Текст книги "Против богов: Укрощение риска"
Автор книги: Питер Бернстайн
сообщить о нарушении
Текущая страница: 9 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]
Вы можете оценить степень собственной предрасположенности к риску, узнав свой «эквивалент определенности». Каким должно быть математическое ожидание в игре, которую вы предпочли бы подарку? Может быть, 30 долларов, что означало бы, что вы имели бы равные шансы выиграть 60 долларов или ничего? Тогда математическое ожидание выигрыша в 30 долларов будет эквивалентно подарку в 25 долларов. Но может быть, вы согласитесь играть, когда математическое ожидание равно только 26 долларам. Вы можете оказаться в душе рисковым человеком и предпочесть игру с математическим ожиданием, меньшим 25 долларов, т. е. меньшим, чем гарантированная ценность подарка. Такое возможно, например, в игре, в которой вы можете выиграть 40 долларов, если выпадет решка, или остаться ни с чем, если выпадет орел, а математическое ожидание составит только 20. Но большинство людей все-таки предпочло бы игру, в которой ожидаемый выигрыш несколько превышал бы предложенные в примере 50 долларов. Популярные лотереи представляют собой интересное исключение из этого правила, потому что в большинстве лотерей установленная прибыль устроителей настолько велика, что они оказываются чудовищно несправедливыми по отношению к игрокам.
Здесь вступает в действие важный принцип. Предположим, ваш биржевой маклер рекомендовал вам вложить деньги во взаимный инвестиционный фонд, который инвестирует в самые мелкие компании рынка. За последние 69 лет акции 20% самых мелких компаний фондового рынка давали в среднем 18% ежегодного дохода (рост котировок плюс дивиденды). Вообще говоря, это неплохо. Но зато эта часть рынка отличается нестабильностью: для двух третей акций в этом сегменте рынка прибыльность колебалась от -23% до +59%; почти каждый третий год случались убытки и составляли в среднем 20%. Поэтому, несмотря на высокую среднюю прибыльность этих акций в длительной перспективе, для каждого отдельно взятого года ситуация представляется в высшей степени неопределенной.
Предположим теперь, что другой маклер предложил в качестве альтернативы покупку 500 акций Standart & Poor's Composite Index. Средний годовой доход по этим акциям за последние 69 лет составил 13%, но две трети времени его колебания были ограничены более узким диапазоном от -11% до +36%, причем отрицательные значения в соответствующие годы составили в среднем 13%. Предполагая, что в будущем все будет происходить приблизительно так же, как в прошлом, и учитывая, что у вас может не оказаться 70 лет, чтобы оценить свой выбор, удовлетворит ли вас первый вариант с более высоким ожидаемым средним доходом, но и более сильными колебаниями? Какой из двух вариантов вы выберете?
***
Даниил Бернулли преобразил сцену, на которой разыгрывается драма взаимодействия с риском. Предложенное им описание того, как люди используют измерения и собственный темперамент в процессе принятия решений в условиях неопределенности, явилось впечатляющим достижением. Как он сам с удовлетворением отметил в своей статье, «поскольку все наши предположения полностью согласуются с опытом, было бы ошибкой отвергнуть их как абстракции, опирающиеся на сомнительные гипотезы».
Спустя два столетия мощная критическая атака доказала, что в своих предположениях Бернулли все-таки не достиг полного соответствия опыту, главным образом потому, что его гипотезы о разумности человека оказались более произвольными, чем мог предположить этот человек эпохи Просвещения. Но до этого последнего критического натиска на протяжении двух столетий после опубликования статьи Бернулли понятие полезности оставалось в центре философских дебатов о разумности человеческого поведения. Сам он вряд ли мог предположить, как долго это понятие будет занимать представителей последующих поколений. Правда, в этом была заслуга ученых, которые пришли к нему самостоятельно, не подозревая о новаторской работе Бернулли.
