355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Фейнман » Фейнмановские лекции по физике. 3a. Излучение. Волны. Кванты » Текст книги (страница 1)
Фейнмановские лекции по физике. 3a. Излучение. Волны. Кванты
  • Текст добавлен: 4 октября 2016, 02:04

Текст книги "Фейнмановские лекции по физике. 3a. Излучение. Волны. Кванты"


Автор книги: Ричард Фейнман



сообщить о нарушении

Текущая страница: 1 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]

3a. Излучение. Волны. Кванты

Глава 33
ПОЛЯРИЗАЦИЯ

§ 1. Вектор электрического поля световой волны

§ 2. Поляризация рассеянного света

§ 3. Двойное лучепреломление

§ 4. Поляризаторы

§ 5. Оптическая активность

§ 6, Интенсивность отраженного света

§ 7. Аномальное преломление

§ 1. Вектор электрического поля световой волны

В этой главе мы рассмотрим круг явлений, связанных с векторным характером электрического поля световой волны. В предыдущих главах направление колебаний электрического поля нас не интересовало, правда, мы отметили, что вектор электрического поля лежит в плоскости, перпендикулярной направлению распространения света. Но нам не нужно было знать направление вектора более точно. Теперь мы перейдем к изучению явлений, в которых главную роль играет определенное направление колебаний электрического вектора.

В идеально монохроматической световой волне электрическое поле колеблется с определенной частотой, а так как x– и y-компоненты поля могут колебаться независимо с одной и той же частотой, то сначала мы рассмотрим сложение двух взаимно перпендикулярных колебаний. Какое электрическое поле возникает при сложении колебаний x– и y-компонент поля с одинаковой частотой? Складывая колебание в направлении x и колебание с той же фазой в направлении у, получаем в плоскости xy колебание в новом направлении.

На фиг. 33.1 показано, как происходит сложение колебаний с разными амплитудами в направлении x и y. Но примеры, представленные на этом рисунке, не исчерпывают всех возможностей: до сих пор предполагалось, что колебания вдоль осей x и y находятся в одной фазе, но это совсем не обязательно. Может случиться, что х– и y-колебания происходят с разными фазами.

В этом последнем случае вектор электрического поля описывает эллипс, что можно проиллюстрировать на следующем простом примере.

Фиг. 33.1. Сложение колебаний в направлениях х и у, когда разность фаз между ними равна нулю.

Подвесим на длинной веревке мяч, чтобы он мог свободно колебаться в горизонтальной плоскости; колебания будут носить синусоидальный характер. Представим себе мысленно оси х и у в горизонтальной плоскости колебаний мяча с началом координат в точке покоя мяча. Выбирая соответствующее начальное смещение и начальную скорость мяча, можно заставить мяч колебаться по оси х, по оси у или по любому другому направлению в плоскости ху с одной и той же частотой, равной частоте маятника. Эти колебания мяча аналогичны колебаниям электрического вектора, приведенным на фиг. 33.1. В каждом случае колебания в направлениях х ж у достигают максимума одновременно и, следовательно, оба колебания находятся в фазе. Но известно, что самый общий тип движения мяча – движение по эллипсу – возникает, когда колебания в направлениях х и у происходят с разными фазами.

На фиг. 33.2 показано сложение колебаний по осям х и у для разных значений сдвига фаз между ними. Во всех примерах электрический вектор описывает эллипс. Колебание по прямой есть тоже частный случай эллиптического, когда сдвиг фаз равен нулю (или целому кратному я); при равных амплитудах и сдвиге фаз 90° (или нечетном числе л/2) происходит движение по окружности.

На фиг. 33.2 компоненты электрического поля в направлениях х и у записаны в виде комплексных чисел, что оказывается очень удобным для явного выделения разности фаз. В этих обозначениях не следует только путать действительную и мнимую части с х– и y-компонентами поля. Изображенные на фиг. 33.2 компоненты поля по осям х и у есть реальные физические поля, которые можно измерить. Действительная и мнимая части вектора электрического поля введены только для математического удобства, и физического смысла такое разделение не имеет.

