Текст книги "Эректус бродит между нами. Покорение белой расы"
Автор книги: Ричард Д. Ферле
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 6 (всего у книги 34 страниц) [доступный отрывок для чтения: 13 страниц]
Популяции изменяются генетически, когда меняется их ДНК. Наследуемые изменения имеют место только при изменении ДНК зародышевых клеток (яйцеклеток или спермиев, или же клеток, их производящих). Генетический материал сперматозоидов или яйцеклеток может быть изменен под воздействием, к примеру, космических излучений, высоких температур, при ошибках считывания генетического кода в процессе формирования половых клеток, либо под воздействием мутагенов, например, некоторых загрязнителей окружающей среды.
Недавно было обнаружено, что не кодирующая белки ядерная ДНК (т. н. «избыточная», или «мусорная», ДНК), способна мутировать и может становиться кодирующей ДНК, таким образом изменяя признаки следующего поколения, если это происходит в зародышевых клетках (Cheng, 2006). Кроме того, ДНК может быть изменена при внедрении в зародышевую клетку вируса или бактерии и встраивании их генетического материала в ядерную ДНК такой клетки. Случайные перемещения участков ДНК в пределах гена или даже между генами также изменяют генетический код ДНК (Patterson, 1999; см. Главу 6). Генетический код также может быть изменен при удвоении ДНК зародышевых клеток не один, а несколько раз. По оценке, не менее 12 % генома человека (около 25 000 генов) различается по числу копий, обычно имеющихся у людей (Redon, 2006).
С течением времени наименее жизненно важная часть ДНК, как и следовало ожидать, накапливает наибольшее число мутаций. В их числе некоторые не кодирующие участки ДНК (интроны)[49]49
«Теперь мы знаем, что более 98 % нашей ДНК составляют некодирующие последовательности». Лишь 1,2 % нашей ДНК кодируют белки (New Scientist, July 14–20, 2007, с. 43).
[Закрыть], молчащие гены (псевдогены) и часто ДНК, кодирующая одни и те же аминокислоты (синонимичная ДНК).
Так как доступ к коду ДНК контролируется генными регуляторами, то в случае изменения этих регуляторов в половых клетках под влиянием средовых воздействий (эпигенетические изменения) эти изменения могут передаться следующему поколению (Pray, 2004), хотя большинство из них не наследуется и эпигенетические изменения могут быть утеряны через небольшое число поколений. Регуляторы определяют, будет ли ДНК считана, какая часть нити ДНК будет считана, когда она будет считана, сколько раз она будет считана, и какие участки ДНК должны считываться совместно[50]50
Вот почему хотя во всех клетках организма находится одна и та же ДНК, в организме формируются клетки мозга, печени и так далее – регуляторы обеспечивают считывание разных генов. Код полипептидов, из которых собираются белки, может содержаться в разных участках ДНК одной и даже разных хромосом.
[Закрыть]. Известно довольно много генных регуляторов и все больше их обнаруживается в последнее время. Лучше всего изучены гистоны – белки, обвивающие нити ДНК в хромосомах и развертывающие ДНК для ее считывания. Различные химические группы, такие как метильная, фосфатная и ацетильная, могут присоединяться к нити ДНК для предотвращения ее считывания. Когда происходит считывание ДНК, число сделанных копий регулируется и различия их числа могут влиять на восприимчивость к болезням, а также определять расовые различия.
Генные регуляторы наследуются вместе с ДНК, с которой они связаны. Как было найдено, регуляторы эволюционируют примерно в 10 раз быстрее ДНК, так что эволюция во многом обусловлена изменениями регуляторов, а не ДНК как таковой[51]51
Choi, «Regulators Evolve Faster Than Genes», The Scientist, Aug. 9, 2007.
[Закрыть], хотя изменения ДНК более фундаментальны. Изменения регуляторов происходят легче, поскольку не существует механизма исправления регуляторов, подобного существующему у ДНК, и средовые воздействия изменяют регуляторы легче, чем ДНК[52]52
Это одна из возможных причин того, что при столь высоком сходстве ДНК человека и шимпанзе, мы настолько отличаемся от шимпанзе (Schwartz, 2005, с. 242).
