Текст книги "Вопросы о погоде"
Автор книги: Павел Астапенко
сообщить о нарушении
Текущая страница: 18 (всего у книги 32 страниц)
11.21. Как предсказывают сильные морозы зимой?
Прогноз температуры воздуха для синоптиков – одна из наиболее простых задач, хотя в отдельных случаях и он представляет определенные трудности. Дело в том, что температура в приземном слое воздуха сильно зависит от состояния облачности и просчеты в прогнозе облачности почти неизбежно влекут за собой ошибки в прогнозе температуры. Однако изменения температуры поддаются строгим вычислениям, с помощью ЭВМ они производятся достаточно надежно. Случаи сильных морозов в средних широтах связаны обычно с вторжением масс очень холодного воздуха из арктических районов. Чаще всего это бывает после прохождения глубоких циклонов, в тыл которых и втягивается холодный арктический воздух. Процесс таких вторжений холода из Арктики хорошо прослеживается на картах погоды. На них же видны и те низкие температуры воздуха, которыми характеризуется каждое вторжение. На прогностических картах погоды, получаемых с помощью расчетов на ЭВМ, видно ожидаемое положение всех барических систем – циклонов и антициклонов, по ним же легко определяется, какие воздушные массы циркулируют в этих системах. Это облегчает синоптикам прогноз температуры в каждом интересующем нас районе, в том числе и прогноз экстремально низких температур, то есть сильных морозов, приносимых к нам из Арктики.
В Сибири сильные морозы могут наблюдаться и без вторжений арктических масс воздуха: в условиях длительной безоблачной антициклонической погоды и безветрия местный воздух в приземном слое сильно выхолаживается и морозы в континентальных районах средних широт нередко бывают сильнее, чем в Арктике. Эти случаи также без особого труда могут быть предсказаны синоптиками, даже без привлечения к расчетам ЭВМ.
11.22. Можно ли предсказать засуху?
Современные методы краткосрочных прогнозов позволяют предсказать сохранение засухи, если она налицо, или прекращение ее с заблаговременностью в несколько дней. Прогноз же засухи с заблаговременностью в несколько месяцев или даже недель – задача долгосрочной синоптики. Пока достаточно надежно эта задача не поддается решению. Если же говорить точнее, надежный прогноз засухи возможен лишь в некоторых случаях и не всегда с требуемой заблаговременностью.
11.23. Можно ли предвидеть возникновение смерчей?
С помощью радиолокационных наблюдений за облачностью, а также данных радиозондирования атмосферы можно обнаружить облака, способные породить смерч. Это сильно развитые по вертикали кучево-дождевые облака, несущие в себе огромные запасы избыточной тепловой энергии, выделяющейся при конденсации водяного пара. Такое облако должно иметь вертикальные и горизонтальные размеры не менее 10 км. Однако не каждое таких размеров кучево-дождевое облако порождает смерч. Кучево-дождевые облака дают ливни, грозовые разряды, иногда из них выпадает град или дождь со снегом, лишь некоторые способны вызвать смерч. Таким образом, определить по радиолокационным наблюдениям время и место возникновения смерчей нельзя. Можно лишь определить наличие условий, благоприятных для образования смерчей.
По данным радиозондирования представляется возможным определить мощность слоя термодинамически неустойчивого воздуха, богатого влагой. Если она не менее нескольких километров, удельная влажность в приземном слое – не менее 10 г/кг, а температура с высотой уменьшается не менее чем на 10°C на каждый километр, то в таком воздухе возможно развитие мощных кучево-дождевых облаков, способных породить смерч, то есть налицо необходимые для этого условия. Однако определить, достаточны ли эти условия, практически нельзя.
11.24. Как предсказывают грозы?
Поскольку грозы могут возникать как на атмосферных фронтах (фронтальные грозы), так и вне их, в термодинамически неустойчивом воздухе (внутримассовые грозы), то их прогноз сводится, во-первых, к оценке синоптических условий (наличие атмосферных фронтов, их состояние и время прохождения, наличие грозовой активности или же развитие неустойчивости в воздушной массе при типичных для грозовой активности условиях циркуляции), а во-вторых – к расчетам времени и интенсивности проявления термодинамической неустойчивости в интересующем нас районе с учетом особенностей местности и взаимодействия воздушной массы с подстилающей поверхностью.
Существует несколько методик прогноза гроз. Для внутримассовых гроз суть всех их сводится к учету состояния воздуха у земли и на всех доступных инструментальным измерениям высотах в ранние утренние часы и определению изменения этого состояния в дневное время при максимальном нагревании земной поверхности солнечными лучами. Для этого требуются данные о температуре, влажности воздуха, атмосферном давлении и ветре у поверхности земли и на высотах, то есть материалы приземных и аэрологических наблюдений (радиотемпературного и радиоветрового зондирования атмосферы), а также карты погоды – приземные и высотные.
На специальном бланке аэрологической диаграммы синоптики обычно по данным ночного радиозондирования строят две кривые – фактического и ожидаемого днем состояния атмосферы (кривая стратификации и кривая состояния). Сопоставив положение этих двух кривых и оценив размеры площади между ними на диаграмме, синоптик может количественно оценить степень неустойчивости воздуха и ожидаемый днем уровень проявления этой неустойчивости: произойдет ли развитие кучевой облачности или нет; если произойдет, то какая это будет облачность (плоская кучевая, мощно-кучевая или кучево-дождевая); дойдет ли дело до выпадения ливневых осадков или нет, будут ли осадки сопровождаться грозовыми разрядами, есть ли вероятность выпадения града…
Составление такого прогноза требует, помимо владения методами, еще и опыта, хорошего знания местных условий и всех особенностей грозовой деятельности в каждом сезоне и в каждой типичной ситуации.
11.25. С какой заблаговременностью могут надежно предсказываться грозы?
Для обширной территории грозы могут быть предсказаны достаточно надежно за сутки, это позволяют сделать карты погоды. Для населенного пункта прогноз гроз за сутки не может считаться надежным. В этом случае требуются уточнение и детализация суточного прогноза гроз на основе анализа аэрологической диаграммы, то есть данных радиозондирования за ночной или ранний утренний срок наблюдений. Поэтому заблаговременность составления надежного прогноза сокращается до 9-6 ч. Уточнить прогноз можно и по данным метеорологических радиолокаторов и грозопеленгаторов. Эти приборы фиксируют уже возникшие грозовые очаги, помогают определить их перемещение, а следовательно, и дать предупреждение о приближающейся грозе за несколько часов до ее прихода в интересующий нас населенный пункт. Помогают в оценке условий появления гроз и местные признаки, в первую очередь характерные облака.
ПОГОДА И ТРАНСПОРТ
Транспорт – одна из наиболее зависимых от погоды отраслей народного хозяйства. Особенно это верно для воздушного транспорта, для обеспечения нормальной работы которого требуется самая полная, детальная информация о погоде, как о фактически наблюдающейся, так и об ожидаемой по прогнозу. Специфика требований транспорта к метеорологической информации заключается в масштабности сведений о погоде – маршруты воздушных, морских судов и автомобильных грузоперевозок имеют протяженность, измеряемую многими сотнями и тысячами километров; кроме того, метеорологические условия оказывают решающее влияние не только на экономические показатели работы транспортных средств, но и на безопасность движения; от состояния погоды и качества информации о ней нередко зависят жизнь и здоровье людей.
Для удовлетворения потребностей транспорта в метеорологической информации оказалось необходимым не только создать специальные метеорологические службы (авиационные и морские – повсеместно, а в отдельных странах еще и железнодорожные, автомобильные), но и развить новые отрасли прикладной метеорологии: авиационную и морскую метеорологию.
Многие атмосферные явления представляют опасность для воздушного и морского транспорта, некоторые же метеорологические величины для обеспечения безопасности полетов современных самолетов и плавания современных морских судов должны измеряться с особой точностью. Для нужд авиации и флота понадобились новые сведения, которыми раньше не располагали климатологи. Все это потребовало перестройки уже сложившейся было и успевшей стать «классической» науки климатологии. Влияние потребностей транспорта на развитие метеорологии за последние полвека стало решающим, оно повлекло за собой и техническое переоснащение метеорологических станций, и использование в метеорологии достижений радиотехники, электроники, телемеханики и т. п., а также совершенствование методов прогноза погоды, внедрение средств и методов предвычисления будущего состояния метеорологических величин (атмосферного давления, ветра, температуры воздуха) и расчета перемещения и эволюции важнейших синоптических объектов, таких, как циклоны и их ложбины с атмосферными фронтами, антициклоны, гребни и т. п.
12.1. Что такое авиационная метеорология?
Это прикладная научная дисциплина, занимающаяся изучением влияния метеорологических факторов на безопасность, регулярность и экономическую эффективность полетов самолетов и вертолетов, а также разрабатывающая теоретические основы и практические приемы их метеорологического обеспечения. Образно говоря, авиационная метеорология начинается с выбора местоположения аэропорта, определения направления и требуемой длины взлетно-посадочной полосы на аэродроме и последовательно, шаг за шагом, исследует целый комплекс вопросов о состоянии воздушной среды, определяющем условия полетов. При этом значительное внимание она уделяет и вопросам чисто прикладным, таким, как составление расписания полетов, которое должно оптимальным образом учитывать состояние погоды, или содержание и форма передачи на борт заходящего на посадку самолета информации о характеристиках приземного слоя воздуха, имеющих решающее значение для безопасности приземления самолета.
12.2. Насколько зависит от условий погоды безопасность полетов?
По данным Международной организации гражданской авиации – ИКАО (аббревиатура от английского названия International Civil Aviation Organization), за последние 25 лет неблагоприятные метеорологические условия были официально признаны причиной от 6 до 20% авиационных происшествий; кроме того, еще в большем (в полтора раза) количестве случаев они явились косвенной или сопутствующей причиной таких происшествий. Таким образом, примерно в трети всех случаев неблагополучного завершения полетов условия погоды сыграли непосредственную или косвенную роль.
12.3. В какой мере метеорологические условия влияют на регулярность полетов?
По данным ИКАО, нарушения расписания полетов из-за погоды за последние десять лет в зависимости от времени года и климата района происходят в среднем в 1-5% случаев. Больше половины этих нарушений составляют отмены рейсов из-за неблагоприятных условий погоды в аэропортах вылета или назначения. Статистика последних лет показывает, что на отсутствие требуемых условий погоды в аэропортах назначения приходится до 60% отмен, задержек рейсов и посадок самолетов. Конечно, это средние цифры. Они могут не совпадать с действительной картиной в отдельные месяцы и сезоны, так же как и в отдельных географических районах.
12.4. Что влечет за собой нарушение регулярности полетов из-за погоды?
Отмену полетов и возврат купленных пассажирами билетов, изменение маршрутов и возникающие при этом дополнительные расходы, увеличение продолжительности полетов и дополнительные затраты на топливо, расход моторесурсов, оплату услуг и обеспечения полетов, амортизацию оборудования. Так, в США и Великобритании убытки авиакомпаний из-за погоды составляют ежегодно от 2,5 до 5% общего годового дохода. Кроме того, нарушение регулярности полетов приносит авиакомпаниям моральный ущерб, который в конечном итоге также оборачивается уменьшением доходов.
Совершенствование бортового и наземного оборудования систем посадки самолетов позволяет уменьшать так называемые посадочные минимумы и тем самым снижать процент нарушений регулярности вылетов и посадок из-за неблагоприятных метеорологических условий в аэропортах назначения.
12.5. Какие метеорологические условия могут препятствовать выполнению полетов или затруднять их?
Это прежде всего условия так называемых минимумов погоды – дальности видимости, высоты нижней границы облаков, скорости и направления ветра, устанавливаемых для пилотов (в зависимости от их квалификации), воздушных судов (в зависимости от их типа) и аэродромов (в зависимости от их технического оборудования и характеристик местности). При фактических условиях погоды ниже установленных минимумов выполнять полеты из соображений безопасности запрещено. Кроме того, существуют опасные для полетов метеорологические явления, затрудняющие или сильно ограничивающие выполнение полетов (частично они рассмотрены в гл. 4 и 5). Это турбулентность воздуха, вызывающая болтанку самолетов, грозы, град, обледенение самолетов в облаках и осадках, пыльные и песчаные бури, шквалы, смерчи, туман, снежные заряды и метели, а также сильные ливни, резко ухудшающие видимость. Еще следует упомянуть опасность разрядов статического электричества в облаках, снежные заносы, слякоть и гололед на взлетно-посадочной полосе (ВПП) и коварные изменения ветра в приземном слое над аэродромом, называемые вертикальным сдвигом ветра (см. 12.9).
12.6. Какие минимальные условия погоды необходимы для безопасности посадки самолета?
Среди большого количества минимумов, устанавливаемых в зависимости от квалификации пилотов, оборудования аэродромов и самолетов, а также географии местности, можно выделить три категории международных минимумов ИКАО по высоте облаков и дальности видимости на аэродроме, в соответствии с которыми разрешается выполнять взлет и посадку самолетам при сложных условиях погоды:
1-я категория – дальность видимости не менее 800 м и высота облаков не менее 60 м;
2-я категория – дальность видимости не менее 400 м и высота облаков не менее 30 м;
3-я категория – дальность видимости не менее 200 м и высота облаков без ограничений.
12.7. Есть ли различия между минимумами погоды для сверхзвуковых самолетов и для обычных самолетов?
Принципиальных различий нет: сверхзвуковые самолеты совершают взлеты и посадки на тех же режимах скорости, что и обычные самолеты. Сверхзвуковые режимы применяются только на значительной высоте, как правило уже в стратосфере, то есть практически на эшелоне, а не при снижении для захода на посадку или непосредственно после взлета, когда самолет только начинает набирать высоту. Однако сверхзвуковые самолеты в большей мере зависят от режима температуры – при температуре воздуха, значительно превышающей расчетные ее значения для СА, их двигатели расходуют слишком много топлива, из-за чего полеты становятся с экономической точки зрения нецелесообразными.
12.8. Какие метеорологические условия считаются для авиации сложными?
В гражданской авиации нашей страны согласно действующим нормативам сложными считаются следующие метеорологические условия: высота облаков 200 м и менее (при том, что они закрывают не менее половины небосвода) и дальность видимости 2 км и менее. Сложными считаются и такие условия погоды, когда налицо одно или несколько метеорологических явлений, отнесенных к числу опасных для полетов.
Нормативы сложных метеорологических условий не являются стандартными: есть экипажи, которым разрешено выполнение полетов и при значительно худших условиях погоды. В частности, все экипажи, летающие по минимумам ИКАО 1,2 и 3-й категорий, могут выполнять полеты в сложных метеорологических условиях, если нет опасных метеорологических явлений, непосредственно препятствующих полетам.
В военной авиации ограничения по сложным метеорологическим условиям несколько менее жесткие. Существуют даже так называемые «всепогодные» самолеты, оснащенные для полетов в очень сложных метеорологических условиях. Однако и они имеют ограничения по погоде. Полной независимости полетов от условий погоды практически не существует.
Таким образом, «сложные метеоусловия» – понятие условное, его нормативы связаны с квалификацией летного состава, техническим оснащением самолетов и оборудованием аэродромов.
12.9. Что такое сдвиг ветра и как он влияет на полеты самолетов и вертолетов?
Сдвиг ветра – это изменение вектора ветра (скорости и направления ветра) на единицу расстояния. Различают
вертикальный сдвиг ветра и горизонтальный. Вертикальный сдвиг принято определять как изменение вектора ветра в метрах в секунду на 30 м высоты; в зависимости от направления изменения ветра относительно движения самолета вертикальный сдвиг может быть продольным (попутным – положительным или встречным – отрицательным) или же боковым (левым или правым). Горизонтальный сдвиг ветра измеряется в метрах в секунду на 100 км расстояния.
Сдвиг ветра является показателем неустойчивости состояния атмосферы, способной вызывать болтанку самолета, создавать помехи полетам и даже – при некоторых предельных значениях его величины – угрожать безопасности полетов. Вертикальный сдвиг ветра более 4 м/с на 30 м высоты считается опасным для полетов метеорологическим явлением.
Вертикальный сдвиг ветра, кроме того, влияет на точность приземления самолета, выполняющего посадку (рис. 58). Если пилот самолета не будет парировать его воздействие работой двигателя или рулями, то при переходе снижающегося самолета через линию сдвига ветра (из верхнего слоя с одним значением ветра в нижний слой с другим его значением), вследствие изменения воздушной скорости самолета и его подъемной силы, самолет сойдет с расчетной траектории снижения (глиссады) и приземлится не в заданной точке взлетно-посадочной полосы, а дальше или ближе ее, левее или правее оси ВПП.
12.10. Как определяют наличие сдвига ветра и его величину?
Определение вертикального сдвига ветра в районе аэродрома – одна из сложных проблем авиационной метеорологии. Обычные технические средства определения скорости ветра на высотах для этого непригодны из-за слишком больших погрешностей. Установка на аэродроме высоких мачт с приборами для точного измерения ветра исключается по соображениям безопасности полетов. Бортовое оборудование самолетов позволяет только качественно определить наличие сдвига ветра на глиссаде, без точной его количественной оценки. Для точного же расчета вертикального сдвига ветра используются установленные экспериментальным путем зависимости между скоростью и направлением ветра на различных уровнях в условиях данного аэродрома.
12.11. Что такое обледенение самолетов и в чем его опасность?
Обледенение самолета, то есть отложение льда на его поверхности или на отдельных деталях конструкций, на входных отверстиях некоторых приборов, происходит чаще всего во время полета в облаках или дожде, когда переохлажденные капли воды, содержащиеся в облаке или осадках, сталкиваясь с самолетом, замерзают. Реже бывают случаи отложения льда или изморози на поверхности самолета вне облачности и осадков, так сказать в «чистом небе». Такое явление может иметь место во влажном воздухе, который теплее наружной поверхности самолета.
Для современных самолетов обледенение уже не представляет серьезной опасности, так как они оснащены надежными антиобледенительными средствами (электрообогрев уязвимых мест, механическое скалывание льда и химическая защита поверхностей). Кроме того, лобовые поверхности самолетов, летящих со скоростью более 600 км/ч, сильно нагреваются вследствие торможения и сжатия воздушного потока, обтекающего самолет. Это так называемый кинетический нагрев деталей самолета, из-за которого температура поверхности самолета сохраняется выше точки замерзания воды даже при полете в облачном воздухе со значительной отрицательной температурой.
Однако интенсивное обледенение самолета при вынужденном длительном полете в переохлажденном дожде или в облаках с большой водностью представляет реальную опасность и для современных самолетов. Образование плотной корки льда на фюзеляже и оперении самолета нарушает аэродинамические качества воздушного судна, так как происходит искажение обтекания поверхности самолета воздушным потоком. Это лишает самолет устойчивости полета, снижает его управляемость. Лед на входных отверстиях воздухозаборника двигателя уменьшает тягу последнего, а на приемнике воздушного давления – искажает показания приборов воздушной скорости и т. д. Все это очень опасно при несвоевременном включении антиобледенительных средств или при отказе последних.
По статистике ИКАО, из-за обледенения ежегодно происходит около 7% всех авиационных катастроф, связанных с метеорологическими условиями. Это немногим меньше 1% всех авиакатастроф вообще.