355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рэм Петров » Сфинксы XX века » Текст книги (страница 11)
Сфинксы XX века
  • Текст добавлен: 12 октября 2016, 03:50

Текст книги "Сфинксы XX века"


Автор книги: Рэм Петров


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 11 (всего у книги 14 страниц)

Спасенные от смерти

Вы, конечно, понимаете, как важно научиться лечить лучевую болезнь. Как и всякую другую болезнь, от которой умирают.

Герой фильма «Девять дней одного года» Гусев во время работы облучается нейтронами, и ему грозит смерть от лучевой болезни. Врач в фильме говорит, что надежного средства спасти его нет. И врач рассказывает, как в опытах на собаках оказывается эффективной пересадка костного мозга от здорового животного. Но и в опытах спасение от гибели происходит не всегда, а только в некоторых случаях.

После прочтения стольких страниц книги, уже, наверное, ясно, что это не грешит против истины. С помощью облучения ведь могут быть созданы радиосфинксы. У смертельно облученных животных кроветворные клетки могут прижить и спасти от лучевой смерти.

Естественна мысль: если можно спасти животных, можно спасти и людей. Но нужно полностью разработать методику. Предусмотреть все возможные осложнения. Приблизиться к 100 процентам удач. После этого можно внедрять в практику подобный метод лечения острой лучевой болезни. Причем не только лучевой болезни, возникающей в результате несчастных случаев, но и в результате сознательных облучений с лечебной целью. То есть тогда можно не бояться применить с лечебными целями смертельные дозы облучения для лечения рака, лейкозов и некоторых других заболеваний. Этот метод терапии пока ограничен неумением лечить возникающую лучевую болезнь.

Если бы можно было «выжечь» рак до последней клетки! Пока нельзя. Но, может быть, радиосфинксы помогут. Видите, выход в практику ограничивается уже не только пересадками.

Практика имела случай применить экспериментальные успехи.

Французские ученые лечили нескольких югославских физиков, попавших в аварию атомного реактора.

Авария произошла 15 октября 1958 года в Институте ядерных исследований под Белградом. Пострадали 6 человек: четверо студентов-физиков и два техника. Облучение было большим, и через две недели у пострадавших развилась острая лучевая болезнь. В это время они были уже в Париже, куда их направили специальным рейсом для лечения. Состояние больных ухудшалось. Известный французский врач Жорж Матэ решил провести им пересадку костного мозга.

Первым подвергся этой операции 24-летний студент Живота Вранич. Первым донором костного мозга стал рабочий-француз Раймон Кастанье.

Трансплантация состоялась 11 ноября.

Донор и реципиент лежали рядом. Обоим дали наркоз. Чтобы набрать нужное количество клеток костного мозга, донора пришлось уколоть 23 раза в 23 точки его костной системы, где находятся кроветворные клетки костного мозга. Полученные клетки вводили в вену Вранича. Затем пересадка костного мозга была произведена остальным пяти пострадавшим.

Живота Вранич умер. Доза облучения, полученная им, была наибольшей, и его не удалось спасти. Все остальные поправились. Пересаженный костный мозг прижил, произошло размножение трансплантированных клеток, которые на некоторое время заместили разрушенные облучением. Эти люди в течение нескольких недель были сфинксами – и выздоровели.

Среди них была 25-летняя женщина, Розанда Дангубич. Осенью 1960 года она вышла замуж. 1 марта 1965 года у Розанды родилась дочь.

Невольный эксперимент продолжается. Наблюдение за бывшими сфинксами очень важно. Столь же важно наблюдение и за дочерью Розанды Дангубич.

1958 год был годом успеха и поисков в этом направлении. Начало часто бывает успешным, закрепить успех труднее. В этом же году произошел и другой случай.

У 20-летнего Джона Ритериса недостаточность обеих почек. Джон умирает. Но у него брат-близнец Эндрю. Близнец-то близнец, да разнояйцевый. Все равно что не близнец. И тем не менее брат дает почку.

Группа врачей бостонского госпиталя, хирург, радиолог, уролог и терапевт решают рискнуть почкой брата.