[Закрыть].
Вероятно, генные регуляторы у разных рас различаются в большей степени, чем их ДНК. Однако это новая область, и изучение расовых различий генных регуляторов находится еще в зачаточном состоянии.
ИзоляцияИзоляция изменяет геном популяций за счет возрастания инбридинга (Правило 14), что облегчает распространение в популяции благоприятных, но редких сочетаний аллелей, особенно рецессивных. Так как инбридинг повышает вероятность наследования индивидом двух копий одной и той же аллели, инбридинг также способен быстро удалить из генома популяции аллели, кодирующие признаки, обуславливающие гибель индивидов до достижения ими зрелости или иным способом снижающих репродуктивный успех. Изоляция не требует физического разъединения, но лишь отсутствия интербридинга. Народы разных меланезийских островов стали генетически различными потому, что, несмотря на географическую близость островов, были репродуктивно изолированы друг от друга (Friedlaender, 2007).
ГибридизацияГибридизация происходит всякий раз, когда перемешиваются (генетически различающиеся) популяции. После того как популяция отделилась от своей родительской популяции и стала генетически отличной от нее, ее мужчины, женщины, либо и те и другие могут вступать в половые связи с представителями других популяций, в том числе и своей родительской, тем самым привнося различные аллели в образующуюся гибридную популяцию. Это может происходить просто при увеличении численности популяции, и ее распространении на территорию другой популяции или при ее перемещении вследствие изменений климата, либо по другим причинам. Европеоидные мужчины были землепроходцами и обычно брали в жены женщин из тех стран, куда они приходили. Африканцев захватывали в рабство и перевозили на другие территории в Африке, а также в Индию, на Ближний Восток, в Южную Европу и в Северную и Южную Америку, где они смешивались с местным населением. Ранние люди жили группами примерно в 150 человек (Arsuaga, 2001, с. 295), и мужчины их этих групп совершали набеги на территории других групп, убивая местных мужчин и захватывая их женщин, тем самым гибридизируя свою группу[53]53
«Как мог Моисей запретить убийство и затем прогневаться на вернувшихся с войны израильтян из-за того, что те убили лишь взрослых мужчин мидианитян? (Ветхий Завет, Книга Числа, Глава 31.) «Итак, убейте всех детей мужеского пола, и всех женщин, познавших мужа на мужеском ложе, убейте; а всех детей женского пола, которые не познали мужеского ложа, оставьте в живых для себя»: (Там же, Глава 31, стихи 17–18)». (Lazare, 2002). Исследование 500 скелетов на местах массовых убийств в Северной и Южной Дакоте, имевших место примерно в 1325 г., выявило «поразительное отсутствие останков молодых женщин» (Buss, 2005, с. 10).
[Закрыть].
Индивиды гибридизированной популяции будут иметь комбинации аллелей, полученных ими от обеих родительских популяций, причем некоторые индивиды будут адаптированы лучше, а другие хуже индивидов как одной, так и другой родительских популяций. Если гибридизированная популяция подвергнется действию естественного отбора (при благоприятных условиях даже плохо приспособленные индивиды способны выживать и размножаться), то наилучшим образом приспособленные индивиды сформируют новую популяцию. Это так называемая «адаптивная интрогрессия», поскольку новые аллели привносятся в обе родительские популяции и гибридизированные индивиды, имеющие наилучшие адаптивные комбинации аллелей, оказываются наиболее репродуктивно успешными. В Главе 30 гибридизация рассматривается более детально.
РекомбинацияПоловое размножение, практикующееся уже 1,2 миллиарда лет, изменяет популяции двумя путями. При формировании яйцеклетки часть ядерной ДНК каждой из хромосом женщины, полученных ею от своей матери (кроме X-хромосомы), обменивается на соответствующие ей участки ядерной ДНК каждой отцовской хромосомы (то же самое происходит при формировании сперматозоидов, исключая Y-хромосому). Это означает, что каждая из хромосом половых клеток не является больше полностью отцовской или материнской, но представляет собой комбинацию ДНК обоих родителей. Этот процесс называется «кроссинговером».