Глава 7
В поисках практической достоверности
Шла Вторая мировая война. Зимней ночью во время одного из налетов немецкой авиации на Москву известный советский профессор статистики неожиданно появился в своем дворовом бомбоубежище. До тех пор он никогда туда не спускался. «В Москве семь миллионов жителей, – говаривал он. – Почему я должен ожидать, что попадут именно в меня?» Удивленные друзья поинтересовались, что заставило его изменить свою точку зрения. «Подумать только! – воскликнул он. – В Москве семь миллионов жителей и один слон. Прошлой ночью они убили слона».
Это современный вариант рассматриваемого в «Логике» Пор-Рояля примера с боязнью грозы, хотя и отличается от него мотивацией личностной установки в условиях риска. Здесь профессор превосходно понимал, насколько мала математическая вероятность попасть под бомбу. Его поведение наглядно иллюстрирует двойственный характер всего, что связано с вероятностью: частота события в прошлом вступает в конфликт с эмоциональной оценкой действительности и влияет на выбор поведения в условиях риска.
Смысл истории этим не исчерпывается. Она перекликается с подходом Гранта, Петти и Галлея: если точное знание будущего и даже прошлого недостижимо, какова достоверность имеющейся у нас информации? Что важнее для принятия решения: семь миллионов москвичей или погибший слон? Как мы должны оценивать добавочную информацию и как включать ее в оценки, базирующиеся на исходной информации? Является ли теория вероятностей математической забавой или серьезным инструментом прогнозирования?
Теория вероятностей является серьезным инструментом прогнозирования, но при пользовании им нельзя забывать о том, что, как говорится, дьявол в мелочах, что все зависит от качества информации, на основе которой вероятность оценивается. Эта глава посвящена осуществленной в течение XVIII столетия последовательности гигантских шагов, революционизировавших использование информации и определивших методологию применения теории вероятностей в задачах выбора и принятия решений в современном мире.
***
Впервые изучением связей между вероятностью события и качеством исходной информации занялся второй из старших Бернулли – Якоб (1654-1705), дядя известного Даниила Бернулли.[1][1]
Материал о Якобе Бернулли взят из: [Newman, 1988f].
[Закрыть] Он был еще ребенком, когда Паскаль и Ферма высказали свои замечательные математические идеи, и умер, когда его племяннику Даниилу едва исполнилось пять лет. Талантливый, как все Бернулли, он был современником Исаака Ньютона и, обладая свойственным всем Бернулли сложным и самолюбивым характером, считал себя соперником великого английского ученого.
Сама по себе постановка Якобом обсуждаемого вопроса, даже если отвлечься от предложенных им ответов, была научным подвигом. По его признанию, он размышлял над этой проблемой двадцать лет и окончил посвященный ей труд незадолго до смерти, последовавшей в 1705 году.
Якоб был самым мрачным из Бернулли, особенно к концу жизни, несмотря на то что он жил в веселые и легкомысленные времена, наступившие в Англии после реставрации монархии в 1660 году и восшествия на престол Карла II{1}{1}
Ему была свойственна своеобразная поэтичность, сказавшаяся, к примеру, в пожелании, чтобы на его могильном камне высекли прекрасную спираль Фибоначчи, поскольку ее свойство расширяться, не изменяя формы, является «символом стойкости и неизменности посреди хаоса и напастей, а в конечном итоге – даже нашего воскрешения во плоти». Под спиралью он потребовал выбить эпитафию: «Eadem Миtata resurgo» («Неизменная в вечном движении»), см.: [David, 1962, р. 139].
[Закрыть], когда, например, один из его весьма известных современников Джон Арбутнот, лекарь королевы Анны, член Королевского общества и математик-дилетант, занимавшийся проблемами вероятности, считал уместным для иллюстрации содержащихся в своих опусах положений сдабривать их фривольными примерами, обсуждая вероятность того, что «женщина в двадцатилетнем возрасте сохранила девственность» или что «лондонский щеголь того же возраста не болен триппером».[2][2]
Hacking, 1975, стр. 166; см. также: [Kendall, 1972].