Сделаем несколько замечаний о терминологии. Свет называется линейно поляризованным (иногда плоско поляризованным), если электрическое поле колеблется по прямой линии; на фиг. 33.1 показан случай линейной поляризации. Когда вектор электрического поля описывает эллипс, говорят об эллиптической поляризации. Если же электрический вектор описывает окружность, мы имеем круговую поляризацию. Если электрический вектор при своем движении в световой волне крутится как правосторонний винт, говорят о правой круговой поляризации. На фиг. 33.2, ж приведен пример правой круговой поляризации, а на фиг. 33.2, в – пример левой круговой поляризации. В обоих случаях свет движется от плоскости страницы к читателю. Наше определение левой и правой круговых поляризаций согласуется с подобными определениями для всех других частиц в современной физике, для которых можно ввести понятие поляризации (например, для электронов). Однако в курсах оптики иногда используются прямо противоположные определения, поэтому читателю следует с осторожностью относиться к терминам левая и правая поляризация.

Мы описали линейную, круговую и эллиптическую поляризации света и охватили, таким образом, все возможные случаи состояния света, кроме одного,—случая неполяризованного света. Ну, а как же может получиться неполяризованный свет, если известно, что колебания непременно происходят по тому или иному эллипсу?

Возьмем не вполне монохроматический свет, когда сдвиг фаз х– и y-колебаний непостоянен и электрический вектор колеблется произвольным образом; тогда поляризация света будет все время меняться. Вспомним, что один атом излучает свет за 10-8 сек, и, если все атомы будут излучать свет с разной поляризацией, поляризация полного пучка света будет меняться через каждые 10-8 сек.

Фиг. 33.2. Сложение колебаний в направлениях х и у

с разными фагами.

Компоненты Е х и Е у записаны и в действительных и в комплексных

обозначениях.

Когда поляризация света изменяется столь быстро, что ее невозможно измерить, говорят о неполяризованном свете, потому что все эффекты поляризации усредняются и сводятся к нулю. Ни один из интерференционных эффектов при сложении поляризаций не проявляется для неполяризованного света. В то же время само определение неполяризованного света подразумевает, что экспериментально невозможно установить, поляризован свет или нет.

§ 2. Поляризация рассеянного света

Первый пример поляризационных явлений, который мы уже ранее обсуждали, есть рассеяние света. Рассмотрим проходящий в воздухе пучок света, например солнечного света. Электрическое поле возбуждает колебания зарядов в воздухе,. и в результате этих колебаний излучается свет, интенсивность которого максимальна в плоскости, перпендикулярной движению зарядов. Пучок солнечного света неполяризован, т. е. направление поляризации постоянно меняется, а следовательно, изменяется и направление колебаний зарядов в воздухе. Возьмем пучок света, рассеянный под углом 90°; он возникает от излучения только тех частиц воздуха, которые колеблются перпендикулярно линии зрения наблюдателя, и, следовательно, пучок рассеянного света будет поляризован в направлении этих колебаний. Таким образом, рассеяние дает нам пример получения поляризованного света.

§ 3. Двойное лучепреломление

Есть еще один интересный факт из области поляризационных явлений. Встречаются среды, показатель преломления которых различен для света, линейно поляризованного в том или другом направлении. Допустим, например, что имеется некий материал, состоящий из вытянутых несферических молекул, длина которых больше их ширины; предположим, что молекулы в веществе выстроены так, чтобы их большие оси оказались параллельными. Что произойдет, когда на тело подействует осциллирующее электрическое поле? Предположим, что такая структура молекул способствует тому, что электроны в материале легче поддаются колебаниям вдоль оси молекулы, чем поперек нее. При таких условиях следует ожидать, что поляризация в одном направлении будет вызывать один эффект, а поляризация, направленная под прямым углом к первой, – совсем другой. Назовем направление осей молекул оптической осью. Показатель преломления принимает разные значения в зависимости от того, направлена ли поляризация вдоль оптической оси или перпендикулярно ей. Среда с такими свойствами называется двоякопреломяяющей. Она обладает двумя разными способами преломления, т. е. двумя показателями преломления в зависимости от поляризации света в среде. Какие материалы обладают этим свойством? Из разных соображений вытекает, что двояко-преломляющая среда должна иметь некоторое количество ориентированных несферических молекул. Ясно, что кубический кристалл, имеющий симметрию куба, не может быть двояко-преломляющим. А вот длинные игловидные кристаллы, безусловно, содержат несимметричные молекулы, и в них легко . наблюдать эффект двойного лучепреломления.