Каждая яйцеклетка и каждый сперматозоид содержит по 23 таких комбинированных хромосомы, а не по 23 пары неизмененных хромосом, как в остальных клетках. При оплодотворении яйцеклетки сперматозоидом его 23 непарные измененные хромосомы объединяются с 23 непарными измененными хромосомами яйцеклетки. В результате оплодотворенная яйцеклетка вновь получает 23 пары хромосом. Этот процесс называется рекомбинацией. Вследствие кроссинговера оплодотворенная яйцеклетка содержит ДНК обоих дедушек и обеих бабушек, а не только двоих из них. Рекомбинация и кроссинговер обеспечивают различие комбинированной ДНК не только между поколениями, но и между братьями и сестрами. Половое размножение перемешивает аллели до такой степени, что все, кроме однояйцевых близнецов и клонов, имеют разные генетические карты и очень вероятно уникальное сочетание признаков. Если новое сочетание имеет своим результатом повышение репродуктивного успеха, популяция будет меняться генетически с каждым циклом размножения.
Почему выработалась эта замысловатая схема перемешивания ДНК, делающая сибсов генетически различными? Для того чтобы не класть все оплодотворенные яйца родителей в одну корзину. Если все их отпрыски будут генетически идентичны, все они будут иметь одинаковые уязвимости, и при определенных неблагоприятных условиях может не выжить ни один. При изменениях среды обитания, например, перемене климата, изменениях кормовой базы, появлении новых хищников или паразитов и т. д., это положит конец разом всем их потомкам, но если их потомки будут разнообразными, некоторые смогут выжить (Zuk, 2007).
Наследственный признак может контролироваться не одним геном, но быть результатом взаимодействий различных генов. Многие признаки, включая высокий интеллект, требуют наличия у индивида определенного набора аллелей разных генов (Lykken, 1992). Таким образом, каждый раз при перемешивании аллелей образуется различный набор аллелей на признак, что может привести к большей или меньшей его выраженности или даже к формированию совершенно нового признака.
ОтборПризнаки, способствующие репродуктивному успеху, подвергаются «положительному» отбору, а препятствующие репродуктивному успеху, – «отрицательному», или «отсекающему» отбору[54]54
Культура хотя и не является наследуемым поведением, также является объектом отбора и может приводить к отбору аллелей, ей благоприятствующих (Rogers, 2008). Все, что подвержено влиянию генома, и все, что изменяет геном, может подвергаться отбору. Газонокосилки ведут отбор одуванчиков в сторону низкорослости и быстрого роста цветоножек.
[Закрыть]. Некоторые никак не влияющие на репродуктивный успех признаки называют «нейтральными»[55]55
Отметим, что отбор идет по признакам, а не по аллелям, ответственным за их развитие. Даже синонимичные аллели могут влиять на функцию кодируемых ими белков, изменяя структуру последних (Goymer, 2007), и «нейтральные» участки ДНК могут объединяться с не-нейтральными в процессе кроссинговера, делая комбинированную ДНК не-нейтральной.
[Закрыть]. Признаки, благоприятствующие положительному отбору в одной популяции или в одной среде обитания, могут в иной степени способствовать ему в другой, либо даже быть нейтральными или способствующими отрицательному отбору в другой популяции или среде. Когда солнце почти в зените, темная кожа спасительна, поскольку защищает тело от избытка ультрафиолета, но если солнечного света мало, она препятствует поглощению ультрафиолета в количестве, достаточном для синтеза витамина D. По мере совершения естественным отбором своего чародейства популяция становится все более и более адаптированной к той среде обитания, где она оказалась в случае миграции, или при изменениях среды. То есть с течением времени отбор формирует у индивидов оптимальные в данной среде наборы аллелей и признаков (Правило 10). Если в популяции в течение длительного времени присутствует (или отсутствует) высоко затратный признак (на который необходимо затратить дополнительные ресурсы, например, высокий интеллект), то это обеспечивает популяции преимущество (или причиняет ущерб) в данной среде обитания (Правило 10, Вывод 2).