Джона подвергают облучению, сводят к минимуму сопротивляемость и пересаживают почку.

Оба живут, но Джона лечат от лучевой болезни и защищают от возможных инфекций.

Проходит восемь месяцев, и восстанавливается иммунитет. Почка под угрозой.

Новое массивное облучение. Но оно уже не помогает. Почка Эндрю вошла в неразрешимое противоречие с иммунитетом Джона.

Биологические ясли

Этот раздел еще об одном новом понятии – о тканевых и клеточных культурах.

Некоторые клетки можно поместить в пробирку со специальной питательной средой, и эти клетки будут жить и размножаться, причем размножаться бесконечно. Их нужно только пересаживать из пробирки в пробирку. Чтобы получить много клеток, их «засевают» из пробирки в особый плоский флакон, называемый матрасом. С таких матрасов можно получить «урожай» в миллиарды клеток.

Становится возможным изучать закономерности жизни изолированных человеческих клеток и клеток животных, действие на них различных лекарств, изучать особенности обмена веществ и прочие не менее важные вещи.

Если клеточные культуры заразить вирусами, то они размножаются в этих клетках, как в живом организме. Можно изучать закономерности их размножения. Можно получать вирусную массу для вакцин. Можно искать химические агенты для лечения вирусных болезней (грипп, корь, полиомиелит и др.).

Именно так вирусологи и поступают. Все это они делают в пробирках и матрасах – иначе говоря, в стеклянных условиях, в стеклянном мире. Эта жизнь, этот эксперимент переводятся на латынь и получают самостоятельный смысл и имя in vitro (ин витро), то есть в стекле.

In vitro размножается культура человеческих или животных клеток. Размножается бесконечно. Как бы автономный кусочек человеческого тела или тела животного.

Многие клетки могут автономно жить и размножаться. Например, клетки соединительной ткани – фибробласты, некоторые эпителиальные клетки, покрывающие слизистые оболочки, и раковые.

Доктор и колыбели

К сожалению, далеко не все клетки могут долго жить и размножаться в пробирках (in vitro). Многие ткани очень быстро отмирают. К ним относятся и интересующие нас клетки кроветворных тканей – костного мозга, селезенки. Эти клетки создают кровь и, что особенно важно нам, иммунологам, антитела.

Возможность изучения этих тканей важна, но мала. Жизнь кроветворных тканей, в том числе «антителотворных» клеток, in vitro оказалась неполноценной. Иммунологам давно нужны какие-то другие методы.

Их надо было искать. Необходимо было создать более совершенные, более деликатные «биологические ясли» для столь деликатных, столь совершенных клеток. К сожалению, нельзя изучать эти клетки во всех аспектах в самом организме непосредственно, там, где они живут обычно. Нельзя, например, решить вопрос о возможности превращения клеток одного типа в другой. Это можно исследовать только на изолированных в чистом виде клетках. К тому же нужны условия, в которых за ними можно следить.

Нельзя окончательно выяснить характер действия на клетки химических или физических агентов. Для этого нужно направить интересующие нас воздействия непосредственно на эти клетки. Воздействия в целостном организме всегда сложно зависят и от многих других его систем (нервная, гормональная и т.п.). Нужны изолированные клетки, изолированные воздействия на них.

В отношении кроветворной ткани получается своеобразная ситуация. Ее легко взять у исследуемого организма. Легко получить клеточную взвесь. Можно подвергать эту взвесь всевозможным воздействиям. И невозможно потом культивировать. В пробирках она не культивируется. Вот почему уже в конце прошлого столетия пытались культивировать клетки, изъятые из одного организма, в организме другого животного, не в пробирке, а in vivo (ин виво), что в переводе с латинского значит «в живом».

Эти попытки длительное время не приносили желаемого результата, несмотря на то, что клетки помещались не в искусственную среду, а как бы в естественные условия.

Неудачи культивирования in vivo объяснялись двумя основными причинами. Во-первых, мешает иммунитет, чужеродные клетки – пересаженные реципиенту клетки отторгаются в течение нескольких ближайших дней. Во-вторых, клетки, введенные в целостный организм, «смешиваются» с клетками нового хозяина, и следить за ними практически невозможно. Необходимо придать им какую-то специфическую функцию, которой не обладают клетки реципиента и по которой можно следить за их жизнедеятельностью.