Попробуем сообразить, что получится, если направить поляризованный луч на пластинку двоякопреломляющего материала. Если поляризация параллельна оптической оси, свет пройдет через пластинку с одной скоростью, а если поляризация перпендикулярна – с другой скоростью. Интересная ситуация возникает, если луч света поляризован, например, под углом в 45° к направлению оптической оси. Тогда поляризация, как известно, представляется в виде суммы поляризаций в направлении х и у с равными амплитудами и фазами, что показано на фиг. 33.2, а. Поскольку лучи с поляризациями вдоль осей х и у движутся в среде с разной скоростью, фазы обеих компонент поля будут расти по-разному.

Таким образом, несмотря на совпадение фаз х– и у-компонент вначале, внутри среды между ними появится разность фаз, пропорциональная глубине проникновения света в среду. Изменение поляризации света в процессе прохождения через среду показано в серии рисунков на фиг. 33.2. Если пластинка имеет такую толщину, что разность фаз на выходе между поляризациями по осям х и у равна 90° (фиг. 33.2, в), то свет выйдет из пластинки поляризованным по кругу. Пластинки такой толщины называются пластинками в четверть волны, поскольку они приводят к разности фаз в одну четвертую цикла. Пропуская линейно поляризованный свет через две пластинки в четверть волны, снова получаем линейно поляризованный свет, но направление поляризации повернется на прямой угол (это легко понять из фиг. 33.2, в).

Явление двойного лучепреломления легко продемонстрировать с помощью листка целлофана. Целлофан состоит из длинных молекул – волокон, и его структура неизотропна, поскольку волокна по большей части вытянуты в одном направлении. Для наблюдения явления двойного лучепреломления необходим пучок линейно поляризованного света, который нетрудно получить, пропуская неполяризованный свет через пластинку поляроида. О поляроиде мы еще будем говорить более подробно, а пока отметим одно его важное свойство: свет, поляризованный вдоль оси поляроида, проходит через него почти свободно, а свет, поляризованный перпендикулярно оси, сильно поглощается поляроидом. Когда неполяризованный свет пропускается через пластинку поляроида, то проходит только та часть света, колебания которой параллельны оси поляроида, поэтому прошедший через пластинку луч окажется линейно поляризованным.

Фиг. 33.3. Схема эксперимента по двойному лучепреломлению в целлофане.

Векторы электрического поля световой волны изображены пунктирными стрелками. Направления поляризации, пропускаемые поляроидами, и оптические оси целлофана изображены сплошными стрелками. Падающий луч света неполяризован.

Это свойство поляроида используют также для определения направления поляризации линейно поляризованного света; кроме того, с помощью поляроида можно определить, есть ли у света вообще линейная поляризация или нет. Для этого достаточно пропустить свет через пластинку поляроида и поворачивать ее в плоскости, перпендикулярной лучу. Линейно поляризованный свет не может пройти через поляроид, когда ось поляроида перпендикулярна направлению поляризации луча. Повернув пластинку на 90°, мы увидим прошедший через нее луч лишь чуть-чуть менее ярким, чем падающий пучок света. Если яркость луча, пропущенного поляроидом, не зависит от ориентации поляроида, падающий пучок света не имеет линейной поляризации.

Для демонстрации двойного лучепреломления в целлофане возьмем два поляроида и расположим их, как показано на фиг. 33.3. Из первого поляроида выходит линейно поляризованный пучок света; мы пропускаем его через целлофан, а затем через другой поляроид, чтобы учесть действие целлофана на линейно поляризованный свет. Сначала расположим оси поляроидов перпендикулярно друг другу и уберем листок целлофана. Через второй поляроид свет не проходит совсем. Теперь поставим листок целлофана между поляроидами и будем поворачивать его вокруг оси пучка света. При этом, вообще говоря, некоторая часть света будет все время проходить через второй поляроид. Имеются, однако, две ориентации листка целлофана, перпендикулярные друг другу, при которых свет через второй поляроид не проходит. Ясно, что эти ориентации целлофана не влияют на линейную поляризацию проходящего через него света и должны поэтому совпадать с направлением оптической оси целлофана и перпендикулярным к нему направлением.