А поскольку признаки не «бесплатны», но должны быть «оплачены» ресурсами организма, один из признаков может оказаться важнее других, которые будут принесены в жертву, так как их потеря меньше снижает репродуктивный успех. Некоторые такие компромиссные зависимости очевидны, например, чем больше скорость (больше «быстрых» мышечных волокон), тем меньше выносливость (меньше «медленных» мышечных волокон), но другие компромиссные зависимости трудны для осмысления (напр., увеличение тестикул означает уменьшение мозга; см. примечание 4 к таблице 12–1). Как в экономике, где добровольный обмен не происходит до тех пор, пока обе стороны не убедятся в его выгодности для себя, так и в ходе эволюции один признак не приносится в жертву ради другого, если это не обеспечивает возрастания репродуктивного успеха. Такие «сделки» и компромиссы будут продолжаться до достижения максимума репродуктивного успеха. Максимальная выраженность любого благоприятного признака не всегда является оптимальной.
Не правда ли, всегда лучше иметь больше наиболее благоприятных признаков, особенно их оптимальный набор, обеспечивающий максимальный репродуктивный успех. Как слишком большой, так и слишком маленький мозг обеспечивают меньший репродуктивный успех, чем нечто среднее. Но оптимальная выраженность признака неодинакова для разных сред обитания. Маленький мозг, вероятно, оптимален в технологически простые времена, но, видимо, становится неоптимальным при усложнении технологий.
Признакам не обязательно нужно становиться все более и более сложными, они могут все упрощаться и упрощаться. Например, такая птица, как страус, все еще имеет крылья, но уже не может летать, или змея, еще имеющая (рудиментарные) ноги, уже неспособна ходить. Признаки утрачиваются, когда перестают подвергаться положительному отбору – индивиды, их утратившие, воспроизводятся по меньшей мере так же успешно, как их сохранившие, – эти признаки уже не являются «репродуктивно выгодными», то есть вносят меньший вклад в репродуктивный успех, чем другие признаки, которые могут быть «куплены» за ресурсы, затрачиваемые на развитие этих признаков.
Ницше говорил: «Что не убивает меня, то делает меня сильнее». Это может быть или не быть верным, но применительно к эволюции высказывание: «Отбор, не уничтожающий популяцию полностью, ускоряет ее эволюцию» является верным. И чем большая доля индивидов не оставит потомства, тем быстрее популяция будет эволюционировать (при условии сохранения хотя бы минимального числа индивидов, необходимого для поддержания популяции). Чем больше обладание определенным признаком увеличивает шансы на успешное воспроизводство индивида (а отсутствие этого признака снижает такие шансы), тем быстрее этот признак будет распространяться в популяции (либо быстрее этот признак исчезнет). Природа не испытывает сентиментальных чувств, не входит в положение слабых и беспомощных, и не пытается создавать личности определенного типа. Конечным продуктом в любом случае является успешное воспроизводство, вне зависимости от того, каким бы нам это ни казалось жалким, подлым или унизительным. Воспроизводитесь активнее других и останетесь в игре, иначе вы выбываете. И так постоянно.
Другой путь эволюционировать быстрее – увеличить скорость «оборачиваемости», т. е. замещения одного поколения другим. Старение является неоправданной потерей размножающихся взрослых индивидов и не является биологически необходимым, так как некоторые виды живут сотни и тысячи лет (например, остистая сосна до 5000 лет). Но если индивид не состарится и не умрет, освободив территорию и ресурсы для следующего поколения, цикл смены поколений замедлится, и вид будет неспособен эволюционировать с достаточной скоростью, чтобы поспевать за изменениями среды. Эта проблема решается с помощью генетических часов, вызывающих старение индивидов[56]56
Это может достигаться удалением теломер с концов хромосом. Когда удаляются все теломеры, хромосома больше не может реплицироваться (Fuerle, 1986, с. 133).
[Закрыть].