[Закрыть]
В 1703 году Якоб Бернулли впервые поставил вопрос о зависимости получаемого значения вероятности от выборки. В письме к своему другу Лейбницу он заметил, что ему кажется странным, что нам известна вероятность выпадения семи, а не восьми очков при игре в кости, но мы не знаем, с какой вероятностью двадцатилетний переживет шестидесятилетнего. Не следует ли нам, спрашивает он, для ответа на этот вопрос подвергнуть исследованию множество пар людей всех возрастов?
Отвечая Бернулли, Лейбниц пессимистически оценил этот подход. «Природа установила шаблоны, имеющие причиной повторяемость событий, – пишет он, – но только в большинстве случаев. Новые болезни захлестнули человечество, так что не имеет значения, сколько опытов вы провели над трупами, – на их основе вам не установить таких границ природы событий, чтобы в будущем не осталось места вариациям»[3][3]
Gesammelte Werke / Ed. Pertz and Gerhard. Halle, 1855, Bd. 3, стр. 71-97. Я благодарю Марту Стил и Дорис Баллард за перевод на английский язык гл. XXX из: [Keynes, 1921], содержащей замечательное обсуждение переписки между Лейбницем и Бернулли.
[Закрыть]. Хотя письмо Лейбница написано на латыни, выражение «но только в большинстве случаев» он написал по-гречески: ως επι το πολυ. Очевидно, этим он хотел подчеркнуть, что конечное число опытов, предлагаемое Якобом, с неизбежностью окажется недостаточным для точного исчисления замыслов природы {2}{2}
В одном из последующих писем Якобу Лейбниц заметил: «Можете не сомневаться, что любой, кто попытается на основе данных о продолжительности жизни в современных Лондоне и Париже делать выводы о смертности праотцев, живших до Потопа, придет к чудовищно искаженным выводам» [Hacking, 1975, р. 164]
[Закрыть].
Реакция Лейбница не обескуражила Якоба, но внесла коррективы в его подход к решению проблемы. Лейбницево предупреждение по-гречески не прошло даром.
Усилия Якоба определить вероятность на основе обследования выборки данных нашли отражение в его «Ars Conjectandi», работе, которую его племянник Николай полностью опубликовал через восемь лет после смерти автора в 1713 году[4][4]
Прекрасный анализ «Ars Conjectandi» можно найти в: [David, 1962, стр. 133-139; Stigler, 1986, стр. 63-78].
[Закрыть]. Интерес Якоба сосредоточен на том, чтобы показать, где метод логического вывода – объективный анализ данных – кончается и начинается другой метод – прогнозирование на основе вероятностных законов. В известном смысле здесь прогнозирование рассматривается как процесс восстановления целого по части.
Якоб начинает свой анализ с констатации того, что в теории вероятностей для принятия гипотезы о возможности события «необходимо только подсчитать точное число возможных событий и затем определить, насколько наступление одного события более вероятно, нежели наступление другого». Трудность, на которую он постоянно указывает, заключается в том, что использование вероятности ограничено почти исключительно случайными играми. С этой точки зрения достижения Паскаля представляются не более как интеллектуальной забавой.
Для Якоба это ограничение имеет принципиальное значение, о чем свидетельствует его рассуждение, созвучное Лейбницеву предупреждению:
«Но кто из смертных... может установить число болезней, подсчитав все, причиняющие страдания человеческому телу... и насколько фатальный исход от одной болезни более вероятен, чем от другой – от чумы или от водянки... от водянки или от лихорадки, – и на этой основе сделать предсказания о соотношении жизни и смерти для будущих поколений?
...Кто может претендовать на столь глубокое проникновение в природу человеческого духа и изумительную структуру тела, чтобы в играх, результат которых зависит от... остроты ума или физической ловкости игроков, рискнуть предсказать, кто из игроков выиграет и кто проиграет?»
