Текст книги "Вопросы о погоде"
Автор книги: Павел Астапенко
сообщить о нарушении
Текущая страница: 10 (всего у книги 32 страниц)
6.19. Насколько устойчивы средние климатические данные?
Ученым удалось изучить изменчивость отдельных метеорологических величин (в частности, температуры) за длительный срок – от 1 года до 10 000 лет, используя для этого не только данные измерений, но и косвенные данные. Отчетливо выявились два вида изменчивости – короткопериодная, или межгодовая, с большой амплитудой отклонений от средних значений, и длиннопериодная – с относительно малой амплитудой отклонений. Климатические средние характеристики, оказалось, сами могут испытывать колебания на протяжении длительных отрезков времени. Установлены их колебания длительностью в десятки тысяч лет, характерные для ледниковых периодов, затем – межвековые колебания с периодами несколько веков и, наконец, внутривековые колебания с периодом несколько десятков лет. Примером последних можно считать потепление в Европе в первой половине XX века и сменившее его похолодание 60-х годов.
6.20. Существуют ли какие-либо средние климатические данные для всей атмосферы в целом и для полушарий Земли?
Помимо параметров стандартной атмосферы, рассмотренных в первой главе, ученые вычислили среднюю температуру всей массы атмосферы. Она оказалась равной -17,0°C (согласно международной стандартной атмосфере 1962 года температура всей массы атмосферы равна -20,7°C, что соответствует температуре воздуха на высоте примерно 5500 м).
Определено среднее влагосодержание земной атмосферы, равное 1,24 • 1019 г водяного пара, что эквивалентно слою осажденной воды 22 мм. Таким образом, в каждом килограмме атмосферного воздуха в среднем содержится 2,34 г водяного пара.
Годовое количество осадков на Земле оценивается в 5,26 • 1020 г, из которых 4,12 • 1020 г выпадает над океанами и 1,14 • 1020 г – над сушей. А выпадающие за год осадки эквивалентны слою воды 1036 мм. Отсюда следует, что водяной пар в атмосфере обновляется 47 раз в год, то есть каждые 7,8 дня (по данным некоторых исследователей -43 раза в год и каждые 8,5 дня). Испаряется с поверхности Земли столько же влаги, сколько ее выпадает с осадками, но на океаны приходится 4,53 • 1020 г испаряющейся воды за год, а на сушу – 0,73 • 1020 г. Годовой сток с суши равен 0,41 • 1020 г.
Северное полушарие Земли несколько теплее южного: в северном полушарии средняя температура на уровне метеорологической будки, то есть в 2 м от земной поверхности, равна в январе 9,0°C, в июле 22,4°C, а годовая 15,2°C, тогда как в южном полушарии она составляет в январе 16,4°C, в июле 11,4°C, а годовая 13,3°C.
6.21. Как велико количество облаков в целом над земным шаром?
Средняя облачность для Земли в целом оценивается в 5,5 балла, то есть поверхность земного шара немного больше чем наполовину закрыта облаками. Однако над континентами облачности немного меньше – в среднем 4,9 балла, а над океанами – 5,8 балла.
6.22. Насколько велика энергия, заключенная в атмосферных процессах?
Согласно Е. П. Борисенкову, внутренняя энергия всей атмосферы оценивается цифрой 8,6 • 1023 Дж, потенциальная – 3,6 • 1023 Дж, а кинетическая – на два порядка меньше: 1021 Дж, то есть составляет менее 1% потенциальной энергии. При этом кинетическая энергия атмосферы в южном полушарии почти в два раза больше, чем в северном. Это связано с тем, что контрасты температуры между Южным полюсом и экватором значительно резче, чем между Северным полюсом и экватором.