Ускоренная эволюция приводит к понятию «давления отбора», указывающего на «зазор» между тем, насколько преуспевающей является популяция в своей среде обитания, и насколько успешной она бы была, если бы смогла развить новый признак или признаки. Про популяцию можно сказать, что она находилась под большим давлением отбора, если после приобретения нового признака число обладающих им индивидов быстро возрастает.
Важным следствием давления отбора является то, что если среда обитания стабильна и популяция достигла или почти достигла равновесия в этой среде, она будет находиться под слабым давлением отбора или вовсе не будет его испытывать, и вряд ли будет эволюционировать (Правило 10). С другой стороны, если среда обитания меняется, популяция окажется дальше от равновесия и с большей вероятностью будет эволюционировать. В сравнении с популяцией, остающейся на месте, популяция, перемещающаяся из одной климатической зоны в другую (как это имело место у предков человека при их миграции на Север, см. Часть IV), попадает в новую среду и сталкивается с более жестким давлением отбора, что ускоряет эволюцию.
Таким образом, давление отбора помогает определить, где вероятнее всего будет происходить эволюция. За исключением случайных резких изменений количества осадков в Африке, африканские и азиатские тропики, а также арктические и антарктические регионы являются более стабильными средами, чем температурные зоны, расположенные между ними, которые не только испытывают большие ежегодные сезонные изменения, но и пережили несколько ледниковых периодов, длившихся тысячи лет. Как следствие этого, давление отбора сильнее в умеренных температурных зонах, и обитающие там виды, включая предков человека, наиболее вероятно эволюционировали там, а не в тропиках или в полярных регионах[57]57
Очевидно, что люди, живущие в различных географических регионах с разным климатом, будут испытывать различающееся давление отбора (Voight, 2006). Следовательно, прошедшие отбор аллели одной расовой группы будут существенно отличаться от прошедших отбор соответствующих им аллелей другой расовой группы.
[Закрыть].
Глава 5
Селекторы
«Селектором» называют что бы то ни было, что увеличивает или уменьшает репродуктивный успех индивида, вследствие обладания (или не обладания) им определенным набором признаков. Сегодня, при современной науке и системе международной помощи, людям нет необходимости слишком сильно заботиться относительно селекторов, за исключением случайных инфекций и капризов противоположного пола, но древние люди подвергались безжалостному действию селекторов, находившихся далеко за пределами их контроля. Мы должны быть благодарны им за это, так как без ужасных страданий и смертей, претерпеваемых ими под влиянием этих селекторов, мы не имели бы тех благоприятных признаков, которыми обладаем сегодня.
Селектором может быть холодный климат, губящий теряющих тепло слишком легко, жаркий климат, убивающий неспособных терять тепло достаточно быстро, хищники, уничтожающие плохих бегунов, бактерии, губящие имеющих слабую иммунную систему, лучше приспособленный конкурент (возможно, даже индивид из той же самой популяции) и так далее. При наличии двух полов селекторами могут выступать представители одного или обоих полов, выбирающих представителей противоположного пола за красивое оперение, лучшее пение или какие-нибудь странные придатки тела. В действительности все во внешней среде, влияющее на репродуктивный успех, может быть селектором. Это включает и человека, могущего избирать признаки, представляющиеся ему полезными, «милыми» или иным образом привлекательными.
КлиматКлимат является сильнейшим селектором не только для людей, но и почти для всех живых существ, так как непосредственно влияет на количество доступной пищи, что напрямую определяет численность способного выжить потомства. Климат включает температуру, осадки, количество солнечного света, атмосферное давление, содержание в воздухе кислорода и углекислоты, а также размах сезонных изменений. Все это вместе определяет, какая пища и в каком количестве доступна, когда и где она доступна, и насколько легко ее получить.