Якоб указывает на принципиальное отличие между реальностью и абстракцией при использовании вероятностных законов. Например, предложенное Пацциоли рассмотрение незавершенной игры в balla, как и пример с гипотетическим неоконченным турниром на первенство по бейсболу, о котором у нас шла речь при обсуждении треугольника Паскаля, не имеет ничего общего с реальными жизненными ситуациями. В реальной жизни игроки в balla, как и участники бейсбольного турнира, обладают различной «остротой ума и физической ловкостью» – качествами, которые я игнорировал в приведенных ранее упрощенных примерах использования законов вероятности для предсказания событий. Треугольник Паскаля дает только намек на исход игры в реальных условиях.
Теория может определить вероятность тех или иных исходов для игры в казино или лотереи – здесь нет необходимости вращать колесо рулетки или считать лотерейные билеты, чтобы определить характер результата, но в реальной жизни важна относящаяся к делу информация. Беда в том, что мы никогда не обладаем ей в нужном объеме. Природа устанавливает шаблоны, но «только в большинстве случаев». В теории, которая абстрагируется от природы, дело обстоит проще: мы или имеем необходимую информацию, или не нуждаемся в ней. Как сказал цитированный в введении Фишер Блэк, мир выглядит более упорядоченным с территории Массачусетского технологического института, чем в перспективе хаотического бурления Уолл-стрит.
В нашем обсуждении гипотетической игры в balla и воображаемого бейсбольного турнира статистика игр, физические способности и интеллектуальное развитие игроков не имели отношения к делу. Игнорировалась даже сама природа игры. Теоретический подход полностью подменял конкретную информацию.
В реальности фанатики бейсбола, как и брокеры фондовой биржи, собирают массу статистических данных, потому что эта информация необходима им для оценки класса игроков и команд или для оценки будущей прибыльности акций. И даже заключения экспертов с вероятностными оценками конечных результатов, полученные на основе обработки тысяч фактов, и в спорте и в финансах оставляют место сомнениям и неопределенности.
Треугольник Паскаля и все предшествующие работы по теории вероятностей отвечали только на один вопрос: какова вероятность того или иного отдельного события. Ответ на этот вопрос в большинстве случаев имеет ограниченную ценность, поскольку чаще всего он мало что дает для оценки ситуации. Что на деле даст нам знание того, что игрок А имеет 60% шансов победить в отдельной партии в balla? Можно ли на этом основании утверждать, что он способен победить игрока В в 60% партий? Ведь победы в одном турнире недостаточно для этого утверждения. Сколько раз должны сыграть А и В, чтобы мы могли убедиться, что А играет лучше, чем В? Что говорит нам результат бейсбольного турнира этого года о вероятности того, что победившая команда является самой сильной вообще, а не только в этом году? Что говорит высокий процент смертности от рака легких среди курильщиков о вероятности того, что курение раньше срока сведет в могилу именно вас? Свидетельствует ли смерть слона о целесообразности спускаться в бомбоубежище при налетах?
Реальные жизненные ситуации часто требуют от нас определения вероятности вполне определенного исхода на пути заключения от частного к общему. В жизни очень редко встречаются задачи, сводящиеся к чистой игре случая, для которых можно определить вероятность исхода до изучения ряда событий – a priori, как сказал бы Якоб Бернулли. В большинстве случаев мы вынуждены определять вероятности на основе имеющихся данных после ряда происшедших событий – a posteriori. Само понятие a posteriori предполагает эксперимент и измерение степени уверенности. В Москве семь миллионов жителей, но после гибели слона от фашистской бомбы профессор решил, что пришло время спускаться в бомбоубежище.
