355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Нил Тайсон » Смерть в черной дыре и другие мелкие космические неприятности » Текст книги (страница 6)
Смерть в черной дыре и другие мелкие космические неприятности
  • Текст добавлен: 6 октября 2016, 23:05

Текст книги "Смерть в черной дыре и другие мелкие космические неприятности"


Автор книги: Нил Тайсон



сообщить о нарушении

Текущая страница: 6 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]

Глава восьмая
Бродяги в Солнечной системе

Долгие сотни лет список наших небесных соседей почти не менялся. В него входили Солнце, звезды, планеты, горстка спутников и кометы. Плюс-минус планета-другая, но на общее строение системы это не влияло.

Однако 1 января 1801 года возникла новая категория – астероиды, которым дал это название в 1802 году Джон Гершель, сын сэра Уильяма, первооткрывателя Урана. За следующие два столетия семейный альбом Солнечной системы оказался битком набит данными, фотографиями и биографиями астероидов, поскольку астрономы открывают этих бродяг в огромном количестве, выявляют, откуда они берутся, оценивают их состав, прикидывают габариты, зарисовывают форму, вычисляют орбиты и сбрасывают на них зонды. Некоторые исследователи предполагают также, что астероиды сродни кометам и даже спутникам планет. И вот прямо сейчас, когда вы читаете эти строки, некоторые астрофизики и инженеры разрабатывают методы обороны от крупных астероидов, задумавших нагрянуть к нам в гости без приглашения.

* * *

Чтобы разобраться, как устроены мелкие объекты в Солнечной системе, следует сперва изучить крупные объекты, особенно планеты. Один любопытный факт, касающийся планет, установил и выразил в виде довольно простой математической формулы прусский астроном по имени Иоганн Даниэль Тициус в 1766 году. Несколько лет спустя коллега Тициуса Иоганн Элерт Боде безо всяких ссылок на Тициуса стал рекламировать эту формулу, и ее по сей день часто называют правилом Тициуса-Боде или даже просто законом Боде, совершенно забывая о заслугах Тициуса. Эта удобная и практичная формула дает вполне приемлемую оценку расстояний между планетами и Солнцем – по крайней мере, если речь идет о тех планетах, о которых уже знали в то время, то есть о Меркурии, Венере, Земле, Марсе, Юпитере и Сатурне. В 1781 году распространившиеся знания о законе Тициуса-Боде заметно помогли в открытии Урана, седьмой от Солнца планеты.

Это внушает уважение. Выходит, либо это правило – просто совпадение, либо оно отражает какое-то фундаментальное условие формирования солнечных систем.

Однако формула не совсем точна.

Проблема номер один: чтобы получить верное расстояние от Солнца до Меркурия, придется немного подтасовать данные – там, где формула требует 1,5, подставить 0. Проблема номер два: Нептун, восьмая планета, оказался гораздо дальше, чем показывает формула, зато примерно там, где должна была бы быть девятая. Проблема номер три: Плутон, который многие упорно называют девятой планетой[1]1
  На экспозициях в Роузовском Центре Земли и Космоса в Нью-Йорке мы представляем льдистый Плутон как одну из «королевских комет» – очевидно, что он заслуживает такого наименования гораздо больше, чем прозвища «самая крошечная планетка».


[Закрыть]
, вообще выпадает из общей схемы, что, впрочем, для него характерно.

Кроме того, по этому закону между Марсом и Юпитером должна быть еще одна планета – на расстоянии около 2,8 астрономических единиц[2]2
  Одна астрономическая единица, или попросту а. е., – это среднее расстояние от Земли до Солнца.


[Закрыть]
.

Воодушевленные открытием Урана примерно на том расстоянии, которое предсказало правило Тициуса-Боде, астрономы в конце XVIII века решили, что хорошо бы исследовать зону в окрестностях 2,8 а. е. И точно – в первый день нового 1801 года итальянский астроном Джузеппе Пиацци, основатель Палермской обсерватории, обнаружил там некое небесное тело. Впоследствии оно исчезло, неразличимое в сиянии Солнца, однако ровно год спустя благодаря блестящим вычислениям великого немецкого математика Карла Фридриха Гаусса его удалось снова найти в другой части небосклона. Все пришли в радостное волнение – триумф математики и триумф телескопов привели к открытию новой планеты! Сам Пиацци назвал ее Церерой в честь римской богини земледелия, придерживаясь традиции давать планетам имена в честь древнеримских божеств.