Культура клеток in vivo стала широко и продуктивно применяться только в последние годы, после преодоления указанных трудностей. Первое препятствие было устранено посредством использования изологичных животных (еще один термин, означающий, что доноры и реципиенты принадлежат к одной чистой линии), внутри которых трансплантации происходят без осложнений. Ну, а специфическая функция – естественно, выработка специфических антител. Для этого доноры перед изъятием у них клеток кроветворных тканей (костномозговых, селезеночных, лимфоидных) подвергаются иммунизации. В результате этого специализированные клетки обретают способность вырабатывать заданные антитела. Клетки получают функциональную метку, и за ними становится возможным следить.

Кроме того, реципиентов можно облучить, и они не смогут вырабатывать свои антитела. После этого мероприятия продукция антител в культуре in vivo ведется именно перенесенными клетками. Облученные изологические реципиенты служат в качестве «пробирок», в которые «инокулируются», то есть вводятся, исследуемые клетки селезенки, лимфатических узлов или костного мозга.

Таким образом, метод культивирования кроветворных иммуннокомпетентных клеток in vivo в современном виде включает следующие этапы: 1) иммунизация донора, чтобы извлекаемые клетки обладали функцией выработки антител; 2) извлечение исследуемых клеток и осуществление требующихся по задачам исследований манипуляций или воздействий; 3) введение их в организм облученного изологического реципиента; 4) учет их функционирования в культуре in vivo посредством определения уровня антител, вырабатываемых перенесенными клетками, и с помощью непосредственных микроскопических наблюдений.

По характеру третьего этапа культура in vivo может быть разделена на «свободную», когда клетки вводятся непосредственно в кровь реципиента, расселяясь по всему организму, и «камерную», когда клетки помещаются в камеры, проницаемые для жидкостей, но не для клеток. В последнем случае клетки в культуре in vivo размножаются, функционируют и дифференцируются в ограниченной полости, что дает большие возможности для микроскопических наблюдений за ними.

Вот несколько примеров, чего ученые достигли с применением культуры in vivo в области иммунологии и радиобиологии.

Иммунология обогатилась рядом капитальных закономерностей. Прежде всего доказано, что выработка антител является функцией количества клеток. Увеличение вдвое числа клеток в культуре in vivo во столько же раз увеличивает выработку антител.

Культура клеток in vivo с применением камер дала возможность доказать, что после попадания в организм антигенов клетки, реагирующие на них, прежде всего начинают размножаться (делиться). Среднее время, требующееся для деления клеток, вырабатывающих антитела, как выяснилось, укорачивается по крайней мере вдвое – с 24 до 12 часов. Установлено, что после повторного введения антигена одно и то же количество клеток может вырабатывать более чем в 100 раз больше антител, чем после первичного. Исследования различных тканей показали максимальную антителообразующую активность клеток селезенки и лимфатических узлов. Костномозговые клетки – менее активные продуценты антител.

Радиобиология получила важнейшие сведения о радиационном поражении антителогенеза на клеточном уровне. Показано, например, что клетки, облученные рентгеновыми лучами в дозе 250 рентген, вырабатывают приблизительно в 8 раз меньше антител, чем нормальные. Для получения тех же титров, что и в норме, нужно взять в 8 раз больше клеток. А это значит, что угнетение выработки антител в облученном организме прежде всего зависит от уменьшения в нем иммунологически активных клеток.

Можно было бы и дальше перечислять научные достижения, которые стали возможны с применением метода культуры клеток in vivo. Однако и сказанного достаточно, чтобы продемонстрировать ту пользу, которую принесли экспериментаторам сфинксы. Ведь введение кроветворных клеток в облученный организм для культивирования есть не что иное, как создание радиационного сфинкса.