***
Вклад Якоба Бернулли в решение проблемы определения вероятности на основе информации об ограниченном наборе реальных событий был двояким. С одной стороны, он сформулировал задачу в этом виде в то время, когда никто еще даже не усматривал необходимости ее постановки. С другой – он предложил решение, зависящее только от одного необходимого условия: мы должны предположить, что «при равных условиях наступление (или не наступление) события в будущем будет следовать тем же закономерностям, какие наблюдались в прошлом»[5][5]
Bernoulli J., 1713, стр. 1430.
[Закрыть].
Это допущение чрезвычайно важно. Якоб мог сетовать на то, что в реальной жизни информация очень редко оказывается достаточно полной, чтобы применять простые вероятностные законы для предсказания результатов. Но он признаёт, что оценка вероятностей постфактум также невозможна, пока мы не примем предположения, что прошлое является прообразом будущего. Трудность этого предположения не требует пояснений.
Какие бы данные мы ни отбирали для анализа, прошлое остается лишь фрагментом реальности. Эта фрагментарность играет решающую роль при переходе от ограниченного набора данных к обобщению. Мы никогда не имеем (или не можем позволить себе собрать) всей информации, в которой нуждаемся, чтобы обладать той же уверенностью, с какой без тени сомнения утверждаем, что у игральной кости шесть граней с нанесенными на каждую разными цифрами или что у колеса европейской рулетки 37 лунок (у американской 38) с разными числами против каждой. Реальность представляет собой серию взаимосвязанных событий, зависимых друг от друга, и принципиально отличается от случайных игр, в которых результат каждой отдельной игры не влияет на результат последующей. В случайных играх все сводится к определенным числам, а в реальной жизни мы чаще используем приблизительные оценки – «мало», «много» или «не очень много», а не точные количественные величины.
Якоб Бернулли невольно определил содержание оставшейся части моей книги. С этого момента разговор об управлении риском будет сводиться к использованию трех его основополагающих предположений – полнота информации, независимость испытаний и надежность количественных оценок. В каждом отдельном случае вопрос о правомерности этих предположений является главным для решения вопроса о том, насколько успешно мы можем использовать измерения и информацию для прогнозирования будущего. По существу, эти предположения определяют наш взгляд на прошлое: можем ли мы объяснить происшедшее, или при описании события следует прибегнуть к понятию чистой случайности (что, иначе говоря, означало бы, что мы не имеем объяснения)?
***
Несмотря на все трудности, нам приходится иногда осознанно, чаще неосознанно предполагать, что перечисленные Якобом необходимые условия выполняются, даже если нам достаточно хорошо известны отличия реальности от идеального случая. Наши ответы могут быть неточными, но описанная в этой главе методология, разработанная Якобом Бернулли и другими математиками, просто принуждает нас заняться определением вероятности будущих событий на основе ограниченных наборов данных о прошлых событиях.
Теорема Якоба Бернулли о вычислении вероятности a postetiori известна как закон больших чисел. Вопреки распространенной точке зрения этот закон не дает метода оценки наблюдаемых фактов, которые являются лишь несовершенным отображением явления в целом. Не следует из него и утверждение, будто увеличение числа наблюдений влечет за собой возрастание вероятности совпадения того, что мы видим, с тем, что мы исследуем. Закон не является и средством улучшения качества тестов: Якоб не забыл замечание Лейбница и отверг свои первоначальные идеи о поиске четких ответов на основе эмпирических тестов.
Якоба интересовало другое определение вероятности. Предположим, вы подбрасываете монету. Закон больших чисел не утверждает, что среднее число выпадений орла будет приближаться к 50% при увеличении числа бросков; простые вычисления дадут вам этот ответ и избавят от утомительного подбрасывания монеты. Закон, скорее, утверждает, что при увеличении числа бросков будет возрастать вероятность того, что процент появлений орла в общем числе бросков будет отличаться от 50% на величину, меньшую сколь угодно малой заданной величины. В слове «отличаться» все дело. Речь идет не об истинности значения 50%, а о вероятности того, что отклонение наблюдаемого среднего значения вероятности от расчетного будет меньше, чем, скажем, 2%, – другими словами, что с увеличением числа бросков эта вероятность будет возрастать.
