Текст книги "Против богов: Укрощение риска"
Автор книги: Питер Бернстайн
сообщить о нарушении
Текущая страница: 10 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]
Достижения де Муавра в решении этой проблемы стоят в ряду наиболее важных математических открытий. Используя вычисления и основные свойства треугольника Паскаля, составляющие содержание биномиальной теоремы, де Муавр демонстрирует, как ряд случайных испытаний, подобных опытам Бернулли с кувшином, приводит к распределению результата вокруг среднего значения. К примеру, предположим, вы вытащили сто камешков подряд из кувшина Якоба, каждый раз возвращая камешек в кувшин и фиксируя отношение числа черных и белых камешков. Теперь предположим, вы выполнили серию таких опытов по сто испытаний в каждом. Де Муавр смог бы заранее приблизительно сказать вам, сколько из этих отношений будут близки к среднему отношению в суммарном числе испытаний и как эти отдельные отношения будут распределены относительно этого среднего.
Распределение де Муавра ныне известно как нормальная, или, в соответствии с ее формой, колоколообразная кривая. Эта кривая показывает, что наибольшее число наблюдений группируется в центре, вблизи среднего значения, вычисленного для суммарного числа наблюдений. Она симметрично спускается по обе стороны от среднего значения, вблизи его круто, а затем все более полого. Другими словами, результаты наблюдений, далекие от среднего значения, менее вероятны, чем близкие к нему.
Форма кривой де Муавра позволила ему вычислить статистическую меру ее дисперсии относительно среднего значения. Эта мера, известная как стандартное или среднее квадратичное отклонение{*1}{*1}
В русской научной литературе чаще используется второй термин, известный также как среднее квадратическое. – Примеч. науч. редактора.
[Закрыть], чрезвычайно важна для решения вопроса о том, включает ли в себя совокупность наблюдений достаточно репрезентативную для изучаемой совокупности выборку. В нормальном распределении приблизительно 68% результатов наблюдений оказываются в пределах одного среднего квадратичного отклонения от среднего значения и 98% – в пределах двух средних квадратичных отклонений.
Среднее квадратичное отклонение может сказать нам, не имеем ли мы дело со случаем «голова-в-духовке-ноги-в-холодильнике», когда любые рассуждения о среднем являются бессмысленными. Среднее квадратичное отклонение может также сказать нам, что 25 550 манипуляций с камешками Якоба позволяют весьма точно оценить соотношение числа черных и белых камешков в кувшине, поскольку относительно малое число наблюдений будет сильно отличаться от среднего значения.
Де Муавр был поражен закономерностью, которая проявлялась с увеличением числа случайных и независимых наблюдений; он относил эту упорядоченность к предписаниям Всемогущего. Это приводит к мысли, что при правильно выбранных условиях измерения можно в самом деле преодолеть неопределенность и приручить риск. Используя курсив, чтобы подчеркнуть значение сказанного, де Муавр так подытожил свои исследования:
«Случай порождает Отклонения от закономерности, однако бесконечно велики Шансы, что с течением Времени эти Отклонения окажутся пренебрежимо ничтожными относительно повторяемости того Порядка, который естественным образом является результатом БОЖЕСТВЕННОГО ПРЕДНАЧЕРТАНИЯ».[13][13]
Stigler, 1986, стр. 85.
[Закрыть]
***
Вкладом де Муавра в математику был инструмент, который сделал возможной оценку вероятности того, что заданное число наблюдений попадет в некоторую область вокруг истинного отношения. Этот результат нашел широкое практическое применение.
Например, все производители опасаются того, что результатом сборки может оказаться бракованная продукция, которая дойдет до потребителей. Стопроцентное качество в большинстве случаев практически невозможно – наш мир, похоже, непоправимо враждебен совершенству.
Представьте себе директора булавочной фабрики, который старается добиться, чтобы бракованные булавки встречались не чаще, чем в 10 случаях из 100 000, то есть чтобы брак составлял не более 0,01% от объема производства[14][14]
Этот пример взят мною из: [Groebner, Shannon, 1993, гл. 20].