Здесь мы предполагаем, что скорость света, проходящего через целлофан, различна для указанных двух направлений поляризации, но само направление поляризации при прохождении света не меняется. Если выбрать промежуточную ориентацию целлофана где-то между двумя главными направлениями, как на фиг. 33.3, то через второй поляроид пройдет яркий аучок света.

Оказывается, толщина обычного целлофана, используемого в магазинах для упаковки, равна почти точно половине длины волны для большинства цветов в спектральном разложении белого света. Целлофан такой толщины поворачивает направление поляризации линейно поляризованного света на 90°, если это направление в падающем пучке образует угол 45° с оптической осью целлофана. Таким образом, выходящий из целлофана луч обладает как раз такой поляризацией, что может пройти второй поляроид.

Если в нашем опыте использовать пучок белого света, то только для одной компоненты его спектрального разложения толщина целлофана совпадет с половиной длины волны, и пучок, пропущенный вторым поляроидом, будет иметь цвет именно этой компоненты. Цвет пучка, прошедшего через наше устройство, будет зависеть от толщины листа целлофана, а эффективную толщину целлофана мы можем менять, наклоняя листок под некоторым углом и таким образом заставляя свет проходить больший путь внутри целлофана. При наклоне листка целлофана цвет пропущенного пучка меняется. Используя целлофан разной толщины, можно сконструировать фильтры, пропускающие лучи вполне определенного цвета. Эти фильтры обладают тем замечательным свойством, что они пропускают один цвет, когда оси двух поляроидов перпендикулярны, и дополнительный к нему цвет, когда оси поляроидов параллельны.

Системы ориентированных молекул имеют еще одно, на этот раз вполне практическое применение. Некоторые пластики состоят из очень длинных и сложных молекул, скрученных между собой. При очень тщательном проведении процесса затвердевания пластика молекулы, скручиваясь, образуют сплошную массу и ориентируются равномерно в самых разных направлениях, так что пластик обычно не проявляет свойства двойного лучепреломления. Но при затвердевании часто образуются дефекты и напряжения, которые приводят к некоторой неоднородности материала. Напряжения, возникающие в пластике, как бы вытягивают целую связку молекул, и молекулярные нити ориентируются преимущественно вдоль направления натяжения. Благодаря внутренним напряжениям пластик становится двоякопреломляющим, и эффект двойного лучепреломления можно наблюдать, пропуская через него поляризованный свет. Анализируя пропущенный пластиком пучок с помощью поляроида, мы заметим темные и светлые полосы (окрашенные в разные цвета, если берется пучок белого света). Если образец подвергнуть растяжению, вся совокупность полос начинает сдвигаться, а подсчитав полосы и определив место их наибольшего скопления, можно найти внутренние напряжения, возникающие в образце. Инженеры обычно используют это явление как способ определения напряжений в деталях, форма которых трудно поддается расчету.

Еще один интересный пример – двойное лучепреломление в жидкостях. Рассмотрим жидкость, состоящую из длинных асимметричных молекул, которые несут вблизи своих концов распределенный положительный или отрицательный заряд, т. е. молекулы являются электрическими диполями. Сталкиваясь, молекулы в жидкости принимают любую ориентацию, причем какого-либо преимущественного направления ориентации не существует. Но если приложить электрическое поле, молекулы начнут выстраиваться вдоль поля и в этот самый момент жидкость становится двоякопреломляющей средой. Взяв два поляроида и прозрачную ячейку с жидкостью такого сорта, можно создать устройство, которое пропускает свет только при включении электрического поля. В результате мы получаем электрический переключатель для света, который называют ячейкой Керра. А сам эффект, когда в жидкости возникает двойное лучепреломление под действием электрического поля, называется эффектом Керра.

§ 4. Поляризаторы

До сих пор мы говорили о средах, показатель преломления которых различен для разных направлений поляризации падающего светового пучка. Большое значение для практических применений имеют и другие среды, у которых в зависимости от поляризации света меняется не только показатель преломления, но и коэффициент поглощения. Как и в случае двойного лучепреломления, легко понять, что поглощение может зависеть от направления вынужденных колебаний зарядов только в анизотропных средах. Первый, старый, ставший уже знаменитым пример – это турмалин, а другой – поляроид. Поляроид состоит из тонкого слоя маленьких кристаллов герапатита (соль йода и хинина), выстроенных своими осями параллельно друг другу. Эти кристаллы поглощают свет, когда колебания происходят в одном каком-то направлении, и почти не поглощают света, когда колебания совершаются в другом направлении.