Но затем астрономы пригляделись повнимательнее, рассчитали орбиту, дистанцию и яркость Цереры и обнаружили, что новая планета очень уж мала. В ближайшие несколько лет в той же зоне были открыты и другие крошечные планеты – Паллада, Юнона и Веста. Гершель дал им название «астероиды» («звездоподобные тела»), и этот термин пусть не сразу, лишь через несколько десятков лет, но все же привился: в отличие от планет, которые в телескопы того времени выглядели как диски, открытые объекты ничем не отличались на вид от звезд за тем лишь исключением, что двигались. Дальнейшие исследования показали, что астероидов очень много, и уже к концу XIX века их открыли 464 – и все в полосе плотной «застройки» в окрестностях 2,8 а. е. А поскольку оказалось, что эта полоса – относительно плоская лента и не распространяется во все стороны вокруг Солнца, будто пчелиный рой вокруг улья, эту зону назвали поясом астероидов.

На сегодняшний день в каталоги вошли десятки тысяч астероидов, их открывают по нескольку сотен ежегодно. Всего, по некоторым оценкам, астероидов более километра в поперечнике насчитывается свыше миллиона. Понятно, что при всей насыщенной личной жизни римских богов и богинь у них не насчитаешь 10 000 сердечных друзей, поэтому астрономам уже давно пришлось отказаться от этого источника названий. Так что теперь астероиды называют в честь актеров, художников, философов, драматургов, городов, стран, динозавров, цветов, времен года и всякой всячины. Иногда им дают простые человеческие имена, так что многие люди вправе считать, что в их честь назвали астероид. Например, все, кого зовут Харриет, Джо-Энн или Ральф: существуют астероиды 1744 Харриет, 2316 Джо-Энн и 5051 Ральф, причем цифры обозначают порядковый номер в едином списке астероидов, орбиты которых определены с достаточной точностью.

Дэвид Леви, астроном-любитель из Канады, святой покровитель охотников за кометами и первооткрыватель множества астероидов, оказал мне честь, выбрал из своего запаса астероид и назвал его моей фамилией – 13123 Тайсон. Сделал он это вскоре после того, как мы открыли свой Центр Земли и Космоса, который обошелся в 240 миллионов долларов и предназначен исключительно для того, чтобы показать посетителям космос прямо здесь, на Земле. Жест Дэвида очень тронул меня, к тому же я сразу изучил данные об орбите астероида 13123 Тайсон и выяснил, что он вращается вокруг Солнца в общей массе собратьев и не пересекает орбиту Земли, а значит, из-за него жизни на Земле точно ничего не угрожает. Как-то спокойнее, когда уверен в подобных вещах.

* * *

Из всех астероидов сферической формой обладает одна лишь Церера, она же – самый крупный астероид, ее диаметр составляет около 900 км. Остальные гораздо меньше и имеют грубую, неправильную форму – вроде смешных картофелин или косточек-погрызушек для собак. Любопытно, что на одну Цереру приходится около четверти общей массы астероидов. И даже если подсчитать совокупную массу всех астероидов, которые достаточно крупны, чтобы их разглядеть, плюс всех мелких астероидов, о чьем существовании говорят нам косвенные данные, все равно не наберется на приличную планету. Получится примерно 5 % от массы Луны. Поэтому предсказание, что где-то на расстоянии 2,8 а. е. от Солнца прячется самая настоящая планета, сделанное на основании правила Тициуса-Боде, оказалось несколько преувеличенным.

Большинство астероидов вращается в так называемом «главном поясе» – в зоне между Марсом и Юпитером; эти астероиды состоят целиком из каменных пород, хотя есть и металлические, а есть такие, которые состоят из смеси металла и камня.

Обычно считается, что астероиды формируются из материала, оставшегося с первых дней существования Солнечной системы, – того материала, которому не удалось инкорпорироваться в планету. Однако это объяснение, мягко говоря, неполно и не учитывает того обстоятельства, что некоторые астероиды состоят из чистого металла. Чтобы во всем разобраться, нужно первым делом рассмотреть, как формировались самые крупные небесные тела в Солнечной системе.