[Закрыть]. Для контроля дел он проводит обследование произвольной выборки из 100 000 сошедших с конвейера булавок и выясняет, что у 12 нет головок – на 2 больше, чем он надеялся получить в среднем по всей производимой продукции. Насколько значима эта разница? Какова вероятность найти 12 бракованных булавок из выборки объемом в 100 000, если средний процент брака составляет 10 бракованных булавок на каждый 1 000 000? Нормальное распределение и среднее квадратичное отклонение де Муавра дают ответ на этот вопрос.
Но обычно вопрос ставится по-иному. Чаще никто точно не знает, сколько именно бракованных изделий в среднем выпускает фабрика. Вопреки благим намерениям действительная доля брака может оказаться в среднем выше, чем 10 из 100000. Что скажет выборка из 100000 булавок о вероятности того, что для всей выпускаемой продукции брак в среднем составляет 0,01%? Насколько более точные сведения можно получить из выборки объемом в 200 000 булавок? Какова вероятность того, что процент брака окажется в пределах от 0,009% до 0,011%? А в пределах от 0,007% до 0,013%? Какова вероятность того, что одна наугад взятая булавка окажется бракованной?
Здесь исходными данными являются 10 булавок, 12 булавок, 1 булавка, а вероятность оказывается искомой величиной. В такой постановке задача сводится к вычислению так называемой обратной вероятности: какова вероятность того, что по всей произведенной продукции брак составляет в среднем 0,01%, если в выборке из 100000 булавок оказалось 12 бракованных?
***
Одно из наиболее эффективных решений этой задачи было предложено пастором Томасом Байесом, который родился в 1701 году и жил в Кенте[15][15]
Материал о Байесе взят из: [Stigler, 1986; Cone, 1952].
[Закрыть]. Байес был нонконформистом. Он отвергал большинство обрядов англиканской церкви, перенятых ею от католической после отделения от Рима во время правления Генриха VIII.
Хоть Байес и был членом Королевского общества, известно о нем немного. В одном довольно скучном и безликом учебнике статистики он характеризуется как «загадочная личность»[16][16]
Groebner, Shannon, 1993, стр. 1014.
[Закрыть]. При жизни он не издал ни одного сочинения по математике и оставил только две работы, которые были опубликованы после его смерти, но не смогли обратить на себя должного внимания.
Тем не менее одна из этих работ, «О решении проблемы в теории случайностей» («Essay towards Solving a Problem in the Doctrine of Chances»), оказалась замечательно оригинальным произведением, которое обессмертило имя Байеса среди статистиков, экономистов и других представителей социальных наук. В нем заложены основы современных методов статистического анализа, начало работы над которыми было положено трудами Якоба Бернулли.
После смерти Байеса в 1761 году, согласно составленному за год до того завещанию, рукопись этой работы и сто фунтов стерлингов достались «Ричарду Прайсу, в настоящее время, как я полагаю, пастору в Ньюингтон-Грин»[17][17]
Stigler, 1986, стр. 123.
[Закрыть]. Любопытно, что у Байеса были столь неверные сведения о Прайсе, фигуре тогда намного более важной, чем простой священник в маленьком городке графства Кент.
Ричард Прайс был человеком высоких нравственных принципов, страстным поборником свободы вообще и свободы вероисповедания в частности. Он был убежден, что свобода дана человеку Богом и поэтому является непременным условием нравственного поведения, и утверждал, что лучше быть свободным грешником, чем рабом. В 1780 году он написал книгу об американской революции с чрезвычайно длинным названием: «Соображения о значении американской революции и путях превращения ее во всемирное благо» («Observations on the Importance of the American Revolution and the Means of Making it a Benefit to the World»), в которой выразил свою веру в то, что революция была предначертана Богом. Рискуя собой, он заботился о перемещенных в Англию американских военнопленных. Он был другом Бенджамина Франклина и хорошо знал Адама Смита. Смит отсылал Франклину и Прайсу некоторые главы книги «О богатстве народов» («The Wealth of Nations») для чтения и критических замечаний.
