует чувствительность глаза в темноте, т. е. чувствительность за счет палочек, а сплошная кривая относится к зрению на свету. Видно, что максимальная чувствительность палочек лежит в области зеленого цвета, а колбочек – в области желтого цвета. Поэтому красный листок (красный цвет имеет длину волны около 650 ммк), хорошо видный при ярком свете, почти совсем не виден в темноте.
Тот факт, что зрение в темноте осуществляется с помощью палочек, а в окрестности желтого пятна палочек нет, проявляется еще и в том, что мы видим в темноте предметы, находящиеся прямо перед нами, не столь отчетливо, как предметы, расположенные сбоку. Слабые звезды и туманности иногда бывает легче заметить, если смотреть на них несколько вбок, потому что в центре сетчатки палочек почти совсем нет.
Уменьшение числа колбочек к периферии глаза в свою очередь приводит еще к одному интересному эффекту – на краю поля зрения даже яркие предметы теряют свою окраску. Этот эффект легко проверить. Зафиксируйте свой взгляд в каком-то определенном направлении и попросите приятеля, чтобы он подошел к вам сбоку, держа в руке ярко раскрашенные листки. Попробуйте определить цвет листков, прежде чем они окажутся прямо перед вами. Вы обнаружите, что сами листки увидели задолго до того, как смогли определить, какого они цвета. Лучше, если ваш приятель будет входить в поле зрения со стороны, противоположной слепому пятну, иначе возникнет путаница: вы начнете уже различать цвета, и вдруг все исчезнет, а затем листки снова появятся и вы ясно различите их цвет.
Интересно также, что периферия сетчатки исключительно чувствительна к движению объектов зрения. Хотя мы плохо видим, когда смотрим искоса, одним уголком глаза, тем не менее сразу замечаем летящего сбоку жука или мошку, даже если вовсе не ожидали увидеть что-либо на этом месте. Нас так и «тянет» посмотреть, что это там мелькает на краю поля зрения.
§ 3. Измерение восприятия цвета
Теперь мы займемся зрением, осуществляемым с помощью колбочек, т. е. зрением при ярком освещении. Самое главное и самое характерное свойство такого зрения – это цвет. Мы уже знаем, что белый свет с помощью призмы можно разложить на целый спектр лучей с разными длинами волн, которые кажутся нам окрашенными в разные цвета; цвета именно кажутся – это определенные ощущения. Свет от любого источника можно проанализировать с помощью дифракционной решетки или призмы и найти его спектральное распределение, т. е. «количество» света той или иной длины волны. Один луч света может содержать большое количество синего, немного красного и совсем мало желтого, другой содержит цвета в иной пропорции и т. д. Для физики такой характеристики будет вполне достаточно, но здесь нам надо ответить на вопрос: какого цвета будет луч, каким он нам покажется? Очевидно, что окраска как-то связана со спектральным распределением света, но наша задача состоит в том, чтобы найти, от какой именно характеристики спектрального распределения зависит восприятие того или иного цвета. Например, как получить зеленый цвет? Нам хорошо известно, что можно просто выбрать соответствующий участок спектра. А нет ли другого способа получить зеленый, оранжевый и вообще любой цвет?
Может ли быть несколько спектральных распределений, вызывающих один и тот же зрительный эффект? Ответ совершенно определенный —да, может. Число различных зрительных восприятий довольно ограниченно; как мы вскоре увидим, это число охватывает всего лишь трехмерное множество восприятий, а число кривых – спектральных распределений для разных источников – бесконечно. Возникает вопрос, который мы и обсудим в первую очередь: при каких условиях различные распределения выглядят как один и тот же цвет?
Самый действенный психофизический способ оценки цветовой чувствительности состоит в использовании глаза как нулевого прибора. При этом не нужно исследовать, как складывается ощущение зеленого цвета, или измерять факторы, которые вызывают ощущение зеленого цвета, это было бы слишком сложно. Вместо этого мы изучим условия, при которых два раздражения (два воздействия) становятся неразличимыми. При этом нам нет необходимости знать, могут ли два человека получить в разных условиях одинаковое зрительное ощущение, а нужно лишь установить, что два раздражения, вызывающие одинаковые ощущения у одного человека, приводят к одинаковым ощущениям и у другого. Совершенно излишне сравнивать зрительные ощущения двух разных людей, смотрящих на один и тот же, скажем, зеленый предмет. Об этом мы ничего не знаем.
Для иллюстрации возможностей этого метода возьмем набор из четырех проекционных фонарей, снабженных фильтрами. Их яркость может непрерывно меняться в широких пределах: первый фонарь имеет красный фильтр и отбрасывает на экран красное пятно, второй – зеленый фильтр и дает зеленое пятно, третий – синий фильтр, и, наконец, четвертый образует на экране белый круг с черным пятном посредине. Включим красный и зеленый фонари так, чтобы пятна света на экране частично перекрывались, тогда область перекрывшихся пятен вызовет у нас ощущение нового цвета, не красновато-зеленого, а желтого. Изменяя пропорцию красного и зеленого, можно пройти через всевозможные оттенки оранжевого и т. д. Установив на экране определенный желтый цвет, можно получить точно такой же цвет, смешивая другие компоненты, например используя желтый фильтр и смешав затем желтый свет с лучом белого цвета. Другими словами, одни и те же цвета можно создавать несколькими способами, смешивая свет от разных фильтров.
Открытое нами явление аналитически можно записать следующим образом. Обозначим данный желтый цвет символом У; он представляет собой сумму некоторых количеств света от красного фильтра (R) и от зеленого (G). С помощью двух чисел, скажем r и g, определяющих яркости (R) и (G), формула для желтого цвета записывается в виде
(35.1)
Вопрос теперь заключается в том, можно ли каждый цвет получить сложением двух или трех различных фиксированных цветов. Попробуем ответить на этот вопрос. Конечно, нельзя получить любой цвет, смешивая только зеленый и красный, потому что синий цвет в такой комбинации никогда не получится. Однако если добавить к ним синий, то в месте пересечения всех трех цветовых пятен можно добиться появления чистого белого цвета. Смешивая три разных цвета в разных пропорциях, в области пересечения можно получить цвета в очень широком диапазоне, поэтому не исключено, что смешение трех таких цветов может в принципе дать любой цвет. Мы потом рассмотрим, в какой мере это утверждение правильно; по существу оно верно, а вскоре мы сформулируем его более точно.