Это не означает, что при бесконечном числе бросков отклонений не будет; Якоб явным образом исключает этот случай. Не означает это и того, что отклонение будет с необходимостью становиться пренебрежимо малым. Закон лишь утверждает, что среднее значение при большом числе бросков будет с большей, чем при малом числе бросков, вероятностью отличаться от истинного среднего на величину, меньшую наперед заданной. Но всегда останется возможность того, что наблюдаемый результат будет отличаться от истинного среднего на величину, большую некоей заданной. Семи миллионов жителей Москвы оказалось недостаточно для профессора статистики.
Закон больших чисел не надо путать с законом о среднем. Математики говорят нам, что вероятность выпадения орла при одном бросании монеты составляет 50%, – но результат каждого броска не зависит от всех остальных. Он не зависит от результата предшествующих бросков и не влияет на результаты последующих. Следовательно, закон больших чисел не утверждает, что вероятность выпадения орла для отдельного броска станет выше 50%, если в первых ста или миллионе бросков только в 40% случаев выпал орел. Закон больших чисел отнюдь не обещает, что вы отыграетесь после серии проигрышей.
Для иллюстрации закона больших чисел Якоб предложил мысленный эксперимент с кувшином, наполненным 3000 белых камешков и 2000 черных, ставший с тех пор очень популярным среди специалистов по теории вероятностей и авторов математических головоломок. Он оговаривает, что нам должно быть неизвестно, сколько камешков каждого цвета в кувшине. Мы по одному вынимаем камешки из кувшина, фиксируем цвет каждого из них и возвращаем обратно в кувшин. Из факта, что по мере возрастания числа обследованных таким образом камешков мы получаем «практическую достоверность» (moral certainty) – имеется в виду достоверность в обыденном смысле слова, а не абсолютная достоверность – того, что число белых и число черных камешков будут соотноситься как 3:2, Якоб заключает, что «мы можем определить это соотношение a posteriori с почти той же точностью, как если бы оно было известно нам a priori»[6][6]
Там же, стр. 1431.
[Закрыть]. Его расчеты показывают, что 25 550-кратного вытаскивания камешков из кувшина будет достаточно, чтобы с вероятностью, превышающей 1000/1001, утверждать, что результат будет 3/2 с точностью 2%. Это и есть ваша практическая достоверность.
Якоб не использует выражение «практическая достоверность» необдуманно. Оно покоится на его определении вероятности, позаимствованном из одной ранней работы Лейбница. «Вероятность, – утверждает он, – это степень достоверности и отличается от абсолютной достоверности как часть отличается от целого»[7][7]
Hacking, 1975, стр. 145.
[Закрыть].
Но Якоб идет дальше Лейбница в обсуждении того, что означает понятие «достоверность». Наше индивидуальное суждение о достоверности – вот что привлекает внимание Якоба: условие практической достоверности имеет место, если мы почти абсолютно убеждены в верности суждения. Когда Лейбниц вводил это понятие, он определил его как «бесконечную вероятность». Сам Якоб удовлетворяется вероятностью 1000/1001, но он хочет подстраховаться: «Было бы полезным, если бы должностные лица установили пределы практической достоверности»[8][8]
Там же, стр. 146.
[Закрыть].
***
Якоб торжествует. Отныне, утверждает он, мы можем делать предсказания о любых неопределенных величинах с той же степенью научной обоснованности, как и предсказания в случайных играх. Он перевел вероятность из сферы теории в мир реальности:
«Если вместо кувшина мы обратимся, например, к атмосфере или человеческому телу, в котором таится множество самых разных процессов или болезней, как камешков в кувшине, то на основе наблюдений мы сможем определить, насколько наступление одного события более вероятно, чем наступление другого»[9][9]
Там же, стр. 163.