Одна разновидность свободы беспокоила Прайса: свобода заимствования. Он был глубоко озабочен величиной национального долга Британии, выросшего в результате войн с Францией и с колонистами Северной Америки. Он сетовал по поводу непрекращающегося накопления государственного долга и называл его «величайшим национальным злом»[18][18]
Cone, 1952, стр. 50.
[Закрыть].
Но Прайс был не просто священником и страстным поборником свободы. Он известен также как математик, который за работы в области теории вероятностей был принят в члены Королевского общества.
В 1765 году три человека из страховой компании, носящей название «Общество справедливости» (Equitable Society), пригласили Прайса помочь им в составлении таблиц смертности, на основе которых должны были определяться размеры сборов при страховании жизни и продаже пожизненной ренты. После изучения среди прочих трудов Галлея и де Муавра Прайс опубликовал по этому вопросу две статьи в «Philosophical Transactions»; его биограф Карл Кон сообщает, что голова Прайса поседела за одну ночь от напряжения при работе над второй из этих статей.
Прайс начал с изучения записей в лондонских регистрационных книгах, но математическое ожидание продолжительности жизни, получаемое на основе этих записей, оказалось значительно ниже имевшихся данных о смертности[19][19]
Там же, стр. 41.
[Закрыть]. Тогда он обратился в графство Нортгемптон, где записи велись более аккуратно, чем в Лондоне. Он опубликовал результаты своих изысканий в 1771 году в книге, озаглавленной «Заметки о страховых выплатах» («Observations on Reversionary Payments»), которая оставалась катехизисом страховщиков до конца XIX столетия. Эта работа принесла ему славу основоположника страховой статистики как комплекса вероятностных методов, применяемых ныне всеми страховыми компаниями в качестве основы исчисления сборов и выплат.
Однако в работе Прайса были серьезные, весьма дорогостоящие ошибки, частично обусловленные погрешностями исходных данных, которые не охватывали большое число незарегистрированных рождений. Более того, он завысил коэффициенты смертности для ранних возрастов и занизил их для старших, а его оценки величины миграции населения в Нортгемптон и из него оказались неточными. Наиболее серьезные последствия имело занижение ожидаемой продолжительности жизни, что привело к значительному завышению сборов при страховании жизни. «Общество справедливости» обогатилось на этой ошибке, а британское правительство, использовавшее те же таблицы для определения выплат покупателям пожизненной ренты, понесло значительные убытки[20][20]
Там же, стр. 42-44.
[Закрыть].
***
Через два года после смерти Байеса Прайс послал копию его «очень остроумной» работы некоему Джону Кантону, другому члену Королевского общества, с сопроводительным письмом, дающим представление о намерениях, с которыми Байес ее писал. Впоследствии в 1764 году Королевское общество опубликовало ее в «Philosophical Transactions», но и это не помешало новаторской работе Байеса прозябать в безвестности в течение двадцати лет.
Здесь приводится постановка Байесом задачи, которую он пытался решить:
ЗАДАЧА
Дано: число случаев [в выборке], в которых некое событие наступило, и число случаев, в которых оно не наступило.
Требуется определить: вероятность того, что вероятность наступления события в одном испытании [в генеральной совокупности] находится в некоем заданном интервале значений[21][21]
Bayes, 1763.
[Закрыть].
Поставленная здесь задача в точности обратна задаче, поставленной Якобом Бернулли примерно шестьюдесятью годами ранее (с. 136). Байес задается вопросом, как определить вероятность того, что событие будет иметь место, при том что мы знаем только, что оно в определенном числе случаев наступило и в некоем другом числе случаев не наступило. Другими словами, булавка может оказаться бракованной или качественной. Если мы обнаружим десять бракованных булавок в выборке из ста, какова вероятность, что во всей совокупности булавок – не только в выборке из ста – процент брака окажется в интервале между 9 и 11%?
