355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рэм Петров » Сфинксы XX века » Текст книги (страница 13)
Сфинксы XX века
  • Текст добавлен: 12 октября 2016, 03:50

Текст книги "Сфинксы XX века"


Автор книги: Рэм Петров


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 13 (всего у книги 14 страниц)

Но впереди еще столько вершин, которые нам пока не видны.

Сэр Фрэнк Макферлен Бернет, критически анализируя слабые стороны новой теории, всегда подчеркивает, что положительный эффект теории еще и в том, чтобы вызвать поток исследований, подтверждающих или опровергающих ее. Рассуждениям Бернета созвучны слова известного биолога Джона Лилли:


«Если же окажется, что я кругом не прав, я буду утешаться сознанием, что в истинно научных исследованиях ни один опыт нельзя считать напрасным: даже при экспериментальном опровержении какой-либо теории выявляются новые и ценные данные».

Иммунология и лучевая болезнь

А теперь – сугубая связь с практикой. Лучевая болезнь.

Ее узнали давно, эту болезнь. Вскоре после открытия радиоактивности. Но ворвалась в жизнь человечества она после 1945 года, после взрыв атомных бомб в Хиросиме и Нагасаки. На тысячи людей подействовали ионизирующие излучения и самого взрыва и радиоактивных изотопов, которые он породил. Тысячи людей заболели лучевой болезнью, многие погибли. Многие страдают от ее последствий до сего дня. И до сих пор умирают от взрывав, произведенных в августе 1945 года.

В последующем оказалась – лучевая болезнь не только военная проблема. В мирных условиях возможны несчастные случаи на атомных предприятиях. Ионизирующими излучениями – гамма-лучами, лучами Рентгена – широко пользуются для лечения злокачественных опухолей. Приходится применять очень высокие дозы облучения – иначе не будет эффекта.

Опухоль гибнет. Но, вылечившись от рака, человек заболевает другой болезнью. Ее надо лечить. Очень часто, отказываются от полноценной рентгенотерапии из-за отсутствия полноценного лечения лучевой болезни. Научившись лечить ее, мы сможем спасти многих сегодня неизлечимо больных раком.

Возможное лучевое поражение космонавтов за счет космической радиации сегодня приобрело уже первоочередное значение. Длительные полеты не за горами. Активация солнечной деятельности может привести к переоблучению космонавтов ионизирующими излучениями солнца.

Иммунологические исследования при лучевой болезни оказались чрезвычайно важными. Возникла новая отрасль знаний – радиационная иммунология. Успехи ее имеют самое непосредственное отношение и к пониманию лучевой болезни и к ее лечению.

В результате облучения наиболее сильно поражаются четыре системы организма, нарушения которых и определяют картину острой лучевой болезни:

1. Кроветворная система. Поражения в костном мозге, селезенке и лимфатических узлах приводят к уменьшению клеток крови. Сначала лейкоцитов, а потом и эритроцитов. Развивается анемия. Гибель от поражения кроветворения называют костномозговой смертью.

2. Желудочно-кишечный тракт. В результате тошнота, рвоты, поносы, нарушение пищеварения и всасывания питательных веществ из кишечника.

3. Повреждение биологических барьеров. В результате повышается проницаемость тканей, в том числе и кровеносных сосудов. Как следствие этого развиваются кровоизлияния под кожей, в кишечнике, в легких и любых других тканях.

4. Чрезвычайно страдает иммунитет. Организм оказывается беззащитным перед микробами. Развиваются инфекционные осложнения, которые часто являются непосредственной причиной смерти облученного организма.

Иммунологи справились с одной из задач: проблема предупреждения и лечения инфекционных осложнений лучевой болезни, в основном решена. Предложены эффективные методы предупреждения инфекций, создания иммунитета у облученных с помощью вакцинаций и введения иммунных сывороток. Разработаны принципы лечения инфекционных осложнений антибиотиками. Иммунологи могли бы считать свою миссию в области радиационной медицины выполненной, если бы проблема восстановления кроветворения при лучевой болезни не столкнулась с иммунологией.

Опять приходится вернуться несколько назад. Более перспективный способ лечения острого лучевого поражения даже при сверхсмертельных дозах – это восстановление кроветворения за счет пересадки костного мозга необлученного донора. Лечебный эффект стопроцентный. Но костный мозг приходится брать от другого – чуждого в антигенном отношении – организма.

И вырастают все проблемы иммунологической несовместимости тканей.