Беспощадность объективности

«Наука – дело абсолютно объективное, и сама по себе она бесстрастна, но творят науку люди, испытывающие всякого рода страсти…»

Николай Семенов

Доктор ходит вокруг сфинкса

Эта глава в отличие от всех остальных может показаться несколько пессимистичной. Но это не пессимизм, а открытый взгляд в глаза сегодняшней реальности. Той реальности, которая существует ныне в хирургических клиниках, занимающихся пересадкой органов и тканей.

Признание собственного несовершенства – это не пораженчество. Наоборот, в таком признании сила, понимание необходимости работать дальше. Закрывать глаза на истинное положение вещей, заявлять, что все прекрасно, что все трудности позади, что осталось только уточнить некоторые детали в клинике, значит тормозить развитие проблемы преодоления барьера несовместимости, отдалять момент ее решения.

Очень часто фанфарные сообщения о якобы достигнутых результатах, когда желаемое выдают за уже осуществленное, приводит к тяжелым последствиям. Как часто в печати журналисты сообщают о новых видах лечения! Сколько раз мне попадались статейки с неизбежно броским названием вроде «Операция без скальпеля»! И камни желчных пузырей ликвидируют то при помощи ультразвука, то при помощи оливкового масла. Гангрены ликвидируют то с помощью лекарств, а то с помощью кислорода и высокого давления. В результате многие больные отказываются от жизненно необходимой им операции, и упускается драгоценное время. Сообщи, что сейчас можно пересаживать руки, ноги, сердца, – и многие больные вместо лечения будут добиваться этой сверхновой операции.

Поэтому лучше трезво оценить, что мы имеем и на что можем надеяться в ближайшем будущем.

Ученому особенно важно видеть правду и не заниматься самообманом.

«Наука – дело абсолютно объективное», и нужно уметь встречаться лицом к лицу с беспощадной объективностью, чтобы стоять на твердой почве фактов, а не питаться зыбкими ощущениями, рождающими самообман. И надо быть бесстрастным в оценке реальной обстановки.

«Но творят науку люди, испытывающие всякого рода страсти»…

Одна из добрых и благородных страстей – желание принести практическую пользу. В области медицинских наук – желание дать нечто, спасающее жизнь и здоровье людей. Но эта страсть сама по себе ничего не может дать. Чехов-врач иронизировал над бесстрастной страстью и пустозвонством Ионычей.

Природу, бесстрастно скрывающую свои тайны, не трогают сами по себе желания исследователя, какие бы они серьезные ни были. Желания должны быть подкреплены упорным исследованием. Природа не уступает атаке, вооруженной только темпераментом, – она требует систематического умного труда.

Невозможно, как бы вы этого ни хотели, искусственно создать белок, по крайней мере до тех пор, пока не будет изучено и расшифровано во всех деталях его устройство. А после этого надо будет научиться соединять его отдельные части именно в той последовательности и таким образом, как это сделано природой. А для этого, оказывается, нужно исследовать массу такого, что, казалось бы, не имеет никакого отношения к белку. Любое явление природы требует расшифровки своих тайн, прежде чем разрешает человеку пользоваться собой. И этих тайн может быть целая гряда. Мы взбираемся на одну высоту только затем, чтобы увидеть следующую. Но пользоваться можно лишь той, которая взята, как бы желанны ни были плоды, растущие на следующей. Сначала приходится искать пути, которые приведут на нее.

И если сегодня люди могут передать цветное изображение, кинофильм или спектакль из Москвы в Париж, то это следствие раскрытия многих тайн. Если же мы не можем по своему желанию заставить корову, ее потомство и потомство потомства давать в два раза больше молока и масла, то это значит, что недостаточно раскрыты тайны наследования признаков. Нужно неустанно вести поиск, пока генетика не расшифрует, каким образом построены гены, контролирующие эти признаки животного, как передается записанная в них информация и каким образом ее нужно модифицировать, чтобы получить желаемое изменение наследственных признаков. В частности, чтобы получить больше молока и масла.

Когда иммунитет на страже

Объективность беспощадна. И нужно иметь силы признаваться в этом. Иметь силы сказать: сегодня мы еще слишком мало об этом знаем, нужно еще много работать, учиться, думать, исследовать, проверять, прежде чем осуществить одну из самых благородных страстей – принести людям пользу.