[Закрыть]
Однако, как оказалось, с кувшином у Якоба не обошлось без хлопот. Расчет, показавший необходимость 25 550 испытаний для получения практической достоверности, должен был ужаснуть его неприемлемой величиной этого числа; в те времена население его родного города Базеля было меньше 25 550 человек. Судя по тому, что именно на этом месте его книга обрывается, можно предположить, что он растерялся и не знал, как быть дальше. Приходилось делать вывод, что трудно найти в реальной жизни случаи, в которых все наблюдения удовлетворяли бы требованию независимости друг от друга:
«Таким образом, если все события вечно повторяются, приходится признать, что всё в мире происходит по определенным причинам в соответствии с определенными правилами, и мы вынуждены предположить относительно наиболее явно случайных вещей наличие некоей необходимости, или, иначе говоря, РОКА»[10][10]
David, 1962, стр. 137.
[Закрыть]
Тем не менее его кувшин с камешками заслужил бессмертие. Эти камешки стали инструментом в первой попытке измерить неопределенность – точнее, определить ее – и вычислить вероятность того, что эмпирически определенное значение случайной величины близко к истинному, даже если истинное значение неизвестно.
***
Якоб Бернулли умер в 1705 году. Его племянник Николай – Николай Медлительный – продолжил исследования дяди, связанные с определением вероятностей на основе наблюдений, одновременно медленно, но верно завершая подготовку к изданию «Ars Conjectandi». Его результаты были опубликованы в том же 1713 году, в котором наконец вышла в свет книга Якоба.
Якоб для начала задает вероятность того, что отклонение наблюдаемого значения от истинного окажется в некоем определенном интервале, а затем вычисляет число наблюдений, необходимое для получения именно этого заданного значения. Николай поставил перед собой обратную задачу. Считая число наблюдений заданным, он вычислял вероятность того, что отклонение наблюдаемого среднего от истинного окажется в заданных пределах. Он использовал пример, в котором предполагал, что отношение числа рождающихся мальчиков к числу рождающихся девочек равно 18:17. Если общее число рождений составляет, скажем, 14000, ожидаемое число рождений мальчиков должно быть 7200. Затем он рассчитал, что с шансами по меньшей мере 43,58 к 1 действительное число родившихся мальчиков окажется в интервале 7200 + 163 и 7200 – 163, то есть между 7363 и 7037.
В 1718 году Николай предложил французскому математику Абрахаму де Муавру присоединиться к его исследованиям, но де Муавр отверг это предложение: «Я хотел бы оказаться способным... применить теорию случайностей (Doctrine of Chances) к решению экономических и политических задач, [но] с готовностью передаю мою часть работы в лучшие руки».[11][11]
Stigler, 1986, стр. 71. Эта книга оказалась бесценным источником информации для данной главы.
[Закрыть] Из этого ответа де Муавра Николаю следует, что исследования по использованию вероятности и прогнозированию быстро продвигались вперед.
Де Муавр родился в 1667 году – через 13 лет после Якоба Бернулли – в протестантской семье во Франции, в обстановке возрастающей враждебности ко всем некатоликам.[12][12]
Материалы о де Муавре взяты из: [Stigler, 1986, гл. 2; David, 1962, гл. XV].
[Закрыть] В 1685 году, когда ему было 18 лет, король Людовик XIV отменил Нантский эдикт, провозглашенный в 1598 году родившимся в протестантской вере королем Генрихом IV и предоставивший протестантам, называемым гугенотами, равные политические права с католиками. После отмены эдикта исповедование реформатской религии было запрещено, дети гугенотов должны были воспитываться в католической вере, эмиграцию запретили. Де Муавр свыше двух лет провел в тюрьме за свои религиозные убеждения. Ненавидя Францию и все с нею связанное, он в 1688 году бежал в Лондон, где Славная революция как раз покончила с остатками государственного католицизма. На родину он так и не вернулся.