Возникает сфинкс. Возникает в результате спасения от лучевой смерти. Но, если вы еще помните болезнь рант, сфинкс почти на 100 процентов обречен на смерть от иммунной агрессии пересаженных клеток. А как бороться с реакцией трансплантата против хозяина, еще неизвестно. Союз иммунологии и радиационной медицины продолжается. И кто знает, может быть, на стыке этих двух дисциплин будет решена проблема преодоления барьера несовместимости тканей при пересадках.

Может быть, именно здесь будет решено сразу несколько задач: лечение лучевой болезни, преодоление барьера несовместимости тканей, частично разрешится вопрос лечения рака, злокачественного белокровия.

Союз радиологии и иммунологии очень перспективен. Трудно предусмотреть, что он даст. Но мы надеемся. А может быть, как это часто бывает, может быть, пройдут годы, будет затрачено множество усилий – и вдруг появятся какие-то две новые молодые науки. И, занимаясь совершенно другой проблемой, решат они проблемы, над которыми мы ломаем свои головы.

Иммунология и космос

Иммунология и космос – одна из самых современных связей иммунологии.

Как видите, все новые и новые связи. Надо сказать, что мы не можем упрекнуть в этом нашу иммунологию. Все эти союзы и сочетания очень многое дали и сугубо теоретической биологии, шагающей по ступеням познания, и сугубо практической медицине, спасшей уже много-много жизней.

Но иммунология еще далеко не исчерпала себя. Впереди ее ждут все новые и новые союзы, новые плоды совместных усилий ученых смежных наук.

Вот и новый союз.

Конечно, говорить «иммунология и космос» не совсем верно. Иммунология вступает в связь не с самим космическим пространством, а с другой научной отраслью. Не будем придираться к словам. Понятно, что речь идет о космической медицине и биологии самых последних лет.

Человек выглядывает из ракеты

В наиболее краткой и приближенной форме задачи космической медицины: обеспечение нормальной жизнедеятельности организма в герметически замкнутых пространствах кораблей; изучение влияния космического полета – невесомости, ускорения, космической радиации и других – на человека; обеспечение нормальной жизнедеятельности человека в условиях его будущего обитания на других планетах и небесных телах.

При этом возникает масса биологических проблем. А перед иммунологией встает вопрос поведения в необычайных условиях космического полета одной из важнейших систем человеческого организма – иммунологической системы защиты от микробов. Будет ли устойчивость организма к бактериям и вирусам столь же надежна, как в нормальных условиях жизни на Земле?

Этот вопрос может показаться излишним. Ведь и результаты известных всему миру космических полетов не дают оснований опасаться инфекционных осложнений. Космонавты отлично перенесли все условия полета. Правда, продолжительность этих полетов измерялась пока лишь днями или неделями.

Но нельзя забывать: мы живем в такое время, когда первый этап завоевания космоса – освоение и исследование околоземного космического пространства – завершается. Следующий этап – освоение ближайших небесных тел, в частности планет солнечной системы. А наименьшее из возможных расстояний от Земли до Марса – 78 миллионов километров.

С медико-биологической точки зрения главная особенность следующего этапа – длительность. Она-то во многом и определяет задачи, стоящие перед космической биологией и медициной. Космическая медицина и биология наших дней должны изучить и обеспечить длительные космические полеты, продолжающиеся недели, месяцы, годы. Пока главным образом изучали поведение организма при кратковременных перегрузках и невесомости, функциональные возможности и особенности сердечно-сосудистой, нервной и других систем в этих условиях, вопросы работоспособности, тренировки, психофизиологии, С наступлением эры длительных космических полетов возникают новые ведущие биологические проблемы. Таковыми являются, в частности, иммунологические проблемы: взаимодействие человеческого организма и микробов во внеземных условиях. Это уже целая отрасль науки – космическая иммунология.

По меньшей мере три предпосылки определяют возникновение этой отрасли.

Во-первых, люди путешествуют в космических кораблях и везут с собой обязательных бесплатных пассажиров – микробов – обитателей их кишечника, кожи рта и других полостей организма. Кабина корабля, замкнутое пространство, – своеобразная ампула, в которую помещены и герметически закрыты люди с микробами. Стерилизация человека невозможна хотя бы потому, что ряд микробов выполняет жизненно важные для организма функции – ферментативные, витаминообразующие и прочие, и расстаться с ними нам будет не просто тяжело – сегодня это абсолютно невозможно. Вместе с тем многие представители нормального микробного населения нашего тела, безусловно, носители зла – либо всегда, либо при определенных условиях. Например, стафилококки, стрептококки, кишечная палочка, возбудители газовой гангрены, вирусы. В условиях закупоренной «ампулы» – кабины – процессы циркуляции и удаления микробов будут иные, чем в обычных наземных условиях. Возникнут изменения в микробных ассоциациях воздуха, поверхностей в кабине и теле человека. Изменение привычных, индивидуальных для данного человека микробных сообществ может произойти также вследствие тесного контакта космонавтов между собой, опять же в герметизированном пространстве. Возникает ранее не существовавшая проблема заражения одного человека микробами, нормальными для другого. Но у первого они могут вызвать различные болезненные состояния. Отсутствие обычных для Земли процессов циркуляции микробов и очищения воздуха от них может привести к значительному накоплению в кабине и теле космонавтов отдельных нежелательных представителей микробов.