Направим на поляроид пучок света, поляризованный под углом q к его оси. Какая интенсивность будет у пучка, прошедшего через поляроид? Разложим наш пучок света на две компоненты: одну с поляризацией, перпендикулярной той, которая проходит без ослабления (она пропорциональна sinq), и вторую—продольную компоненту, пропорциональную cosq. Через поляроид пройдет только часть, пропорциональная cosq; компонента, пропорциональная sinq, поглотится. Амплитуда света, прошедшего через поляроид, меньше амплитуды падающего света и получается из нее умножением на cosq.

Фиг. 33.4. Отражение линейно поляризованного света под углом Врюстера.

Направление поляризации дается пунктирными стрелками: круглые точки изображают поляризацию, перпендикулярную плоскости страницы.

Интенсивность света пропорциональна квадрату cosq. Таким образом, если падающий свет поляризован под углом q к оси поляроида, пропускаемая поляризатором доля интенсивности составляет cos2q от полной. Доля интенсивности, поглощаемая в поляроиде, есть, разумеется, sin2q.

Интересный парадокс возникает в следующем опыте. Известно, что два поляроида с осями, расположенными перпендикулярно друг другу, не пропускают света. Но если между такими поляроидами поместить третий, ось которого направлена под углом 45° к осям двух других, часть света пройдет через нашу систему. Как мы знаем, поляроид только поглощает свет, создать свет он не может. Тем не менее, поставив третий поляроид под углом 45°, мы увеличиваем количество прошедшего света. Вы можете сами проанализировать это явление в качестве упражнения.

Одно из интереснейших поляризационных явлений, возникающее не в сложных кристаллах и всяких специальных материалах, а в простом и очень хорошо знакомом случае,– это отражение от поверхности. Кажется невероятным, но при отражении от стекла свет может поляризоваться, и объяснить физически такой факт весьма просто. На опыте Брюстер показал, что отраженный от поверхности свет полностью поляризован, если отраженный и преломленный в среде лучи образуют прямой угол. Этот случай показан на фиг. 33.4.

Если падающий луч поляризован в плоскости падения, отраженного луча не будет совсем. Отраженный луч возникает только при условии, что падающий луч поляризован перпендикулярно плоскости падения. Причину этого явления легко понять. В отражающей среде свет поляризован перпендикулярно направлению движения луча, а мы знаем, что именно движение зарядов в отражающей среде генерирует исходящий из нее луч, который называют отраженным. Появление этого так называемого отраженного луча объясняется не просто тем, что падающий луч отражается; мы теперь уже знаем, что падающий луч возбуждает движение зарядов в среде, а оно в свою очередь генерирует отраженный луч.

Из фиг. 33.4 ясно, что только колебания, перпендикулярные плоскости страницы, дают излучение в направлении отраженного луча, а следовательно, отраженный луч поляризован перпендикулярно плоскости падения. Если же падающий луч поляризован в плоскости падения, отраженного луча не будет совсем.

Это явление легко продемонстрировать при отражении линейно поляризованного луча от плоской стеклянной пластинки. Поворачивая пластинку под разными углами к направлению падающего поляризованного луча, можно заметить резкий спад интенсивности при значении угла, равном углу Брюстера. Это падение интенсивности наблюдается только в том случае, когда плоскость поляризации совпадает с плоскостью падения. Если же плоскость поляризации перпендикулярна плоскости падения, заметного спада интенсивности отраженного света не наблюдается.

§ 5. Оптическая активность

Интереснейший поляризационный эффект был обнаружен в материалах, молекулы которых не обладают зеркальной симметрией; это молекулы в виде штопора, перчатки с одной руки или вообще какой-то формы, которая при отражении в зеркале переходит в другую форму, подобно тому как перчатка с левой руки в этом случае принимает вид перчатки с правой. Предположим, что все вещество состоит из молекул одной формы, т. е. в веществе нет молекул, которые являлись бы зеркальными отражениями других. Тогда в этом веществе возникает замечательное явление, называемое оптической активностью,– направление поляризации линейно поляризованного света при прохождении через вещество поворачивается вокруг оси пучка.