Сопроводительное письмо Прайса Кантону показывает, как далеко за одно столетие продвинулся анализ вероятности в практике принятия решений. «Каждый здравомыслящий человек, – пишет Прайс, – поймет, что поставленная здесь задача ни в коем случае не является простым упражнением в области теории случайностей, но требует решения в целях построения прочного основания для всех наших суждений относительно предыдущих событий и выяснения вероятности последующих»[22][22]
Сопроводительное письмо Прайса и работа Байеса перепечатаны в: [Kendall, Plackett, 1977, стр. 134-150].
[Закрыть]. Он далее указывает, что ни Якоб Бернулли, ни де Муавр не поставили вопрос именно таким образом, хотя де Муавр и охарактеризовал трудности в получении своего собственного решения как «наибольшие из всех, какие можно ожидать в теории случайностей ».
Для доказательства своей точки зрения Байес использовал не очень подходящий для диссидентствующего священника пример – бильярд. Запущенный по бильярдному столу шар где-то останавливается и остается на месте. Затем другой шар многократно запускается таким же образом, и подсчитывается число случаев, когда он останавливается справа от первого. Это «число случаев, когда неопределенное событие наступило», – успех. Неуспех – это число случаев, когда событие не наступило, то есть шар оказался слева от первого. Вероятность местонахождения первого шара – единичное испытание – следует вывести из «успеха» или «неуспеха» второго[23][23]
Превосходное описание этого эксперимента можно найти в: [Stigler, 1986, стр. 124-130].
[Закрыть].
Важнейшее применение подхода Байеса заключается в использовании новой информации для уточнения вероятности, основанной на старой информации, или, пользуясь языком статистики, сравнении апостериорной вероятности с априорной. В случае с бильярдными шарами положение первого шара представляет собой априорную, а многократные оценки его местонахождения повторяющимися запусками второго шара – апостериорную вероятность.
Процедура пересмотра выводов относительно старой информации по мере получения новой имеет источником философскую точку зрения, делающую достижения Байеса чрезвычайно современными: в динамичном мире в условиях неопределенности нет однозначных ответов. Математик А. Ф. М. Смит (Smith) это очень хорошо сформулировал: «Каждая попытка научно обосновать ответы, возникающие в ситуации сложной неопределенности, является, на мой вкус, тоталитарной пародией на считающийся разумным процесс познания»[24][24]
Smith A., 1984. Эта статья содержит прекрасный анализ байесовского подхода.
[Закрыть].
Хотя из-за сложности байесовского подхода детальное рассмотрение его здесь неуместно, пример типичного применения его приведен в конце этой главы.
***
Важнейшей отличительной особенностью всех описанных в этой главе научных достижений является смелая мысль, что неопределенность может быть измерена. Неопределенность означает, что значение вероятности неизвестно; перефразируя высказывание Хакинга об определенности, можно сказать, что нечто является неопределенным, если наша информация верна, а событие не происходит или если наша информация неверна, а событие происходит.
Якоб Бернулли, Абрахам де Муавр и Томас Байес показали, как вычислять величину вероятности на основании эмпирических фактов. В этих достижениях впечатляют живость ума, проявленная в постановке вопросов, и смелость, с которой он дерзко атакует неизвестное. Де Муавр не скрывал восхищенного удивления перед собственными результатами, когда сослался на БОЖЕСТВЕННОЕ ПРЕДНАЧЕРТАНИЕ. Он любил такого рода выражения. В другом месте у него читаем:
Мы уже основательно углубились в XVIII столетие, когда англичане считали познание высшей формой человеческой деятельности. Это действительно было время, когда ученые стряхнули со своих глаз метафизическую пыль. Не было больше препятствий для исследования непознанного и созидания нового. Огромные успехи в освоении природы риска, достигнутые до 1800 года, дали мощный толчок науке наступающего столетия, и в Викторианскую эпоху исследования в этом направлении получили дальнейшее развитие.
Приложение
Пример практического применения Байесова подхода к статистическим задачам
Обратимся вновь к булавочной компании. Компания имеет две фабрики, причем старая выпускает 40% продукции. Это означает, что взятая наугад булавка, бракованная или нет, с вероятностью 40% выпущена на старой фабрике; это исходная вероятность. Известно, что на старой фабрике процент брака вдвое больше, чем на новой. Если клиент звонит и сообщает о купленной им бракованной булавке, на какую из двух фабрик должен звонить менеджер по сбыту?