Недавно были опубликованы данные советских исследователей об условиях длительного – от 20 до 120 дней – обитания людей в герметических пространствах, имитирующих условия полета. Выяснилось, что в этих условиях значительно возрастает содержание микробов, в том числе и болезнетворных, как в окружающей среде, так и на теле испытуемого.

Таким образом, в условиях длительных космических полетов реально возможны изменения нормального микробного населения тела космонавтов и окружающего их пространства. Ожидаются изменения обычных микробных ассоциаций и чрезмерное накопление отдельных форм бактерий. По-видимому, микробы будут также изменять свои свойства в результате, например, мутаций, возникающих под влиянием ионизирующих излучений. Иммунологию волнует, какие виды микроорганизмов займут главенствующее положение в этих новых ассоциациях, какие типы внутри этих видов. И кто может явиться наиболее вероятным и частым болезнетворным агентом? Эти вопросы ставятся не для удовлетворения научной любознательности, ибо следующий, вытекающий из предыдущих вопрос: против каких возбудителей необходимо вакцинировать перед полетом?

Второе, что интересует космическую иммунологию: необходимость исследования действия факторов и условий длительного полета на невосприимчивость к возбудителям инфекций, в том числе и к представителям обычной микрофлоры тела человека. Люди в этих необычных условиях, помимо самого фактора герметизации, будут находиться под воздействием ряда новых и длительно действующих факторов: невесомость или искусственная гравитация, специальная диета и искусственная атмосфера, вынужденное ограничение подвижности, влияние космической радиации и др. И как поведёт себя иммунологическая защита при всех этих странностях, пока неизвестно. Вдруг все эти факторы врозь, а может, и купно окажутся настолько неблагоприятными, что защитные силы организма ослабнут? Да еще все это в сочетании с теми сдвигами в микрофлоре тела и кабины, о которых говорилось выше.

Основной путь решения этих вопросов – моделирование на Земле и изучение влияния необычностей космического полета на иммунитет. Надо выяснить, сколь эффективна будет вакцинация в этой ситуации. Вскрыть механизм действия этих условий на основные иммунные процессы. Космическая иммунология должна не только решить эти задачи, но и найти пути предотвращения возможных осложнений.

Третья проблема – почти фантастика. Но она не менее важна, а со временем может стать ведущей проблемой космической иммунологии. Речь идет о возможном столкновении человека с внеземными формами жизни, в частности с внеземными микроорганизмами. Отправляясь в космос, мы отправляемся почти в неведомое. Кто знает, что будет при очередном полете и особенно при первом залете куда-нибудь? Нас, иммунологов, интересуют больше встречи с микробами. Фантастов, может быть, больше – с разумными существами. Но встречи с микробами могут быть столь фееричны, необычны и фантастичны по своим результатам, что писатели-фантасты еще пожалеют об упущенных возможностях удивительных предположений. Неизвестные микробы могут помочь ликвидировать болезни, могут создать безумно чудных качеств вино, сделать человека светящимся в темноте. Это первое, что приходит в голову. А если поработать, то можно дойти до совершенно сногсшибательно заманчивых выдумок. А ведь в конце концов микробы наиболее вероятно будут первыми встретившимися нам аборигенами. Рано или поздно такое столкновение произойдет. Вопросы, возникающие в связи с этим, без фантастических предположений имеют самое тесное отношение к экзобиологии – науке о жизни за пределами нашей планеты. Иммунологию прежде всего интересует, что произойдет, когда встретятся землянин и совсем, совсем чужой микроб. Сумеет ли человеческий организм быть столь же невосприимчивым к чужим микробам, как и к своим, земным? Вот в чем вопрос.