Чтобы разобраться в явлении оптической активности, надо вывести ряд формул, но суть дела можно понять и качественно, без всяких вычислений. Возьмем асимметричную молекулу в форме спирали, показанную на фиг. 33.5. Оптическая активность появляется не обязательно для молекул именно такой формы, но пример спирали наиболее прост и типичен для случая, когда нет зеркальной симметрии.

Фиг. 33.5. Молекула, форма которой не обладает зеркальной симметрией.

На молекулу падает пучок света, линейно поляризованный в направлении оси у.

Пусть на молекулу падает луч света, линейно поляризованный вдоль оси у, тогда электрическое поле вызывает движение зарядов вверх и вниз по спирали, так что в направлении у возникает ток и происходит излучение электрического поля Еу, поляризованного опять-таки вдоль оси у. Если, однако, электроны могут двигаться только вдоль спирали, появится составляющая тока вдоль оси х. Когда ток течет вверх по спирали, в точке Z1 он движется к плоскости рисунка, а в точке Z1+A – от плоскости (здесь А – диаметр молекулярной спирали). Казалось бы, x-составляющая тока не дает никакого излучения, потому что на противоположных сторонах витка спирали ток течет в прямо противоположном направлении. Однако если взять x-составляющую электрического поля, приходящего в точку z = z2, мы увидим, что ток в точке z = z1+ А и ток в точке z = z1 создают поля в точке z2 с интервалом времени А/с и, следовательно, с разностью фаз л+шА1с. Поскольку разность фаз в точности не равна л, поля не могут взаимно погаситься и остается небольшая ж-компонента электрического поля, вызванная движением электронов в молекуле, хотя первоначальное падающее поле имело только y-компоненту. Складывая малую компоненту по оси х и большую компоненту по оси y, получаем результирующее поле под небольшим углом к оси у (первоначальному направлению поляризации). При движении луча света через среду направление поляризации поворачивается вокруг оси луча. Нарисовав молекулы в разных положениях и определив токи, индуцированные падающим электрическим полем, можно убедиться, что появление оптической активности и направление вращения не зависят от ориентации молекул.

Примером среды, обладающей оптической активностью, является обычная патока. Для демонстрации явления берут поляроид, дающий на выходе линейно поляризованный луч, прозрачный сосуд с патокой и второй поляроид, служащий для определения вращения плоскости поляризации.

§ 6. Интенсивность отраженного света

Рассмотрим здесь количественную зависимость коэффициента отражения от угла падения. На фиг. 33.6, а показан пучок света, падающий на поверхность стеклянной пластинки, от которой он частично отражается, а остальная его часть преломляется и уходит в глубь стекла. Пусть падающий луч имеет единичную амплитуду и линейно поляризован перпендикулярно плоскости рисунка. Обозначим амплитуду отраженной волны буквой b, а амплитуду преломленной —буквой а. Отраженная и преломленная волны будут, разумеется, линейно поляризованы, а направления электрического поля в падающей, отраженной и преломленной волнах параллельны друг другу.

Фиг . 33.6. Падающая волна единичной амплитуды отражается и преломляется на поверхности стекла.

а – падающая волна поляризована по нормали к плоскости страницы; б – падающая волна поляризована в направлении, указанном пунктирной стрелкой.

На фиг. 33.6, б показана подобная же ситуация, но в предположении, что падающий луч поляризован в плоскости рисунка. Здесь через В и А обозначены соответственно амплитуды отраженной и преломленной волн.

Мы хотим вычислить интенсивности отраженного луча в обоих случаях, приведенных на фиг. 33.6. Как мы уже знаем, в случае, показанном на фиг. 33.6, б, отраженной волны не возникает, если угол между отраженным и преломленным лучами прямой, но нам хотелось бы получить количественный результат – точную формулу для амплитуд В и b как функций угла падения i. Полезно усвоить следующий принцип. Индуцированные в стекле токи генерируют две волны. Прежде всего они создают волну отражения. Далее, если бы в стекле токов не было, падающая волна прошла бы его насквозь, не меняя направления. Вспомним, что все заряды во Вселенной создают некое результирующее поле. Источник, создавший падающий пучок, дает поле единичной амплитуды, которое само по себе должно было бы проходить внутрь стекла по пунктирной линии (см. фиг. 33.6). Но это поле внутри стекла не наблюдается, а, следовательно, токи, возбуждаемые в стекле, должны излучать поле с амплитудой -1 вдоль той же пунктирной линии. Это позволяет вычислить амплитуды преломленных волн а и А.