Исходная вероятность побуждает утверждать, что, скорее всего, бракованная булавка сделана на новой фабрике, выпускающей 60% продукции компании. С другой стороны, частота появления брака на этой фабрике вдвое меньше, чем на старой. Пересмотрев исходную вероятность с учетом этой дополнительной информации, получаем, что вероятность выпуска бракованной булавки новой фабрикой равна только 42,8%; это значит, что с вероятностью 57,2% виновата старая фабрика. Эта новая оценка становится апостериорной вероятностью.
Глава 8
Предельный закон хаоса
В 1855 году в Гёттингене в возрасте 78 лет скончался Карл Фридрих Гаусс. За последние 27 лет жизни он только однажды не ночевал дома и, надо думать, из неприязни к путешествиям категорически отказывался от предложений самых известных университетов Европы занять место профессора[1][1]
Биографические материалы о Гауссе взяты в основном из: [Shaaf, 1964; Bell E., 1965].
[Закрыть].
Подобно многим математикам до и после него, Гаусс уже в раннем детстве проявил гениальные способности, чем в равной степени огорчил отца и обрадовал мать. Его отец был простым рабочим, презирал заумные увлечения своего гениального сына и всячески портил ему жизнь. Мать, напротив, как могла, старалась защитить своего мальчика и всемерно поощряла его увлечение математикой, за что Гаусс до конца дней вспоминал о ней с глубокой благодарностью.
Биографы, как обычно в таких случаях, сообщают всевозможные истории о математических головоломках, которые будущий великий математик решал в том возрасте, когда большинство детей с трудом делят 24 на 12. Он обладал феноменальной памятью и помнил всю логарифмическую таблицу назубок. В восемнадцать лет он сделал удивительное открытие, касающееся свойств семнадцатиугольника; такого в математике не случалось уже 2000 лет со времен древних греков. Его докторская диссертация на тему «Новое доказательство того, что каждая целая рациональная функция одной переменной может быть представлена произведением действительных чисел первой и второй степени» посвящена решению основной теоремы алгебры. Сама теорема была известна и раньше, но он предложил совершенно новое доказательство.
Слава Гаусса была столь велика, что, когда в 1807 году французские войска подошли к Гёттингену, Наполеон приказал поберечь город, в котором живет «величайший математик всех времен»[2][2]
Shaaf, 1964, стр. 40.
[Закрыть]. Со стороны Наполеона это было очень любезно, но слава имеет и оборотную сторону. Когда победители наложили на Германию контрибуцию, они потребовали с Гаусса 2000 франков. Это соответствовало примерно 5000 нынешних долларов – довольно крупная сумма для университетского профессора{1}{1}
Соотношение франка и доллара в течение многих лет с удивительным постоянством держалось на уровне 5 : 1. Таким образом, 2000 франков можно приравнять к 400 долларам. В 1807 году покупательная способность доллара была в двенадцать раз выше, чем сегодня.
[Закрыть]. Друзья предлагали помощь, Гаусс отказывался; пока шли препирательства, выяснилось, что деньги уже уплачены знаменитым французским математиком Морисом Пьером де Лапласом (1749-1827). Лаплас объяснил свой поступок тем, что считает Гаусса, который был на 29 лет моложе его, «величайшим математиком в мире»[3][3]
Bell E., 1965, стр. 310.
[Закрыть], т. е. оценил его чуть ниже, чем Наполеон. Позднее анонимный почитатель прислал Гауссу 1000 франков, чтобы помочь ему рассчитаться с Лапласом.
Сам Лаплас был весьма колоритной фигурой, о которой стоит сказать здесь несколько слов; подробнее мы поговорим о нем в главе 12.