Иммунитет как способ защиты организма возник вследствие эволюции жизни в конкретных условиях, земных форм жизни. Реакции иммунитета направлены на отторжение или нейтрализацию всего чужого, проникающего в организм, – вирусов, бактерий, животных клеток, тканей, белков. Но для того чтобы включились реакции иммунитета, посторонние тела (живые или мертвые) должны быть распознаны и признаны чужеродными. Первая задача защитных сил сказать: «свой или чужой». Любые клетки или их продукты принимаются за чужое и включают реакции иммунитета, если они несут генетически чужеродную информацию. Для этого они должны быть построены из эволюционно знакомых для иммунных механизмов молекул и признаки чужеродности должны быть записаны, так сказать, земным шрифтом. Степень универсальности иммунитета неизвестна. Если внеземные микроорганизмы и продукты их жизнедеятельности не несут химических группировок, позволяющих человеческим иммунным механизмам распознать их как чужеродных и они не будут распознаны и не включат защитные реакции, возможно безудержное размножение чужих микробов в крови и тканях человека. Что тогда?..

Еще раз вспомним Герберта Уэллса. «Война миров». Пришельцы с Марса погибают от невинных земных бактерий. Сегодня уэллсовская фантазия превращается в реальную научную проблему. Иммунология уже сейчас имеет настораживающие в этом отношении факты. Как говорится, иммунология уже «получила сигнал».

Нам уже абсолютно ясно: иммунитет стимулируется чужеродными веществами – антигенами. В настоящее время синтезированы очень большие молекулы полипептидов, состоящие из основных компонентов белка – аминокислот. При определенной величине и составе молекул эти искусственные полипептиды становятся антигенами. Но при одном условии. Они должны быть составлены из таких же в оптическом отношении аминокислот, из каких построено все живое на Земле. Из аминокислот, отклоняющих плоскость поляризованного света влево, из левовращающих изомеров. Правовращающие соединения имеют абсолютно то же химическое строение. Лишь одна группировка расположена под иным углом ко всей молекуле. И этого, оказывается, достаточно, чтобы сложное органическое вещество, составленное из таких правовращающих молекул, не воспринималось как чужое, не стимулировало иммунологических реакций! Земной организм, построенный на основе левовращающих соединений, не может распознать (или делает это несовершенно) чужеродное вещество, составленное из правовращающих аминокислот. Ясно первое, что уже нас волнует. Чужая жизнь, которая рознится от нашей всего лишь вращением плоскости поляризованного света. Всего лишь! Что, если микроорганизмы других миров построены на основе правовращающих соединений и наш иммунитет окажется бессильным перед ними?

Задачи космической иммунологии в этой области чрезвычайно трудны и интересны: моделирование возможных реакций млекопитающих на различные природные и искусственные высокополимерные соединения.

Ибо какова бы ни была форма внеземной жизни, она обязательно связана с высокополимерными соединениями. Изыскание путей стимуляции иммунитета по отношению к ряду необычных полимеров разного класса, изыскание путей превращения неантигенных соединений в антигены и иммунологические исследования объектов из космоса – вот этапы космической иммунологии в этой области. (Последний этап имеет свой подвопрос: изыскание объектов из космоса.)

Иммунология и криминалистика

В одной из предыдущих глав было рассказано о Жюле Борде, Николае Чистовиче и об их открытии. О том, что клетки или белки разных животных и человека отличаются друг от друга в антигенном отношении, что иммунная сыворотка против эритроцитов барана соединяется и склеивает только бараньи эритроциты и не взаимодействует ни с какими другими. Антитела против человеческих белков вызывают преципитацию (осаждение) только белков человека.

В другой главе, читая про Ландштейнера и Винера, вы познакомились с тем, что разные люди содержат в своих эритроцитах различные антигены. У одних А, у других В. Это сочетается с содержанием в тех же эритроцитах М или N фактора. Так же различны люди по содержанию в их клетках тех или иных вариантов резус-антигена. Если продолжить описание открытий эритроцитарных антигенов, начатое Ландштейнером, то необходимо перечислить целый ряд дат. После обнаружения антигенов системы Резус были открыты антигенные системы Лютеран, Келл и Льюис (1946 г.), Даффи (1950 г.), Кидд (1951 г.), Диего (1954 г.) и другие. Эти даты и эти системы – блестящее подтверждение пророчества Карла Ландштейнера.

Получая в 1930 году Нобелевскую премию, в своей торжественной речи по этому поводу Ландштейнер говорил, что открытие все новых и новых антигенов в клетках человеческих тканей будет продолжаться бесконечно, пока не станет очевидным, что двух тождественных в антигенном отношении людей нет.

Подтверждение и изучение антигенной индивидуальности каждого организма имеет большое теоретическое значение. Возможность выявлять эту индивидуальность с помощью иммунных сывороток – не меньшее практическое.