Первопричиной же развития атмосферных движений является превышение количества поглощаемой атмосферой солнечной радиации над количеством излучаемой ею радиации, то есть постоянное нарушение состояния лучистого, а с ним и механического равновесия. Для Земли же в целом в среднем за год поглощаемая солнечная радиация равна излучаемой радиации. Одна треть усваиваемого Землей солнечного тепла расходуется на испарение и только 1,6% – превращается в кинетическую энергию, расходуется на движение воздуха. Следовательно, система атмосфера – земная поверхность может рассматриваться как тепловая машина с очень небольшим коэффициентом полезного действия… Кинетическая энергия на единицу массы атмосферы равна 140 Дж/кг, чему соответствует средняя скорость атмосферных движений около 17 м/с. Типичное время генерации кинетической энергии атмосферы, а также ее вырождения под действием вязкости – примерно 5 • 105 с, то есть около одной недели. Это срок, равный средней продолжительности жизни циклона, или продолжительности так называемого естественного синоптического периода, на который считается возможным составлять краткосрочные прогнозы погоды при благоприятных условиях развития атмосферных процессов и достаточной полноте информации о них.
6.23. Каковы самые высокие температуры воздуха на разных континентах Земли?
На всех континентах Земли, за исключением Антарктиды, максимальное значение температуры воздуха может превышать 50°C. Так, в Азии, в Индии, зарегистрирована температура 53°C, такое же значение температуры отмечалось и в Австралии, в Бурке.
Рекордно высокие значения температуры воздуха, 58 и 57,8°C, отмечены в Мексике, в Сан-Луис-Потоси, 11 августа 1933 года и в Северной Африке, в Ливии, в Эль-Азизии, близ г. Триполи.
Близкая к этому температура отмечена в Северной Америке, в Калифорнии, в знаменитой Долине Смерти: 56,7°C.
В Антарктиде столбик ртути не поднимался выше 11,6°C; это значение зарегистрировано в декабре 1956 года на станции Оазис.
6.24. Где находится «полюс холода» и какова самая низкая температура, зарегистрированная там?
Станция Оймякон в Якутии сохраняет за собой право считаться «полюсом холода» нашей планеты: на ней в 1938 году зарегистрирована температура воздуха -77,8°C, и хотя на станции Восток в Антарктиде в июле 1982 года отмечена и значительно более низкая температура, -89,2°C, ее показания не могут быть засчитаны как рекордно низкие, так как станция Восток расположена на высоте 3488 м над уровнем моря. Для сопоставления результатов метеорологических наблюдений различных станций их необходимо приводить к уровню моря. В этом случае самая низкая температура воздуха оказывается в Оймяконе; результаты, зафиксированные на станции Восток, выше на 12°C. (Случай наблюдения температуры -77,8°C в Оймяконе упоминается в ряде источников, в том числе А. С. Мониным и Ю. А. Шишковым в 1979 году; в Советском энциклопедическом словаре 1980 года, указана минимальная температура в Оймяконе -70°C, но и в этом случае она на 4°C ниже, чем на станции Восток.)
6.25. Где на Земле самая высокая и самая низкая средняя годовая температура воздуха?
Самая высокая средняя годовая температура воздуха составляет 31°C в Лу, в Сомали, а самая низкая -55,6°C на станции Восток, в Антарктиде.
6.26. Какая температура воздуха наблюдается на географических полюсах Земли?
Относительно точно на этот вопрос можно ответить только для Южного полюса, на котором последнюю четверть века существует метеорологическая станция и ведутся систематические наблюдения. В районе Северного полюса наблюдения ведутся на научных станциях на дрейфующих льдинах, местоположение которых далеко не всегда совпадает с районом полюса, поэтому данные для Северного полюса следует рассматривать как приблизительные. В районе Северного полюса на уровне моря в зимнее время отмечались температуры -50°C, а летом 1-2°C. Средняя годовая температура на Южном полюсе, расположенном на высоте около 2700 м над уровнем моря, составляет -49,3°C; минимальная наблюдавшаяся там температура -80,0°C, максимальная -15,0°C.
6.27. Какова средняя температура всей толщи вод Мирового океана?
Средняя температура всей толщи вод Мирового океана (без Арктического бассейна) равна 5,7°C, что на 22,7°C выше средней по массе температуры атмосферы. Самый теплый из всех океанов – Индийский: средняя температура толщи вод 6,7°C, тогда как в Атлантическом она составляет 5,6°C, а в Тихом – 4,7°C.
6.28. Как сильно изменяется в течение года температура поверхности океана?