В детстве он, как и Гаусс, был математическим вундеркиндом, а впоследствии прославился своей космогонической теорией в астрономии. В течение многих лет его внимание привлекали некоторые разделы теории вероятностей, которые исследовал Гаусс. Но на этом сходство кончается. Жизнь Лапласа протекала на фоне Французской революции, Наполеоновских войн и реставрации Бурбонов. Честолюбивому человеку нужно было обладать большой ловкостью, чтобы в этой кутерьме удержаться на поверхности. Лаплас оказался как раз таким человеком[4][4]
Биографические материалы о Лапласе взяты из: [Newman, 1988d, стр. 1291-1299].
[Закрыть].
В 1784 году король сделал его инспектором королевской артиллерии, положив очень приличное жалованье. Однако с установлением республики в Лапласе проснулась «неугасимая ненависть к монархии»[5][5]
Newman, 1988d, стр. 1297.
[Закрыть], а очень скоро после захвата власти Наполеоном он заявил о своей решительной поддержке нового вождя, который дал ему пост министра внутренних дел и титул графа, по-видимому рассчитывая, что сотрудничество всемирно известного ученого укрепит авторитет нового режима. Но уже через шесть недель, уволив Лапласа и посадив на его место своего брата, Наполеон скажет: «Он был хуже самого посредственного чиновника, который во всем видит только хитросплетения. Министерство под его руководством погрязло в трясине бесконечно малой чепухи»[6][6]
Там же
[Закрыть]. Неплохой урок для ученых, которым неймется стать власть имущими!
Правда, позже Лаплас взял реванш. Вышедшее в 1812 году первое издание своей «Theorie analytique des probabilites» («Аналитической теории вероятностей») он еще посвятил «Великому Наполеону», но из второго издания 1814 года это посвящение вычеркнул и связал перемену политических ветров с темой своего трактата. «Падение империй, стремившихся к господству над миром, – написал он, – с очень высокой степенью вероятности мог предсказать каждый сведущий в вычислениях шансов»[7][7]
Там же
[Закрыть]. Людовик XVIII после коронации припомнил это замечание, и Лаплас стал маркизом.
***
В отличие от Лапласа Гаусс был очень замкнутым человеком и вел затворнический образ жизни. Он не опубликовал массу своих открытий, и многие из них были заново сделаны другими математиками. В публикациях он уделял больше внимания результатам, не придавая особого значения методам их получения и часто заставляя других математиков тратить массу сил на доказательство его выводов. Эрик Темпл Белл, один из биографов Гаусса, считает, что его необщительность задержала развитие математики по меньшей мере на пятьдесят лет; полдюжины математиков могли бы прославиться, если бы получили результаты, годами, а то и десятилетиями хранившиеся у него архиве[8][8]
Bell E., 1965, стр. 324.
[Закрыть].
Слава и замкнутость сделали Гаусса неисправимым интеллектуальным снобом. Хотя его основные достижения связаны с теорией чисел, в которой прославился Ферма, он почти не использовал результаты знаменитого тулузского адвоката, а от его великой теоремы, остающейся более трех столетий завораживающей загадкой для математиков всего мира, отмахнулся, назвав ее «частным утверждением, для меня малоинтересным, потому что я легко могу выложить множество подобных утверждений, которые никто не сможет ни доказать, ни опровергнуть»[9][9]
Там же, стр. 307.
[Закрыть].
Это не было пустой похвальбой. В 1801 году, когда ему было 24 года, Гаусс опубликовал «Disquisitiones Arithmeticae» («Арифметическое исследование»), написанное на элегантной латыни яркое и значительное историко-научное исследование по теории чисел. Большая часть книги недоступна нематематикам, но для него самого написанное звучало как музыка[10][10]
Последующие обсуждения и примеры взяты из: [Shaaf, 1964, стр. 23-25].
[Закрыть]. Он находил в теории чисел «магическое очарование» и радовался открытию и доказательству всеобщности таких, например, соотношений:
1 = 12
1 + 3 = 22
1 + 3 + 5 = 32
1 + 3 + 5 + 7 = 42
Или, в общем виде, сумма п первых нечетных чисел равна п2. Отсюда сумма первых 100 нечетных чисел от 1 до 199 равна 1002, или 10 000, а сумма нечетных чисел от 1 до 999 равна 250 000.