Каждые четверть часа на земном шаре умирает более 1000 человек. Из каждой 1000 смертей причиной 270 являются заболевания сердечно-сосудистой системы, 206 происходят от несчастных случаев и 154 от рака. Больше половины людей, умирающих в возрасте старше 45 лет, погибает от сердечно-сосудистых заболеваний. Подумайте, сколько людей можно было бы спасти, научившись пересаживать сердца или даже только сердечные клапаны!

Каждую минуту 12 человек на земле умирает от рака, который нельзя оперировать, если опухоль уже проросла какой-либо жизненно важный орган. Подумайте, сколько людей можно было бы спасти, если уметь пересаживать органы взамен удаленных!

270 умирает от заболеваний сердца, а 206 – от несчастных случаев. И большая часть погибших от несчастных случаев уходит из жизни в расцвете сил, со здоровыми сердцами. Эти-то сердца прямо просятся для пересадок. Впрочем, это опять фантазия. Надо ведь стараться, чтобы несчастных случаев было как можно меньше.

На каждые 1000 смертей в возрасте от 5 до 14 лет 441 происходит в результате несчастного случая, чаще всего травматического характера. Надо ли говорить, что здесь жизнь пострадавшего целиком зависит от возможностей хирургии практически применять трансплантацию органов и тканей?

И тем не менее мы должны быть честными перед беспощадной объективностью: сегодня мы еще не умеем этого делать, иммунологический барьер несовместимости тканей не преодолен. И сколько бы хирурги-экспериментаторы ни льстили себе надеждой, что следующая операция пересадки чужого органа пройдет успешно и орган приживет; сколь страстны ни были бы они в своем желании преуспеть; с каким бы усердием, не щадя сил и времени, они ни отдавались бы своей работе в операционной, им приходится признать: сегодня мы еще не умеем этого делать. И не потому, что не хватает хирургического мастерства. Мастерства хватает.

Примером тому Владимир Демихов. Им в наши дни проведены десятки успешных в техническом смысле трансплантаций. Пересажены конечности, почки, легкие и другие органы и даже группы органов. Например, легкие вместе с сердцем или целая голова. И если бы не конечные постоянно печальные результаты… Он повторяет тот путь, которым прошел Каррель 60 лет тому назад.

Сколько раз распространялись великолепные сенсации. Моряк по имени Хулио Луна из Эквадора потерял руку. Во время военных учений рука была оторвана ниже локтя взрывом гранаты. Хирург гуаякильского госпиталя в Эквадоре пересадил пострадавшему руку, взятую от трупа. В газетах появилось сообщение: пересаженная рука прижила! Моряк даже шевелил пальцами. А через три недели гораздо более скромное сообщение, поступившее из бостонского госпиталя США, куда был переправлен Хулио Луна. Началось осложнение, и, чтобы спасти жизнь моряка, пересаженную руку пришлось ампутировать.

Или еще сенсация. «В результате операции, которая длилась менее 40 минут, 44-летнему портовому рабочему Дэвису из Денвера пересадили почку шимпанзе. Спустя полтора месяца Дэвис бодрыми шагами вошел в зал, где заседала конференция Тулонского университета, и сообщил, что чувствует себя превосходно». А через несколько недель менее шумное сообщение: «Портовый рабочий Дэвис скончался».

А вот официальная международная статистика о судьбе почек, пересаженных от одного человека другому, то есть о судьбе гомотрансплантированных почек. Ее публикует каждые полгода американский журнал «Трансплантация».

Официальные данные на 15 марта 1965 года. Из 336 операций по пересадке от посторонних людей-доноров 322 окончились трагически в течение первого года, и лишь один оперированный прожил дольше 2 лет. Такая же судьба постигла тех, кому для пересадки взяли почки отца или матери. Немногим лучше обстояло дело, когда донорами были родные братья или сестры (идентичные близнецы пока не учитываются). Двухлетний срок прожили 7 человек из 123 оперированных, два пациента жили дольше 4 лет, и лишь один дожил до 6-го года. Всего пересадили 636 почек. 562 человека погибли в первый год. 74 человека прожили больше года. Дольше 2 лет – только 9. 4 года – 2 человека. И ни один не пережил 6 лет. И это несмотря на то, что пациенты все время получали препараты, угнетающие иммунитет! Без подавления иммунитета почки отторгаются в течение нескольких недель.