В экваториальной зоне это изменение составляет всего около 1°C, в полярных районах – 2-3°C, а между широтами 40-45° с. ш. – почти 9,6°C. Здесь амплитуда годовых колебаний температуры воды на поверхности океана максимальная; в южном полушарии она значительно меньше – не более 5,5°C (на широте 30°).
6.29. Каково самое высокое значение атмосферного давления, зафиксированное на Земле?
На севере Западной Сибири, на метеорологической станции Агата, 31 декабря 1968 года зарегистрировано самое высокое давление, равное 1083,2 гПа, или 812,4 мм рт. ст.
6.30. Каково самое низкое значение атмосферного давления, когда-либо отмеченное на Земле?
На суше самое низкое давление (приведенное к уровню моря) отмечено во время урагана 2 сентября 1935 года на островах Флорида-Кис, в США, – 892,3 гПа, или 669,3 мм рт. ст. На море самое низкое давление отмечено в тайфуне в Тихом океане, западнее острова Гуам, 24 сентября 1958 года – 877 гПа, или менее 658 мм рт. ст.
6.31. Где на Земле выпадает больше всего осадков и где меньше всего?
Самое дождливое место на Земле – гора Вамалеале на о. Кауаи, на Гавайях, – там в среднем в году 335 дней с дождем! Зато в пустыне Атакама в Чили дождь не наблюдался ни разу…
Наибольшая средняя годовая сумма осадков – на Гавайских островах, на горе Уайвиль, – 1198 см и на горной станции Черрапунджи в Ассаме, в Индии, – 1140 см; на последней в 1861 году зарегистрировано и рекордное годовое количество осадков – 2300 см! Таким образом, Уайвиль и Черрапунджи – самые богатые осадками точки на земном шаре. Самые бедные находятся в Африке и в Южной Америке: в оазисе Кхара, в Египте, в среднем выпадает меньше 0,1 мм, то есть только следы осадков, а в населенном пункте Арика, в Чили, за год в среднем набирается 0,5 мм осадков.
6.32. Где самое сухое место на территории Советского Союза?
В г. Турткуль в Каракалпакии выпадает за год всего 80 мм осадков. Устье Волги следует считать самым засушливым районом во всей Европе: в Астрахани среднее годовое количество осадков составляет всего 165 мм.
6.33. Насколько велика разница в количестве осадков, выпадающих над различными районами Мирового океана?
Разница может быть очень большой: на Бермудских островах в Атлантике выпадает в среднем в год 1445 мм осадков, а на о. Сантьягу (острова Зеленого Мыса) в той же Атлантике – всего 235 мм. Даже в пределах одного гористого острова в океане разница в количестве выпадающих осадков может быть поразительно большой. Например, на о. Оаху, на Гавайях, на наветренной стороне выпадает в среднем 500 мм осадков, а на подветренной – всего 25 мм, то есть в 20 раз меньше! На других островах Гавайского архипелага осадков выпадает более 1000 мм в год, а на отдельных горных станциях – в десять раз больше (см. 6.31).
6.34. Какие факторы могут вызывать изменения климата?
Антропогенное воздействие на климат может быть преднамеренным, то есть сознательно совершаемым, и непреднамеренным, то есть непроизвольным, связанным с человеческой деятельностью, преследующей совсем иные цели.
Природные факторы воздействия на климат можно разбить на несколько групп: астрономические, геофизические, метеорологические. Группа астрономических факторов включает светимость (радиацию) Солнца, положение и движение Земли в солнечной системе, наклон ее оси вращения к плоскости орбиты и скорость вращения. Это все внешние климатообразующие факторы, связанные с влиянием на движение Земли других тел солнечной системы и определяющие инсоляцию (облучение солнечной радиацией) и гравитационные воздействия (создающие приливы – отливы и колебания в движении Земли по ее орбите и вокруг собственной оси). Вполне возможно, что глобальные колебания климата в далеком прошлом нашей планеты были связаны с изменениями параметров земной орбиты и наклона земной оси. Этой точки зрения придерживается группа ученых – последователей югославского астрофизика Миланковича.