В 1801 году Гаусс снизошел до демонстрации важных практических приложений своих теоретических выкладок. В 1800 году один итальянский астроном открыл маленькую новую планету, на астрономическом языке астероид, и назвал ее Церера. Год спустя Гаусс вычислил ее орбиту; раньше он уже занимался вычислением лунных таблиц, позволяющих в любой год определить дату праздника Пасхи. В те времена он еще руководствовался желанием завоевать признание, и ему очень хотелось попасть в компанию своих выдающихся предшественников – от Птолемея до Галилея и Ньютона – в изучении небесной механики, хотя он был далек от мысли превзойти астрономические достижения своего современника и благодетеля Лапласа. Впрочем, эта частная задача была привлекательна и сама по себе, в особенности учитывая неполноту данных и незнание скорости вращения Цереры вокруг Солнца.
В результате лихорадочных вычислений Гаусс нашел очень точное решение, дающее возможность предсказывать местонахождение Цереры в любой момент. За время этой работы он настолько поднаторел в небесной механике, что научился вычислять орбиты комет в течение одного-двух часов, в то время как у других ученых эта работа отнимала три-четыре дня.
Гаусс особенно гордился своими астрономическими достижениями, ощущая себя последователем Ньютона, который был его идеалом. Восхищенный открытиями великого англичанина, он впадал в бешенство при упоминании об истории с яблоком, падение которого якобы послужило поводом к открытию закона всемирного тяготения, и так отзывался об этой басне:
«Глупость! Какой-то надоедливый дурак пристал к Ньютону с вопросом, как он открыл закон тяготения. Увидев, что имеет дело с несмышленышем, и стараясь избавиться от надоеды, Ньютон сказал, что ему на нос упало яблоко. Удовлетворенный ответом приставала отошел в полной уверенности, что все понял»[11][11]
Bell E., 1965, стр. 321.
[Закрыть]
Гаусс был невысокого мнения о человечестве, порицал рост националистических настроений, сопровождаемый прославлением воинских доблестей, и считал завоевательную политику «непостижимой глупостью». Из-за своей мизантропии он и просидел дома большую часть жизни[12][12]
Там же, стр. 331.
[Закрыть].
***
Не питая особого интереса к управлению риском как таковому, он, однако, интересовался теоретическими проблемами, поднятыми в работах по вероятности, теории больших чисел и теории выборки, начатых Якобом Бернулли и продолженных де Муавром и Байесом, и его собственные достижения в этой области легли в основу современных методов контроля риска.
Впервые он обратился к вероятностным проблемам при описании метода определения орбиты на основе множества дискретных наблюдений в книге о движении небесных тел, опубликованной в 1809 году под названием «Theoria Motus» («Теория движения»). Когда в 1810 году «Theoria Motus» попала в руки Лапласу, тот сразу ухватился за нее и занялся выяснением некоторых неясностей, которых Гауссу не удалось избежать.
Но наиболее ценный вклад в теорию вероятностей Гаусс внес в результате работы, к вероятности никакого отношения не имеющей, а именно занимаясь геодезическими измерениями кривизны Земли для определения точности географических наблюдений. Из-за шарообразности Земли расстояние между двумя точками на ее поверхности отличается от расстояния между ними, пролетаемого вороной. Эта разница пренебрежимо мала для расстояния в несколько миль, но при расстоянии более десяти миль она становится ощутимой.
В 1816 году Гаусс получил приглашение руководить геодезическими съемками в Баварии и состыковать их результаты с такими же измерениями, уже выполненными в Дании и Северной Германии. Надо полагать, эта работа была малоинтересна для такого до корней волос теоретика, каким был Гаусс. Ему пришлось покинуть кабинет, работать на пересеченной местности, общаться с чиновниками и прочим людом, включая коллег, интеллектуальный уровень которых был ему неинтересен. Но работа затянулась до 1848 года, и опубликованные в конце концов результаты составили шестнадцать томов.