Планеты сгустились из облака газа и пыли, обогащенных рассеявшимися остатками взорвавшихся звезд, содержавших заметные количества разных химических элементов. Сжавшееся облако образует протопланету – плотный ком, который притягивает к себе все больше и больше материала и от этого разогревается. С крупными протопланетами происходят две вещи. Во-первых, ком имеет склонность принимать шарообразную форму. Во-вторых, из-за внутреннего жара протопланета остается в расплавленном состоянии так долго, что все тяжелое – прежде всего железо с добавлением никеля и капелькой других металлов, например золота, кобальта и урана, – успевает утонуть и скапливается у центра нарастающей массы. Тем временем все легкое – и гораздо более распространенное, – то есть водород, углерод, кислород и кремний – всплывает к поверхности. Геологи, для которых чем слово длиннее и мудренее, тем лучше, называют этот процесс дифференциацией. Вот так и получается, что ядро дифференцированной планеты вроде Земли, Марса и Венеры состоит из металла, а мантия и кора – в основном из скальных пород и по совокупному объему гораздо больше ядра.

Потом такая планета остывает, и если впоследствии она разрушается, ну, скажем, в результате столкновения с кем-то из соседок, то фрагменты обеих будут вращаться по орбите вокруг Солнца более или менее по тем же траекториям, что и погибшие планеты. Фрагменты будут состоять в основном из камня, потому что получились из толстых внешних каменистых слоев двух дифференцированных небесных тел, однако небольшая их доля окажется цельнометаллической. Именно таково распределение состава между астероидами. Более того, кусок железа не может возникнуть прямо посреди межзвездного пространства, поскольку отдельные атомы железа, из которого он состоит, рассеяны по газовым облакам, из которых формируются планеты, а эти облака состоят в основном из водорода и гелия. Чтобы атомы железа нашли друг друга и сконцентрировались, необходимо, чтобы сначала возникло жидкое тело, которое впоследствии дифференцируется.

* * *

Но откуда же астрономы-специалисты по Солнечной системе выяснили, что большинство астероидов главного пояса состоит из каменистых пород? Как они вообще хоть что-то узнают об астероидах? Главный показатель – альбедо астероида, его способность отражать свет. Астероиды сами по себе не излучают свет, они лишь поглощают и отражают солнечные лучи. Как ведет себя 1744 Харриет – отражает или впитывает инфракрасные лучи? А видимый свет? А ультрафиолет? Разные материалы впитывают и отражают разные части светового спектра по-разному. Если досконально изучить спектр солнечного света (а астрофизики так и делают), а потом тщательно пронаблюдать, каков спектр солнечного света, отражаемого от того или иного астероида (а астрофизики так и делают), то можно выяснить, как изменился первоначальный солнечный свет, и, следовательно, определить, из каких материалов состоит поверхность астероида. А по этим материалам можно узнать, какую долю падающего света отражает поверхность. Эта цифра и расстояние до астероида позволяют рассчитать его размеры. В конечном итоге отталкиваешься от того, насколько ярко блестит астероид в небе, однако он может быть, например, очень большим, но совсем тусклым, или, наоборот, маленьким, но с очень высоким коэффициентом отражения, или ни то ни другое. Поэтому, если не знать его состав, нельзя получить ответ, просто измерив яркость.

Этот метод спектрального анализа поначалу привел к простой классификации – все астероиды поделили на три типа: богатые углеродом астероиды С-типа (от слова «Carboneum» – «углерод»), богатые кремнием астероиды S-типа («Silicium» – «кремний») и металлические астероиды М-типа. Однако в результате более точных измерений возник целый алфавит из доброго десятка классов, в каждый из которых входят астероиды, состав который обладает какой-то конкретной и важной особенностью. И тогда стало понятно, что у многих астероидов несколько предков среди небесных тел, а не одна планета-мать, которая когда-то разбилась вдребезги.

Если знать состав астероида, можно с некоторой уверенностью судить о его плотности. Любопытно, что некоторые оценки размера и массы астероидов свидетельствуют о плотности меньшей, чем у камня. Логично предположить, например, что у астероидов внутри могут быть пустоты или что их состав неравномерен. Что же к ним подмешано? Может быть, лед? Едва ли. Пояс астероидов находится от Солнца на таком расстоянии, что все ледяное – вода, углекислый газ, аммиак – с плотностью меньше камня должно было давно испариться. Возможно, речь действительно идет о пустотах, и астероиды состоят не только из камней, но и из рыхлого космического мусора, слипшегося с камнями воедино.

Первые подтверждения этой гипотезы были получены на основе анализа изображений шестидесятикилометрового продолговатого астероида под названием Ида, сделанных при помощи космического зонда «Галилео», когда он пролетал мимо нее 28 августа 1993 года. Полгода спустя примерно в 100 километрах от центра Иды было замечено пятнышко, которое оказалось спутником, имеющим форму гальки и диаметром почти два километра! Спутник назвали Дактиль, и это первый зарегистрированный спутник, вращающийся вокруг астероида. Можно ли сказать, что спутники у астероидов – редкость? Если у астероида в принципе может быть один спутник, следует из этого, что их может быть десять или сто? Иными словами, вдруг некоторые астероиды представляют собой груды камней?

Ответ, разумеется, да. Некоторые астрофизики даже говорят, что эти «кучи щебня» – уже появился такой научный термин (в отличие от геологов, астрофизики предпочитают передавать суть, а не нагромождать слоги) – встречаются довольно часто. Один из ярких примеров астероида такого типа – это Психея, общий диаметр которой составляет около 200 км, а коэффициент отражения большой, что заставляет предположить, что она металлическая. Однако средняя плотность Психеи свидетельствует о том, что она более чем на 70 % состоит из пустот.

* * *

Когда изучаешь объекты, которые «живут» вне главного пояса астероидов, довольно быстро наталкиваешься на прочих бродяг Солнечной системы – на астероиды-убийцы, орбиты которых пересекаются с орбитой Земли, на кометы и сонмища спутников. Кометы – это космические снежки. Обычно они имеют в поперечнике всего несколько километров и состоят из смеси замерзших газов, пыли, льда и всевозможных частиц. В сущности, они могут быть просто астероидами, покрытыми коркой льда, который никогда полностью не испаряется. Вопрос о том, чем считать тот или иной обломок – астероидом или кометой – сводится к тому, где он возник и где побывал. До 1687 года, когда Ньютон опубликовал свои «Начала», где сформулировал закон всемирного тяготения, никто и не представлял себе, что кометы живут и странствуют среди планет и обращаются по сильно вытянутым орбитам, то навещая Солнечную систему, то удаляясь из нее. Обледенелые обломки, которые сформировались на задворках Солнечной системы – как в поясе Койпера, так и за ним, – сохраняют ледяной покров, а если их обнаруживают на характерной вытянутой орбите по пути к Солнцу, когда они оказываются в пределах орбиты Юпитера, за ними виден разреженный, но хорошо заметный «хвост» из водяного пара и других летучих газов. В конце концов, побывав во внутренней части Солнечной системы столько раз, сколько потребуется (может быть, и сотни и даже тысячи), подобная комета растеряет весь свой лед, и останется только каменная глыба. В сущности, многие, если не все, астероиды, орбиты которых пересекаются с орбитой Земли, возможно, представляют собой «истощенные» кометы, чье твердое ядро продолжает преследовать нас.

А есть еще метеориты – летающие космические обломки, которые падают на Землю. Поскольку все метеориты, как и астероиды, состоят из камня, иногда с включениями металла, совершенно очевидно, что их родина – пояс астероидов. Специалистам по геологии планет, изучающим известные астероиды, число которых постоянно растет, стало ясно, что не все орбиты возникают в главном поясе астероидов.

Как любит напоминать нам Голливуд, рано или поздно какой-нибудь астероид (или комета) столкнется с Землей, однако то, что это реальная угроза, мы поняли лишь в 1963 году, когда астрогеолог Юджин М. Шумейкер убедительно доказал, что Аризонский метеоритный кратер Барринджера близ города Уинслоу, возникший 50 000 лет назад, мог быть только результатом падения метеорита, а не вулканической активности или воздействия какой-либо иной геологической силы земного происхождения.

Как мы еще увидим в части 6, открытие Шумейкера вызвало новую волну интереса к пересечениям орбиты Земли с орбитами астероидов. В 1990 годы космические агентства начали отслеживать объекты, близкие к Земле, – кометы и астероиды, чьи орбиты, как деликатно выражаются в НАСА, «позволяют им оказаться по соседству от Земли».

* * *

Важнейшую роль в жизни удаленных от нас астероидов и их собратьев играет планета Юпитер. Гравитационный баланс между Юпитером и Солнцем привел к скоплению семейств астероидов на 60 градусов впереди и на 60 градусов позади Юпитера на его орбите вокруг Солнца, так что, если соединить их прямыми линиями с Юпитером и с Солнцем, получится два равносторонних треугольника. Если измерить эти треугольники, получится, что астероиды находятся на расстоянии 5,2 а. е. и от Юпитера, и от Солнца. Эти пленные небесные тела именуются «троянскими астероидами» и находятся в так называемых точках Лагранжа. Как мы увидим в следующей главе, эти точки – словно магниты, которые притягивают астероиды, попадающие в сферу их притяжения.