Группа геофизических факторов связана со свойствами Земли как планеты: ее размерами и массой, внутренними источниками тепла, собственными магнитными и гравитационными полями, особенностями земной поверхности и ее взаимодействия с атмосферой. Влияние факторов этой группы на значительном отрезке времени, в течение которого поверхность нашей планеты сохраняет ее современный вид, можно считать стабильным. Однако в более отдаленном прошлом оно могло существенно изменять земной климат. Достаточно указать на подвижность материков, изменения в распределении участков суши и морей, конфигурации и высоте горных хребтов и т. п.
Наконец, группа метеорологических факторов охватывает основные характеристики атмосферы и гидросферы, их массу и химический состав. Содержание в атмосфере термодинамически активных примесей, таких, как вода и углекислый газ, а также аэрозолей, имеет решающее значение для формирования земного климата, и колебания их количества, возможно, являются причиной колебаний климата нашей планеты – как в прошлом, так и в будущем.
6.35. Что известно об изменениях земного климата в прошлом и их причинах?
Наука накопила много сведений об изменениях земного климата в прошлом, но не может сказать почти ничего достоверного о причинах, вызвавших эти изменения.
Можно считать доказанным, что за всю историю Земли климат менялся неоднократно, и в целом многие миллионы лет назад он был более теплым. Однако уже в пределах нескольких последних миллионов лет было по крайней мере четыре ледниковые эпохи со значительным похолоданием климата в средних широтах северного полушария, когда температура была ниже современной на 5°C, а в межледниковое время повышалась на несколько градусов, оставаясь в первый межледниковый период на несколько градусов ниже ее современного значения, а в два последующих – на несколько градусов выше его. В ледниковые эпохи значительные пространства полярных и умеренных широт северного полушария были покрыты льдами, а на свободных от льда участках климат был значительно суровее и суше современного.
Из четырех ледниковых эпох самая древняя – гюнц-небрасская (начало – около 1 млн. лет назад, конец – около 600 тыс. лет назад), известная по ледникам, покрывавшим территорию Западной Европы. Канады и части США. Затем ледники отступили, а после нескольких сот тысяч лет потепления началось новое оледенение в Европе и в Северной Америке, получившее название миндельско-окско-канзасского (примерно 500-250 тыс. лет назад). Потом пришла Великая межледниковая эпоха с очень теплым климатом в северном полушарии, за которой последовало новое, самое интенсивное оледенение, рисско-днепровско-иллинойсское (примерно 200-100 тыс. лет назад), при котором ледники в Восточной Европе достигли 48° с. ш. Новое потепление привело к отступанию ледников за пределы континентов Евразии и Северной Америки, но затем последовало еще одно, последнее, большое оледенение – вюрмско-висло-валдайско-висконсинское, начавшееся около 75 тыс. лет назад и закончившееся примерно 10 тыс. лет назад. Сменившее последнее оледенение потепление распространилось уже и на наше время. Оно достигло максимума в северных широтах в так называемую эпоху викингов (конец прошлого – начало нынешнего тысячелетия), когда выходцы из Скандинавии – викинги – достигли по свободным от льдов водам Северной Атлантики Исландии, Южной Гренландии и даже Лабрадора и Ньюфаундленда в Северной Америке и начали заселять их. Однако в XII веке появились первые признаки прекращения потепления, и в XV-XVII веках началось малое оледенение, или малый ледниковый период, за время которого льды снова сковали всю Гренландию, ледники Альп продвинулись в долины Центральной Европы и вызвали очень суровые зимы во всем умеренном поясе Европы. Очередное потепление началось в конце XIX века и. перешло в наш век, чтобы прерваться в 40-е годы, а в дальнейшем, в 60-е годы, смениться похолоданием.
6.36. Какие колебания климата имели место в 20-м столетии?