Поскольку невозможно обмерить каждый квадратный дюйм земной поверхности, геодезическая съемка представляет собой замеры, выполняемые на заданном расстоянии друг от друга. Анализируя распределение результатов этих замеров, Гаусс заметил, что они имеют разброс, но, когда число замеров растет, результаты группируются вокруг некоторой центральной точки. Этой центральной точкой является среднее значение всех результатов измерений, а сами результаты распределяются симметрично по обе стороны от среднего значения. Чем больше измерений выполнялось, тем больше прояснялась картина распределения результатов и тем больше она напоминала колоколообразную кривую, полученную де Муавром 83 годами раньше.
Связь между риском и измерением кривизны земной поверхности оказалась теснее, чем можно было предположить. Пытаясь установить кривизну Земли, Гаусс день за днем осуществлял на баварских холмах одно геодезическое измерение за другим, пока не набралось огромное количество наблюдений. Точно так же, как мы рассматриваем опыт прошлого для вынесения суждений о вероятности того или иного направления развития событий в будущем, Гаусс оценивал накопившиеся результаты и выносил суждение о том, как кривизна земной поверхности влияет на результаты замеров расстояний между разными точками в Баварии. Он мог судить о точности своих наблюдений по распределению массы результатов наблюдений вокруг среднего значения.
Принимая связанные с риском решения, мы на каждом шагу встречаемся с разновидностями вопроса, на который он пытался ответить. Сколько в среднем ливней следует ожидать в Нью-Йорке в апреле и каковы наши шансы остаться сухими, если, уезжая на неделю в Нью-Йорк, мы не захватим плащ? Какова вероятность попасть в автомобильную аварию, если мы собираемся проехать 3000 миль, чтобы пересечь страну? Какова вероятность падения курса акций на 10% в будущем году?
***
Разработанные Гауссом методы получения ответов на подобные вопросы настолько общеизвестны, что мы редко задаемся вопросом об их происхождении. Но без этих методов невозможно оценить степень риска, с которым мы сталкиваемся в жизни, и принимать обоснованные решения о том, стоит или не стоит идти на риск. Без этих методов мы не смогли бы оценивать точность имеющейся информации, как не смогли бы оценивать вероятность того, что некое событие произойдет – дождь, смерть 85-летнего человека или падение курса акций на 20%, победа русских на Кубке Дэвиса или демократического большинства на выборах в конгресс, что сработают ремни безопасности при аварии или при бурении наугад будет открыто месторождение нефти.
Процесс оценки данных начинается с анализа колоколообразной кривой, главным назначением которой является не определение точного значения, а оценка ошибок. Если бы результат каждого измерения точно соответствовал тому, что мы измеряем, не о чем было бы говорить. Если бы люди, слоны, орхидеи или гагарки не отличались друг от друга в пределах своего вида, жизнь на Земле была бы совсем другой. Но в мире господствует не тождество, а сходство; ни одно измерение не является абсолютно точным. При наличии нормального распределения колоколообразная кривая упорядочивает эту путаницу. Фрэнсис Гальтон, с которым мы встретимся в следующей главе, с немалой долей пафоса писал о нормальном распределении:
«"Закон частоты ошибок"... с непоколебимым самообладанием безмятежно царит в немыслимом хаосе. Чем больше толпа... тем больше в ней единства. Это предельный закон хаоса. Чем больше беспорядочных элементов попадает в его руки... тем более неожиданной и прекрасной оказывается скрывающаяся за видимым хаосом форма упорядоченности»[13][13]
Цитируется по: [Shaaf, 1964, стр. 114].
[Закрыть].
Большинство из нас сталкивается с колоколообразной кривой еще в школьные годы. Учитель выставляет оценки «по кривой», в случайном порядке, он не начинает с низшей, чтобы закончить высшей. Успеваемость средних студентов вознаграждается средней троечкой. Слабые и сильные получают оценки, распределяющиеся симметрично относительно средней. Даже если все работы выполнены прекрасно или, наоборот, безобразно, в совокупности имеющихся работ лучшая оценивается по высшему баллу, а худшая по низшему.