Из фиг. 33.6, а видно, что поле с амплитудой b создается движением зарядов стекла, а внутри стекла это же движение дает поле с амплитудой а; следовательно, амплитуда b пропорциональна амплитуде а. Далее, если отвлечься от направления поляризации, можно было бы предположить, что отношение В/А равно отношению b/a, так как обе схемы на фиг. 33.6 можно считать одинаковыми. На самом деле это не совсем правильно, потому что на фиг. 33.6, б в отличие от ситуации, изображенной на фиг. 33.6, а, направления поляризаций не параллельны друг другу. В создании амплитуды В эффективно участвует только компонента А, параллельная В, т. е. Acos(i+r). Правильное соотношение пропорциональности выглядит поэтому так:

(33.1)

Теперь немного схитрим. Как мы знаем, на обоих рисунках фиг. 33.6 электрическое поле в стекле вызывает движение зарядов, которое генерирует поле с амплитудой, равной -1, поляризованное точно так же, как и в падающем луче, и распространяющееся вдоль пунктирной линии. Но из фиг. 33.6, б видно, что только перпендикулярная пунктирной линии компонента А дает полю необходимую поляризацию, тогда как на фиг. 33.6,а в создании поля на пунктирной линии эффективно участвует вся амплитуда а, поскольку ее поляризация параллельна поляризации поля с амплитудой -1. Следовательно, справедливо соотношение

(33.2)

так как обе амплитуды в левой части (33.2) создают волны с амплитудой -1.

Разделив (33.1) на (33.2), получаем

(33.3)

Проверим правильность этого результата на уже известном нам факте. Положив (i+r) =90°, из (33.3) получим B=0, что и было найдено в свое время Брюстером; таким образом, наш результат по крайней мере не содержит очевидной ошибки.

По предположению падающая волна имеет единичную амплитуду; тогда |B|2/12 есть коэффициент отражения лучей, поляризованных в плоскости падения, а |b|2/12 – коэффициент отражения лучей, поляризованных перпендикулярно плоскости падения. Отношение этих двух коэффициентов определяется с помощью формулы (33.3).

А теперь сотворим чудо и вычислим не только отношение, но и каждый коэффициент |В|2 и |b|2 в отдельности! Из закона сохранения энергии вытекает, что энергия преломленной волны должна быть равна энергии падающей волны минус энергия отраженной волны, т. е. 1-|В|2 в одном случае и 1-|b|2 —в другом. Более того, энергия света, прошедшего внутрь стекла в случае, показанном на фиг. 33.6, а, и такая же энергия в случае фиг. 33.6, б относятся как квадраты амплитуд преломленных волн: |A|2/|а|2. Возникает вопрос, возможно ли вычислить энергию волны в стекле, если кроме энергии электрического поля, вообще говоря, имеется и энергия движения атомов. Однако ясно, что любой вклад в полную энергию должен быть пропорционален квадрату амплитуды электрического поля. Следовательно,

(33.4)

Подставим сюда соотношение (33.2) и исключим A/a в написанном выражении, а величину В выразим через b с помощью формулы (33.3):

(33.5)

Здесь неизвестной величиной остается только b. Разрешая уравнение относительно |b|2, получаем

(33.6)

и, воспользовавшись (33.3), находим

(33.7)

Таким образом, мы нашли коэффициент отражения |b|2 для падающей волны, поляризованной перпендикулярно плоскости падения, и коэффициент отражения |B|2 для волны, поляризованной в плоскости падения!

Используя подобные приемы доказательства, можно пойти дальше и вывести, что b действительно. Для доказательства рассмотрим случай, когда свет приходит одновременно с обеих сторон поверхности стекла (ситуация, трудно осуществимая на опыте, но забавная в теоретическом отношении). Анализируя этот общий случай, можно убедиться в действительности величины b, откуда следует, что b=±sin(i-r)/sin(i+r). Если взять очень тонкий слой, в котором отражение происходит от обеих поверхностей, и вычислить интенсивность отраженного света, то можно установить даже знак b. Доля света, отраженного тонким слоем, нам известна, поскольку мы знаем ток, генерируемый в таком слое, и даже получили формулу для поля, создаваемого током. Эти аргументы приводят к соотношениям


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache