355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Павел Астапенко » Вопросы о погоде » Текст книги (страница 1)
Вопросы о погоде
  • Текст добавлен: 3 октября 2016, 23:03

Текст книги "Вопросы о погоде"


Автор книги: Павел Астапенко



сообщить о нарушении

Текущая страница: 1 (всего у книги 32 страниц)

Павел Дмитриевич Астапенко
Вопросы о погоде

Что мы о ней знаем и чего не знаем

ПРЕДИСЛОВИЕ К ПЕРВОМУ ИЗДАНИЮ

О погоде люди судят не по книгам и учебникам, а по собственному опыту – по тому, как она влияет на их повседневную жизнь, как они воспринимают ее капризы. Суждения людей о погоде в значительной мере отражают индивидуальные особенности реакции человека на состояние внешней среды и часто субъективны. Интересует погода, хотя бы время от времени, практически всех нас, она – постоянная тема разговоров, но знаем мы о ней далеко не все. В школах должного внимания погоде не уделяют, а популярной литературы о ней недостаточно.

Моих коллег-метеорологов поражает разнообразие вопросов о погоде, задаваемых друзьями и знакомыми. Ответить на такие вопросы – и есть основная цель предлагаемой читателю книги, рассчитанной на всех, кого интересует погода, ее особенности и капризы.

В книге более пятисот различных вопросов о погоде, сгруппированных по основным темам. В ответах на вопросы дается объективная оценка того, что мы знаем о погоде и чего еще не знаем о ней. Есть темы, объединяющие вопросы, которые может задать каждый, есть темы для особо любознательных, для тех, кто интересуется работой метеорологов, их подготовкой, прогнозированием погоды, изменениями климата, влиянием погоды на жизнь людей и другими проблемами современной науки о погоде.

Автор стремился излагать установившиеся в науке взгляды, лишь в отдельных случаях приводя еще не общепринятые, дискуссионные толкования. Он надеется, что книга будет полезной читателю, не искушенному в проблемах метеорологии, но испытывающему желание в них разобраться.


ПРЕДИСЛОВИЕ КО ВТОРОМУ ИЗДАНИЮ

В предлагаемом читателю новом издании книги сохранен текст ответов почти на все вопросы, содержавшиеся в первом издании. Исключение составляют три вопроса, освещение которых в новой редакции учитывает замечания читателей. Автор выражает глубокую признательность всем многочисленным читателям, которые прислали свои отзывы и замечания и тем самым способствовали улучшению содержания книги.

Идя навстречу пожеланиям читателей, автор дополнил книгу ответами более чем на два десятка различных вопросов, в том числе на вопросы, касающиеся влияния погоды на занятия спортом, которые сведены в новую отдельную главу «Спорт и погода». В основном это вопросы о занятиях видами спорта, связанными с пребыванием на открытом воздухе, – планеризмом, парусным спортом, лыжами, горным и пешеходным туризмом.

В ряде случаев даны новые, более точные цифровые характеристики, ставшие известными в последние годы, после выхода в свет первого издания книги (например, минимальная температура воздуха, зафиксированная на земной поверхности в Антарктиде, высота облачного покрова на Венере и др.).

В новом издании исправлены и отдельные опечатки, вкравшиеся, к сожалению, в текст первого издания. Книга дополнена предметным указателем.

Автор надеется, что книга окажется полезной широкому кругу читателей, особенно школьной и студенческой молодежи, которой она в первую очередь предназначается. Он будет благодарен за все отзывы и замечания читателей.



ВОПРОСЫ, ЗАДАВАЕМЫЕ ВСЕМИ

Среди множества вопросов о погоде встречаются такие, которые может задать любой человек, независимо от пола и возраста, образования и профессии. Обычно эти вопросы о погоде как таковой, то есть о ее сущности и природе, а также о причинах ее изменений, кажущихся необычными, и о возможной связи этих изменений с такими порождениями века научно-технической революции, как проникновение человека в космос, термоядерные взрывы, полеты сверхзвуковых самолетов и т. д.

При всей кажущейся наивности некоторых вопросов ответить на них не всегда просто. Удивительно, что иной раз сложнее всего бывает ответить на вопрос ребенка дошкольного возраста. Крохотный человечек, только начинающий познавать окружающий его мир, не воспринимает погоду как нечто само собой разумеющееся. Он стремится понять суть вещей, о которых взрослые уже не задумываются, как не задумываются они, скажем, над сутью понятий «пространство» и «время», а ведь размышления о них в свое время привели Эйнштейна к созданию теории относительности… Итак:


1.1. Почему погода бывает такая разная?

В самом деле, почему? Источник тепла, поступающего на Землю, всегда один и тот же, количество солнечной энергии, достигающей Земли, практически неизменно, как неизменны форма Земли, ее поверхность и газовый состав воздушной оболочки нашей планеты. А погода бывает разная не только в разных местах планеты, но и в каждой отдельной точке ее, и не только в разные сезоны, но даже на протяжении одного дня, а то и часа!

Причин разнообразия и непостоянства погоды так много, что один только перечень их может составить целую книгу. Здесь мы укажем лишь две основные причины: во-первых, чрезвычайная подвижность атмосферы, во-вторых, огромное количество так называемых метеорологических величин и явлений, определяющих состояние погоды в какой-то любой момент или за какой-то любой промежуток времени. И все эти величины (температура, влажность, ветер, давление, облака и пр.) и явления (грозы, смерчи, метели, бури и пр.) взаимосвязаны – изменение одного из них влечет за собой изменение других. Например, если развитие процессов в атмосфере приведет к изменению облачности, то последнее может повлечь за собой изменение температуры, влажности, осадков, ветра, метель или грозу, туман, гололед, град и т. д. Отсюда нестабильность погоды, ее разнообразие…


1.2. Что такое метеорология?

Название свое наука метеорология получила от греческого слова «метеора», означающего «нечто в небе»; буквально это наука о метеорах (не метеоритах!). Изучает метеорология гидрометеоры (дождь, снег, град), воздушные метеоры (ветер, пыльные бури), литометеоры (пыль, пыльца), светящиеся метеоры (радуга, миражи), огненные метеоры (молнии) и т. д.

Метеорологию называют также наукой о погоде. Такое более простое толкование этой науки достаточно точно отражает ее содержание и в настоящее время наиболее употребительно.


1.3. В чем различие между понятиями «метеорологические величины», «метеорологические явления» и «погода»?

Метеорологические величины – это температура и влажность воздуха, атмосферное давление, скорость и направление ветра, дальность видимости, количество и высота облаков и другие характеристики состояния атмосферы, которые могут быть выражены в тех или иных единицах измерения.

Метеорологические явления – туман, гололед, метель, пыльные и песчаные бури, гроза, шквал, смерч и другие качественные характеристики происходящих в атмосфере процессов – не имеют точного количественного выражения. Их интенсивность определяют или с помощью терминов «слабый», «умеренный», «сильный», или через метеорологические величины, например: туман с дальностью видимости 500 м и т. д.

Погода – это состояние атмосферы в какой-то физический момент или отрезок времени, характеризующееся совокупностью метеорологических величин и явлений. Можно говорить о погоде, наблюдаемой в данную минуту или наблюдавшейся в какой-то момент в прошлом, о погоде одного дня, месяца или сезона и т. д.

Характеризуют погоду или с помощью приблизительных, упрощенных, обобщающих терминов (облачная, дождливая, теплая, сухая, жаркая, холодная, ветреная, сырая), или всей совокупностью значений метеорологических величин (например: полная облачность, дождь, ветер северный, температура воздуха 10°C и т. д.).


1.4. Что такое атмосфера?

Под земной атмосферой мы подразумеваем воздушную оболочку нашей планеты. Существуют атмосферы и у других планет, но они по своему составу отличны от нашей. Земная атмосфера представляет собой смесь около двадцати газов. Основные из них – азот и кислород, а также такие важные примеси, как водяной пар, углекислый газ и озон. Газы, входящие в состав воздуха, обладая определенной плотностью, оказывают на каждый квадратный сантиметр земной поверхности давление, равное весу столба воздуха от поверхности моря и до верхней границы атмосферы и составляющее на уровне моря в среднем 1,033 кг/см2. В технике эта величина принята за единицу давления, ее так и называют – атмосфера.


1.5. Как высоко простирается атмосфера Земли и какова ее масса?

Основная масса воздуха сосредоточена в нижних нескольких десятках километров над земной поверхностью: в первых 5 км – примерно половина, в 10-километровом слое – около трех четвертей, а в 20-километровом -19/20. Разряжаясь с высотой, атмосфера незаметно переходит в межпланетное пространство. Четкой верхней границы атмосферы не существует: следы некоторых легких газов, входящих в состав воздуха, еще присутствуют на очень значительных высотах – до многих тысяч километров.

Масса земной атмосферы колоссальна: на 510,2 млн. км2 поверхности Земли оказывает давление 5,15 квадриллионов тонн воздуха (5,15 • 1015).


1.6. Одинаков ли состав воздуха на разных высотах в атмосфере?

Атмосфера по составу основных газов считается однородной только в нижнем 94-километровом слое, называющемся гомосферой; выше находится гетеросфера, в которой содержание легких газов возрастает, а тяжелых – уменьшается; газы там в значительной степени ионизированы или находятся в атомарном состоянии, то есть их молекулы диссоциированы.


1.7. На какие слои делится атмосфера и по каким признакам?

По основным физическим свойствам и составу воздуха атмосфера, как отмечалось выше, делится на гомосферу и гетеросферу. По характеру изменения температуры с высотой метеорологи выделяют пять основных слоев и четыре промежуточных. До высоты (в среднем) 11 км – тропосфера, от 11 до 51 км – стратосфера, от 51 до 86 км – мезосфера, от 86 до 800 км – термосфера и выше 800 км – экзосфера. Промежуточные слои – тропопауза, стратопауза, мезопауза и термопауза. Характер изменения температуры с высотой в каждом основном слое и приблизительные характерные значения температуры показаны на рис. 1.

Радиофизики по уровню ионизации, электропроводности и способности отражать и поглощать радиоволны выделяют в атмосфере еще несколько слоев. Слой атмосферы, заключенный между высотами 100 и 1000 км, называют ионосферой. В ионосфере на высотах 60-100 км лежит слой D, от 10 до 150 км – слой E, выше 220 км – слои F1 и F2. Положение и интенсивность слоев ионосферы меняется ото дня к ночи и в зависимости от изменений солнечной активности.

В атмосфере выделяют еще один особый слой, называемый озоносферой. Он находится на высотах 10-60 км, то есть в стратосфере и нижней мезосфере. Здесь происходят фотохимические процессы образования озона, максимальное содержание которого отмечается между 20 и 25 км. Так как озон способен поглощать значительную часть ультрафиолетовой радиации, идущей от Солнца, то температура воздуха выше озоносферы, то есть в верхней стратосфере, достигает даже положительных значений.


1.8. Как и в каких единицах измеряют атмосферное давление?


Стандартным прибором для измерения атмосферного давления является ртутный барометр. Он представляет собой стеклянную трубку, запаянную с одной стороны и наполненную ртутью. Открытым концом трубка опущена в сосуд, частично заполненный ртутью. Когда давление воздуха повышается, столбик ртути в трубке растет, и наоборот. Высота столбика ртути в барометре на уровне моря при среднем, или «нормальном», давлении равна 760 мм. Колебания этой высоты также можно измерять в миллиметрах. Официальной единицей атмосферного давления является паскаль (Па). 100 Па составляют 1 гектопаскаль (гПа), или 1 миллибар (мбар). 1 гПа соответствует 3/4 мм ртутного столба. На практике используются все названные единицы для определения атмосферного давления: Па, гПа, мбар, мм рт. ст. В метеорологии долгое время наиболее употребительной была единица миллибар, в настоящее время – гектопаскаль; бортовые авиационные приборы у нас в стране тарированы в миллиметрах ртутного столба.

Там, где относительно громоздкие ртутные барометры неудобны, применяют барометры-анероиды (рис. 3). Основной частью анероида является упругая мембранная металлическая коробка, из которой выкачан воздух. Деформация стенок коробки, вызываемая изменением давления, системой рычагов передается на шкалу, градуированную по эталону – ртутному барометру – в соответствующих единицах атмосферного давления. Точность измерения давления барометрами-анероидами несколько меньшая, чем ртутными барометрами, но для ряда практических целей она достаточна.


1.9. Существует ли прямая связь между изменениями давления и изменениями погоды?

Поскольку в областях высокого атмосферного давления – антициклонах XE «антициклон» – погода чаще всего бывает лучше, чем в областях низкого давления – циклонах, то в принципе рост атмосферного давления (о котором свидетельствует увеличение высоты столбика ртути в барометре) с некоторой вероятностью может служить признаком улучшения погоды, а понижение давления (уменьшение высоты столбика ртути) – предвестником ее ухудшения. Таким образом, более существенна тенденция изменения давления, а не абсолютное его значение. Однако условия погоды определяются далеко не одним атмосферным давлением, поэтому полагаться только на этот признак нельзя, можно ошибиться, что и случается нередко при пользовании старинными приборами-анероидами, снабженными помимо шкалы давления надписями типа: «сухо», «переменно», «к осадкам» и т. п.


1.10. Что такое относительная влажность воздуха?

Воздух может быть сухим или влажным. При одной и той же температуре воздуха содержание водяного пара в нем может колебаться в широких пределах: от максимально возможного (полное насыщение) до нуля (абсолютно сухой воздух). Относительная влажность и характеризует степень насыщения воздуха водяным паром. Она представляет собой отношение фактически имеющегося в воздухе количества водяного пара к максимально возможному его количеству при данной температуре. Выражается относительная влажность в процентах, например: 100% – полное насыщение, 50% – насыщение наполовину и т. д. Относительная влажность, таким образом, не характеризует абсолютное содержание в воздухе водяного пара, которое в зависимости от температуры воздуха может быть значительным и при небольшой относительной влажности (например, в жару) и очень малым – при высокой относительной влажности (например, в сильные морозы).


1.11. Что такое стандартная атмосфера?

Фактические характеристики состояния атмосферы все время меняются в зависимости от развития атмосферных процессов, времени года, суток и т. д. В практической деятельности оказалось необходимым и удобным средние значения этих характеристик принимать за постоянные.

Условные постоянные значения основных характеристик состояния атмосферы на разных высотах – атмосферного давления, температуры, плотности воздуха, вязкости, теплопроводности и других, – неизменные независимо от времени года или суток, сведены в таблицы стандартной атмосферы (СА).

Существуют национальные и международные таблицы, есть таблицы СА для отдельных географических районов (например, тропическая СА) и сезонов (летняя арктическая СА, зимняя арктическая СА). На территории Советского Союза действует обязательный для всех ГОСТ СА. Последнее издание таблиц СА носит сокращенное название ГОСТ СА 4401-81. Таблицы содержат официальные данные для высот от 2000 до 1 200 000 м.


1.12. Для чего нужна стандартная атмосфера?

Стандартная атмосфера предназначена для использования при расчетах и проектировании самолетов, вертолетов, двигателей и оборудования, а также при решении других научно-технических задач.

Исходя из СА можно сопоставлять результаты инструментальных измерений, произведенных в атмосферном воздухе в разное время, можно объективно оценить качества различных летательных аппаратов, например их способность развивать максимальную скорость или подниматься на предельно достижимую высоту. Для этого надо данные, полученные любым летательным аппаратом в любое время, привести к стандартным условиям СА.


1.13. Каковы характеристики стандартной атмосферы?

Во всех таблицах СА, за исключением таблиц для тропической и арктической зон, на уровне моря приняты следующие значения основных параметров атмосферы:

атмосферное давление Р = 760 мм рт. ст. = 1013,25 гПа;

температура воздуха Т = 288,15 К, 15,0° C;

относительная влажность воздуха f = 0%;

плотность воздуха ρ = 1,225 кг/м3;

ускорение свободного падения g = 9,8066 м/с2.


1.14. Что такое календари погоды?

Возникновение календарей погоды связано с первыми попытками людей систематизировать результаты своих наблюдений за погодой и ее изменениями. Еще в V веке до н. э. греческий астроном Метон ввел обычай выставлять на городских площадях мраморные таблицы, на которых отмечались наиболее важные явления погоды и даты их наблюдения (правда, без указания года). Эти таблицы назывались парапегмами, и ими пользовались как прогнозами будущей погоды.

Позже в разных странах наряду с календарями самого различного назначения (астрономическими, религиозными, астрологическими) стали составляться и календари погоды. В них давались сведения о погоде в разные дни года, сезона, месяца и недели.

По аналогии с календарями, указывающими будущее состояние звезд, планет, различных явлений природы и даже человеческих судеб, календари погоды содержали сведения о предстоящей погоде. Например, Метон утверждал, что в явлениях погоды существует девятнадцатилетний цикл, а его соотечественник Эвдокс, живший позже, обнаруживал четырехлетнюю периодичность.

Календари погоды существовали и в Древнем Риме (например, календарь Колумеллы). Были они и в Индии (в них делалась попытка предсказать время начала и интенсивность муссонных дождей). Расцвет увлечения календарями погоды приходится на средние века. В сочинениях этого типа было мало примет, имеющих практическую ценность, таких, как в «Книге природы» (1340 год), где Конрад фон Мегенберг указывает, что гало предвещает дождь. В «Правилах пастуха из Бэнбери», опубликованных членом Лондонского королевского общества Клэриджем в 1744 году, наряду с рядом ошибочных утверждений тоже содержались и некоторые вполне обоснованные приметы.

Самым известным стал Брюсов календарь XVIII века. Извлечения из него систематически публиковались в дореволюционной России, а в ряде стран они продолжали печататься в настенных календарях и некоторых газетах вплоть до середины нынешнего века. По своей сути сведения, которые можно почерпнуть из этого календаря, лженаучны, как лженаучны творения и других авторов календарей погоды; большинство их – плод добросовестных заблуждений, а иногда и спекуляция на человеческом невежестве и острой потребности людей знать будущую погоду.


1.15. Существует ли на Земле «кухня погоды»?

«Кухней погоды» на Земле является вся земная атмосфера, взаимодействующая с поверхностью океанов и континентов, которую принято называть подстилающей поверхностью. Указать какое-либо особое место, где зарождаются наиболее существенные изменения погоды, нельзя, хотя еще не так давно некоторые метеорологи считали, что существуют места на земном шаре, которые образно можно назвать «кухней погоды». «Кухню погоды» помещали то в Арктику, то в Антарктику, то в верхние слои атмосферы, чувствительные к изменениям солнечной активности, и даже в космическое пространство. В последнее время есть тенденция называть «кухней погоды» Мировой океан. Поскольку он покрывает около 3/4 поверхности нашей планеты, то у него, по-видимому, больше, чем у остальных претендентов, права носить это звание. Однако эта «кухня» слишком велика, чтобы можно было легко распознать, какая в ней готовится погода для того или иного района.

Погода на земном шаре формируется через механизм общей циркуляции атмосферы, двигателем которого является поступающая к Земле солнечная энергия. Механизм этот чрезвычайно сложный, и порождаемые им условия погоды удивительно разнообразны, а закономерности их изменений пока известны недостаточно полно. Искать на Земле какое-то особенное место, откуда приходит к нам «и зной, и хлад, и с громом град», так же бесперспективно, как конструировать вечный двигатель или искать философский камень.


1.16. Почему продукты портятся быстрее в теплую погоду?

Порча продуктов связана с активизацией жизнедеятельности бактерий, сопровождающейся химической реакцией окисления. В конечном счете указанные процессы достигают некоторого уровня, который мы характеризуем как гниение. Известно, что скорость большинства химических реакций и биологических процессов приблизительно удваивается при повышении температуры на 10°C. Именно поэтому при высокой температуре, то есть в теплую погоду, продукты портятся быстрее.


    Ваша оценка произведения:

Популярные книги за неделю