Наличие систематических наблюдений на обширной сети станций в обоих полушариях Земли позволяет составить полную картину колебаний климата с начала столетия и до наших дней. Потепление, начавшееся в прошлом столетии, достигло максимума в 20-30-е годы и оказалось наиболее существенным в Арктике, где зимние температуры воздуха повысились в Гренландии на 5°C, а на Шпицбергене – даже на 8-9°C. Повсеместно отступали ледники в Европе, Азии, Канаде, в горах стала более высокой граница снежного покрова. В арктических морях уменьшились в размерах острова, покрытые ледником, а некоторые из них исчезли совсем – на их месте остались лишь подводные банки. В северном полушарии отступила к северу граница вечной мерзлоты, а площадь льдов в арктических морях сократилась наполовину. На 1,5-2°C теплее стали воды в Баренцевом море и в Северном Ледовитом океане, что привело к широкой миграции на север промысловых рыб – трески, сельди и расширению ареала млекопитающих и птиц. Потепление отмечалось и в южном полушарии, то есть носило глобальный характер, хотя в средних и низких широтах оно не было интенсивным. В масштабах полушарий оно составило около половины градуса, что видно из рис. 22. В конце 40-х годов потепление сменилось незначительным похолоданием, которое, однако, не было глобальным, в частности, не отмечалось в Австралии. Но в северном полушарии началось наступание ледников, возросла площадь полярных льдов. В конце 50-х годов приземная температура воздуха в северном полушарии упала ниже среднего значения, но к 60-м годам снова несколько поднялась (рис. 23).
В 70-е годы вновь наметилось небольшое потепление, оказавшееся неустойчивым. Что наблюдается сейчас, точно сказать нельзя. В зависимости от того, какое количество и какие именно метеорологические станции земного шара привлекать для подсчета и какой пользоваться методикой расчетов, можно получить различные результаты, прямо противоположные по своему характеру. Одни ученые склонны считать, что потепление продолжается и земной климат постепенно будет приближаться к такому, какой был в плиоцене. Другие, наоборот, считают, что потепление бесповоротно закончилось и Земля стоит перед новым наступанием льдов, в преддверии новой ледниковой эпохи… Возможность прийти к противоположным выводам при анализе одного и того же материала свидетельствует о несущественности современных нам изменений климата и отсутствии общепринятой методики их оценки. Колебания климата, подобные тем, что происходят сейчас, неоднократно имели место и в сравнительно недалеком прошлом – периоды продолжительностью 15-25 лет, каждый с потеплениями и похолоданиями, на протяжении трех последних столетий наблюдались не раз. Так, известна очень суровая зима 1739/40 года в Европе, сходная с зимой 1978/79 года. Памятны суровые зимы 1809, 1912, 1941/42, 1949/50, 1955/56, 1965/66 годов и, наоборот, очень теплые зимы 1924/25, 1948/49, 1951/52, 1956/57 и 1975/76 годов. Но все эти колебания имели естественный характер, они не были связаны с вмешательством человека.
МЕСТНЫЕ ПРИЗНАКИ И НАРОДНЫЕ ПРИМЕТЫ ПОГОДЫ
Люди всегда интересовались погодой, от состояния которой зависела в далеком прошлом вся их деятельность, условия быта и самочувствие. В несколько меньшей степени эта зависимость сохранилась и в наши дни, и интерес к состоянию погоды, как текущей, так и в ближайшем будущем, у современного человека также сохранился. Естественно, что постоянный интерес человека к погоде не прошел бесследно, он нашел отражение в языке народов, пословицах, поговорках и народных приметах, отражающих накопленный человечеством опыт общения с природой, его наблюдательность и… оставшуюся с доисторических времен у некоторых людей склонность к суевериям. Религиозность людей в прошлом способствовала развитию некритического восприятия действительности, укоренению некоторых представлений, которые они брали на веру, следуя «пророчествам» различного рода ложных авторитетов, спекулировавших на невежестве соплеменников, – всяких прорицателей, знахарей, заклинателей, шаманов, колдунов и тому подобных служителей культов.
И в наше время за состоянием погоды постоянно наблюдают не одни профессиональные метеорологи, и не одни они размышляют о предстоящих переменах в погоде. Этим повседневно вольно или невольно приходится заниматься многим сельским жителям, рыбакам, лесникам, морякам и летчикам, как и представителям многих других профессий, чья повседневная деятельность связана с длительным пребыванием на открытом воздухе. Поэтому и о будущей погоде в пределах своего района наблюдений многие люди имеют возможность относительно верно судить не только по метеорологическим сводкам, передаваемым средствами массовой информации, но и по так называемым местным признакам погоды. Таковые действительно существуют, и их использование опирается на более или менее строгую научную основу.