В Англии де Муавр вел печальную и неустроенную жизнь. Несмотря на все усилия, ему не удалось добиться приличной академической должности. Он зарабатывал на жизнь уроками математики и консультациями по применению теории вероятностей для игроков и страховых брокеров. С этой целью он держал неофициальную приемную в кофейне Слайтера, что на улице Святого Мартина, где большей частью и проводил остаток дня по окончании занятий с учениками. Хотя он был другом Ньютона и стал членом Королевского общества уже в тридцать лет, он так и остался едким, ушедшим в себя, асоциальным человеком. Умер он в 1754 году в бедности и слепоте в возрасте 87-ми лет.
В 1725 году де Муавр опубликовал работу, озаглавленную «Пожизненная рента» («Annuities upon Lives»), с анализом таблиц Галлея о продолжительности жизни и смертности в Бреслау. Хотя книга посвящена главным образом научным проблемам, в ней обсуждаются многие вопросы, относящиеся к головоломкам, которые пытались решить Бернулли и которые позднее де Муавр детально исследовал.
Историк статистики Стивен Стиглер (Stigler) приводит интересный пример, рассмотренный в работе де Муавра о ренте. Таблицы Галлея свидетельствовали, что в Бреслау из 346 человек пятидесятилетнего возраста только 142, то есть 41%, дожили до семидесяти лет. Это очень маленькая выборка. В какой мере можно использовать этот результат для выводов об ожидаемой продолжительности жизни пятидесятилетних? Де Муавр не мог использовать эти числа для определения вероятности того, что человек в возрасте пятидесяти лет имеет меньше 50% шансов дожить до семидесяти, но он мог бы ответить вот на какой вопрос: «Если в действительности шансы равны, какова вероятность того, что выборка покажет величину не более 142/346?»
Первая прямо посвященная теории вероятностей работа де Муавра озаглавлена «De Mensura Sortis» (буквально «Об измерении случайных величин»). Работа была впервые опубликована в 1711 году в журнале Королевского общества «Philosophical Transactions». В 1718 году де Муавр предпринял значительно расширенное издание этой работы на английском языке, озаглавленное «Теория случайностей» («The Doctrine of Chances»), с посвящением своему близкому другу Исааку Ньютону. Книга имела огромный успех и выдержала еще два издания в 1738-м и 1756 годах. Работа, видимо, произвела сильное впечатление на Ньютона, который при случае говорил своим студентам: «Обратитесь к мистеру де Муавру, он знает эти вещи лучше меня». «De Mensura Sortis», по-видимому, первая работа, в которой риск определен как шанс проигрыша: «Риск проиграть некую сумму обратен ожиданию выигрыша, и истинной мерой его является произведение поставленной на кон суммы на вероятность проигрыша».
В 1730 году де Муавр в конце концов обратился к предложенной Николаем Бернулли теме – насколько хорошо реальная выборка отображает свойства совокупности, на основе которой она построена. В 1733 году он опубликовал полное решение задачи и включил его во второе и третье издания «Теории случайностей». Он начинает с признания, что Якоб и Николай Бернулли «показали очень большое искусство... Однако некоторые вещи нуждаются в дальнейшей разработке». В частности, подход обоих Бернулли «представляется настолько трудоемким и связан с такими сложностями, что до сих пор мало кто соглашался их преодолевать».
Действительно, необходимость проведения 25 550 испытаний делала решение задачи практически неосуществимым. Даже если бы, как утверждал Джеймс Ньюмен, Якоб Бернулли в приведенном им примере был бы готов удовлетвориться «практической достоверностью», не большей, чем в пари с равными шансами, – вероятностью 50/100 того, что результат будет с точностью до 2% равен 3/2, – и то понадобилось бы 8 400 испытаний. По нынешним стандартам требование Якобом вероятности 1000/1001 курьезно само по себе. Сегодня большинство статистиков принимают несовпадение не более чем в 1 из 20 случаев как основание признания значимости (так сегодня называют практическую достоверность) результата с более чем достаточной степенью вероятности.