В нашей стране тоже накапливается опыт в области пересадок почек. Известный советский хирург Борис Васильевич Петровский начиная с 15 апреля 1965 года провел в Институте клинической и экспериментальной хирургии Минздрава СССР несколько операций. Они были сделаны тогда, когда никакое другое лечение уже не помогало. В ближайшие дни молодые люди должны были погибнуть от почечной недостаточности в результате тяжелейшего неизлечимого заболевания почек. Им пересадили эти органы от их матерей или других родственников. Риск был оправдан и благороден. Пусть эти операции пока лишь продляют жизнь. Но разве это не благородно – вырвать человека из рук смерти и потом бороться за его жизнь недели, месяцы, годы? Бороться, отыскивая пути преодоления несовместимости, приобретая опыт для будущего?

Первый оперированный больной прожил 7 месяцев. Второй – 5. Третий живет уже год. Четвертый погиб в первое полугодие. Судьбу остальных покажет будущее.

Вполне возможно, что найдутся люди, которые будут говорить, что этого не надо было делать, что незачем продлевать мучения больных, лишать почек их родственников. Такие рассуждения часто приходится слышать, когда идет речь о лечении безнадежных больных. Да я и сам иногда так думаю. И все-таки лечить надо до последней надежды. Сегодня мы пересадили почку. Больной еще живет полгода, год; но за это время может быть решена какая-нибудь очень важная деталь проблемы, и полгода, подаренные больному, обещают превратиться в долгую жизнь.

Но неужели мы все еще мало знаем? Ведь после Карреля, который во всеуслышание сказал, что пересадки между двумя индивидуумами невозможны, так как гомотрансплантаты неминуемо отторгаются, прошло более 50 лет. С тех пор были открыты группы крови и появилась надежда подбирать для пострадавшего идентичного в групповом отношении донора…

Групп крови оказалось неожиданно много, а комбинаций различных групповых антигенов хватило, чтобы сделать каждого человека отличным по своему антигенному набору от любого другого. Ткань любого донора, даже отца, матери или родного брата, если он не идентичный близнец, воспринимается как чужая. Собственно, она и есть чужая.

Но исследования не остановились на этом. Иммунологи научились подавлять иммунитет с помощью облучения и ряда химикалий. Подавлять те силы, которые отторгают пересаженную ткань.

Все операции по трансплантации почек сопровождаются воздействиями, угнетающими иммунитет. Без этого ни одна пересаженная почка не живет дольше нескольких недель. Больных облучают, им назначают 6-меркаптопурин, имуран, кортизон и т.п. в отдельности или в разных сочетаниях. Но, увы, все эти ингибиторы иммунитета не могут полностью подавить его. Могут, но только при назначениях их в смертельных дозировках.

Потом показалось, что и из этой трудности как будто бы найден выход – создание толерантности к тканям донора, создание сфинксов. И это как будто бы не трудно. Достаточно новорожденному ввести кроветворные, например костномозговые, клетки донора – и он превращается в сфинкса, которому можно пересаживать любую донорскую ткань. Он будет «терпеть» ее бесконечно долго.

Создавать сфинксов можно и во взрослом состоянии. Надо облучить организм в смертельной дозе или абсолютно (смертельно) подавить иммунитет одним из химических ингибиторов и после этого пересадить ему кроветворную ткань будущего донора. Чужие клетки размножатся, спасут организм от смерти и превратят его в сфинкса, в котором его собственные клетки будут сосуществовать с донорскими и которому теперь уже можно пересаживать любую донорскую ткань.

Казалось бы, все! Способ есть, мы взобрались на последнюю вершину. Но только мы на нее взобрались, беспощадная объективность открыла нам вид на следующую, столь же крутую. И надо искать пути на нее. Надо суметь разгадать загадку современных сфинксов.


    Ваша оценка произведения:

Популярные книги за неделю