Влажность, количество осадков и численность хищников и добычи могут меняться в разные сезоны, но решающими являются изменения количества энергии, доступной для использования живыми существами, например, солнечного света, пищи или тепла. Средняя температура является хорошим показателем доступной энергии. На температуру влияет высота над уровнем моря (она снижается примерно на 0,65 °C при подъеме вверх на каждые 100 метров) и теплые океанские течения (в Европе она снижается примерно 0,5 °C при перемещении на Восток на каждые 5 градусов долготы). Но наибольшее влияние на среднюю температуру оказывает количество достигающего земной поверхности солнечного света. Разница расстояния от Солнца до Земли зимой (147 545 000 км) и летом (152 533 000 км) меньше влияет на количество достигающего Земли солнечного света, чем угол между потоком солнечного света и земной поверхностью. Экватор, расположенный непосредственно под Солнцем, получает намного больше солнечного света, чем полюса, куда солнечный свет падает под малым углом, когда Солнце там вообще восходит над горизонтом.
Точка на поверхности Земли, на которую солнечные лучи падают отвесно, описывает синусоиду по земной поверхности, проходящую через экватор от 23°26′ 22» северной широты (тропик Рака, см. рис. 17–6 на вклейке) летом в Северном полушарии до той же южной широты (тропи Козерога), когда в Северном полушарии зима. За исключением редких катастроф, количество солнечного света, попадающего на каждый участок земной поверхности, существенно не изменилось со времени возникновения жизни на нашей планете примерно 3,8 миллиарда лет назад (Haywood, 2000, с. 13), но миграции с одной широты на другую изменяют количество солнечного света, получаемое популяцией.
Среднегодовое количество солнечного света уменьшается при удалении от экватора (что при движении на север в Евразии вызывает снижение средней температуры примерно на 0,5 °C на каждые 100 км). Более существенным является то, что при движении от экватора к полюсам разница между летней и зимней температурами возрастает до максимума, а затем вновь уменьшается. В температурных зонах с максимальным различием температур пища появляется в изобилии в конце сезона вегетации, но зимой пригодные в пищу растения найти трудно, хотя стада крупных травоядных животных могут там и оставаться.
В истории Земли происходили катастрофические изменения климата, как то ледниковые периоды, столкновения с кометами и гигантские извержения вулканов[58]58
Ход эволюции человечества изменяли и иные катастрофы, помимо климатических. Современным примером является мутация «делеция дельта 32» гена рецептора CCR5, встречающаяся у части северных европейцев и помогшая им выжить при эпидемии бубонной чумы в Средние века, унесшей жизни сотен тысяч человек. В наше время это обеспечивает некоторую защиту от СПИДа (Guilherme, 2002).
[Закрыть]. Большинство из них происходило задолго до появления людей, и некоторые затрагивали лишь небольшие площади. Крупных катастроф, вызванных столкновениями с кометами или астероидами, за время существования человечества не происходило, но оледенения, подъемы и понижения уровня морей влияли на ареалы распространения наших предков.
Гора Тоба, или Тоби, как ее ласково называют местные жители – это вулкан на острове Суматра в Индонезии. Сегодня он миролюбив и не проявляет наклонности к уничтожению планеты, но 73 тысячи лет назад он представлял собой разъяренное чудовище, выбросившее в небо 2800 км3 магмы вместе с миллионами тонн ядовитых сернистых газов и пепла, затмивших небо в северных широтах. Толщина слоя пепла, выпавшего по всему северо-западу Индии, достигла местами до 5,5 м (Savino, 2007). Анализ ледовых кернов показал, что средняя температура в Гренландии упала тогда на 16 °C примерно за шесть лет. Так как Тоба расположен всего в трех градусах к северу от экватора, количество энергии, достигающее Земли и обеспечивающее ее согревание и фотосинтез, резко снизилось. Наступившая в результате этого «вулканическая зима» уничтожала растительность, потом травоядных животных, а затем хищников и человека. Влияние извержения было наиболее серьезным в северных широтах, где зимы и так затрудняли выживание, но на Африку Тоба не оказал значительного влияния. Некоторые из людей, пострадавших от извержения Тоба, могли лучше, чем другие, справляться с его последствиями, так что Тоба не только уничтожал людей, он изменил геном выживших популяций, как мы это увидим в Главе 20.