Необходимо, например, определить, кому принадлежат пятна крови: человеку или животному. Ясно, что криминалистике часто приходится решать такие задачи. Иногда эта задача – главный вопрос следствия. Решить ее можно только с помощью иммунных сывороток. Ничто другое не поможет различить кровь человека и, например, собаки. Микроскоп или биохимические методы здесь бессильны.

Судебные медики всегда имеют в арсенале своих средств набор иммунных сывороток: против белков человека, лошади, курицы, собаки, коровы, кошки и т.д.

Исследуемое пятно крови смывают. Раствор очищают от грязи: каких-нибудь соринок или частиц материала, на котором было пятно. А затем все просто – с этим раствором ставят реакции преципитации тем же «старым» методом, как это делал Николай Чистович. Делают наугад.

Используют весь набор иммунных сывороток. Чья сыворотка вызовет помутнение раствора – того и кровь. Это, так сказать, общая ситуация. Человек или курица? Человек или тигр? А бывает более узкий вопрос: который человек испачкал предмет кровью?

Нож испачкан кровью. Владельца ножа подозревают в убийстве. Кровь смывают с ножа. Делают раствор. Ставят реакции с иммунными сыворотками. Ответ: кровь человека. Владелец тоже говорит: «Да. Я порезал им палец». Опять ставят реакции, теперь уже с разными сыворотками человека. Ответ: кровь группы АВ, резус – отрицательна, имеется фактор М и т.д. Совпадает с кровью владельца ножа – значит правда: кровь на ноже его. К тому же у убитого тоже можно взять кровь таким же образом. Можно сравнить антигенный состав крови на ноже и крови убитого. Совершенно ясно, как много может дать это исследование следствию. Сколько напрасно подозреваемых, невинных людей может спасти в этой ситуации иммунология!

Или более курьезная задача. В Австралии существует закон, по которому сосиски должны быть только из говядины. Подмешивание более дешевых сортов мяса – например, свинины, кенгурятины – недопустимо. Изготовление и продажа таких сосисок карается законом. Вопрос ясен. Имея на вооружении иммунологию, такие обманы не страшны. Вернее, они возможны. Но кто решится при таком контроле?

Всякий прогресс, всякие новые достижения науки опасны для обманщиков. И хотя вспомнившийся мне случай не имеет отношения к иммунологии, он близок к курьезу с сосисками.

Американский физик Роберт Вуд известен, кроме своих трудов, открытий и изобретений, еще и неистощимой выдумкой и хитроумием.

Мужчина подает блюдо женщине

В молодости, живя в пансионате, он заподозрил вместе со всем остальным населением их «ковчега», что хозяйка недобросовестна. Остатки обеденного мяса она подает утром в виде жаркого. Это надо было доказать. Вуд подмешал к своему обеденному бифштексу совершенно безопасный хлористый литий. Утром он унес кусок жаркого в лабораторию и провел спектроскопический анализ. Литий был обнаружен.

Есть ситуации и задачи в криминалистике не уголовного характера. Много несчастий принесла война. Потерялись дети и родители. Потерялись фамилии и имена. Единственная возможность подтвердить отцовство при каких-то неясных предположениях – иммунологические реакции. Ведь антигены передаются по наследству. И если у отца и матери нет фактора М, то его не может быть и у ребенка. И наоборот, если оба родителя принадлежат ж группе А, то ребенок не может иметь группу крови В или АВ. Действительно, все так, иммунологический метод установления отцовства самый точный и самый объективный.

В некоторых странах, например в Англии, к вопросам определения отцовства относятся особенно щепетильно. Там это чаще всего не связано с войной. Строгие законы об отцовстве объясняются строгими законами о наследниках и правах наследования капиталов, титулов, прав, привилегий.

Лорд объявляет своим наследником сына, которого родила не его жена. Может возникнуть необходимость в доказательствах. Или вдруг появляется джентльмен, объявляющий себя наследником миллионера. Может быть, это правда, но, может быть, он и аферист. Часто окончательный ответ дает анализ антигенов. Сначала проводят анализ по АВО. Если ответ отрицательный, указанное отцовство отрицается – все, на этом анализ кончается. Если подтверждается, исследуют наследование других антигенных признаков. Сначала систему ММ. Потом систему резус-фактора. Положительный ответ дается после относительно разностороннего анализа.

Отрицать легче. Поэтому отрицание отцовства всегда абсолютно, а подтверждение всегда несет крупицу условности. Доказывать труднее.


    Ваша оценка произведения:

Популярные книги за неделю