Было два ледниковых периода, повлиявших на эволюцию современного человека, вместе именуемых Вюрмским оледенением. Первый ледниковый период начался примерно 73 000 лет назад после извержения вулкана Тоба и длился примерно до 55 000 лет назад. Хотя возникновение ледниковых периодов связывают с изменениями орбиты Земли (Hayes, 1976), весьма вероятно, что Тоба спровоцировал ледниковый период или усугубил его тем, что увеличил альбедо – отражение солнечного света обратно в космос от поверхности снега и льда. Температура снизилась, и снег оставался на поверхности земли дольше, пока совсем не переставал таять, превращаясь в мощные ледники, накрывавшие землю и медленно двигавшиеся на юг, стирая большинство свидетельств обитания там человека. Вся поверхность земли к северу от Индии и большая часть Западной Азии к северу от Кавказских гор находилась под слоем льда, но некоторые центральные районы Китая оставались свободными, давая преимущество обитателям Восточной Азии в сравнении с европейцами. Воды океанов испарялись и выпадали в виде снега, не возвращаясь обратно, из-за чего уровень моря понизился, береговая линия расширилась и образовались сухопутные переходы между континентами и бывшими островами. В Африке, однако, материкового оледенения не было[59]59
Возникли лишь ограниченные по площади ледники вокруг гор Килиманджаро и Кения (Hasterath, S., The Glaciers of Equatorial East Africa, 1984).
[Закрыть], и даже вблизи самой южной оконечности Африки происходили только «умеренные флуктуации климата» (Howells, 1959, с. 120), хотя и была засуха.
Наступление холодного воздуха и льдов с севера заставляло жителей Европы и Западной Азии двигаться далеко на юг (в меньшей степени в Восточной Азии), без сомнения вступая в конфликты с жившими там людьми. Численность населения в Евразии резко снизилась[60]60
«Бедность артефактов в лессовых отложениях равнин Центральной Азии указывает на то, что большая часть этих равнин была безлюдна в период от 73 000 до 55 000 лет назад» (Hoffecker 2002, с. 19).
[Закрыть], и давление отбора в сторону адаптации к холоду было очень жестким (Ambrose, 1998). Те обитатели Евразии, что были лучше адаптированы к холодному климату, мигрировали в меньшей степени, понесли меньшие потери и передали потомству свои аллели, обеспечивающие ему признаки, ответственные за адаптацию к холоду.
Когда вновь потеплело, ледники стали таять и уровень морей повысился. Берингов пролив вновь отделил Северную Америку от Азии. Побережья и низменные районы были затоплены, свидетельства обитания там человека были уничтожены, а возвышенные участки суши вновь стали изолированными островами. Жители Евразии последовали за отступающими льдами на Север, вновь увеличили свою численность и повторно колонизировали Евразию.
Второй ледниковый период длился примерно от 30 000 до 12 000 лет назад. Он был более суровым, но оказал меньшее влияние на физическую эволюцию человека, потому что к этому времени люди эволюционировали культурно (например, научились изготавливать одежду, строить убежища и т. п.) и были лучше приспособлены к борьбе с холодом. Уровень морей снова упал на 130 м ниже нынешнего, что позволило обитателям Евразии легко проникать в Северную Америку, Австралию[61]61
Но даже при наинизшем уровне океана между Австралией и Азией оставалось около 50 км открытого океанского пространства (Sykes, 2001, с. 285).
[Закрыть], Японию и Африку. Отделяющий Англию от материка пролив Ла-Манш был сушей, и можно было свободно пройти из Франции в Англию и в Ирландию (Sykes, 2001, с. 9). Хотя оба ледниковых периода резко снизили численность населения Евразии, при повышении температуры народонаселение существенно умножилось, а появление земледелия примерно 12 000 лет назад вызвало еще больший рост населения.
На рисунке 5–1 показаны объемы льда на Земле за последние 450 000 лет. Обратите внимание, что примерно от 120 000 до 10 000 лет назад было гораздо холоднее, чем сейчас; пики первого и второго ледникового периодов отмечены стрелками.