Кроме того, Юпитер отводит много комет, которые направляются к Земле. Большинство комет живет в поясе Койпера, который начинается за орбитой Плутона и расстилается очень далеко. Однако если у кометы хватает дерзости пройти близко к Юпитеру, ее швыряет в другую сторону. Если бы не Юпитер, стоящий на часах, кометы бомбардировали бы Землю гораздо чаще. Более того, принято считать, что облако Оорта – обширная популяция комет на самой границе Солнечной системы, получившее название в честь Яна Оорта, голландского астронома, который выдвинул гипотезу о его существовании, – состоит из комет из пояса Койпера, которые вышвырнул вон Юпитер. А орбиты комет из облака Оорта тянутся на половину расстояния до ближайших звезд.

А как же спутники планет? Некоторые из них, по всей видимости, – пленные астероиды, например, Фобос и Деймос, маленькие, тусклые, картофелевидные спутники Марса. Однако у Юпитера есть в распоряжении несколько обледенелых спутников. Нельзя ли классифицировать их как кометы? А Харон, один из спутников Плутона, не слишком уступает размерами самому Плутону. При этом оба покрыты льдом. Вероятно, их стоит считать двойной кометой. Думаю, Плутон и против этого возражать не станет.

* * *

Около десятка комет и астероидов исследованы при помощи космических зондов. Первым это сделал американский космический аппарат «NEAR-Шумейкер» размером с автомобиль (остроумное сокращение NEAR означает «Near Earth Asteroid Rendezvous» – «Рандеву с астероидами поблизости от Земли»), который в 2001 году посетил расположенный неподалеку от нас астероид Эрос – и это отнюдь не случайно произошло перед самым Валентиновым днем. Аппарат опустился на поверхность астероида со скоростью всего 7 километров в час, оборудование его осталось в целости и сохранности, и он смог еще две недели передавать данные на Землю, благодаря чему планетные геологи смогли с определенной уверенностью сказать, что Эрос – астероид длиной около 35 километров – это недифференцированный плотный объект, а не куча щебня. В дальнейшем было осуществлено еще несколько смелых проектов, в том числе запущен зонд «Стардаст», который пролетел сквозь так называемую «кому» – пыльное облако вокруг кометы – и сумел взять пробу из роя крошечных частиц, захватив их при помощи ячеек, заполненных силиконовым аэрогелем. Цель проекта была очень простой – разобраться, какие бывают виды космической пыли, и собрать частицы, не повредив их. Для этого НАСА применило чудесную и удивительную субстанцию под названием аэрогель – больше всего это вещество напоминает рукотворное привидение. Это высушенная силиконовая губка, на 99,8 % состоящая из воздуха. Если пылинка попадает в нее со сверхзвуковой скоростью, то начинает лавировать и в конце концов останавливается, но остается целой и невредимой. А если попробовать остановить ту же самую пылинку бейсбольной перчаткой или чем угодно еще, то пылинка на большой скорости ударится о поверхность и от резкой остановки просто испарится. Как жаль, что при возвращении на Землю «Стардаст» разбился из-за нераскрывшегося парашюта!

Не отстает от американцев в исследовании комет и астероидов и Европейское космическое агентство. Космический аппарат «Розетта», чей полет продлится 12 лет, посвятит два года изучению одной-единственной кометы и соберет о ней небывалое количество информации с близкого расстояния, а затем двинется дальше и осмотрит два астероида в главном поясе.

Каждая встреча с космическими бродягами даст нам весьма конкретные сведения, которые позволят сделать выводы о формировании и эволюции Солнечной системы, о том, какие небесные тела ее населяют, о том, возможно ли, что органические молекулы попали на Землю на метеоритах, а также о размерах, форме и плотности соседних объектов. Как всегда, глубокое понимание зависит не от того, насколько хорошо удается описать тот или иной конкретный объект, а от того, как этот объект связан с массивом накопленных знаний и как новые знания влияют на вечно расширяющуюся границу этого массива. Если речь идет о Солнечной системе, то вечно расширяющаяся граница знаний лежит в области поиска иных солнечных систем. Теперь ученые стремятся всесторонне сравнить Землю с космическими бродягами – астероидами и с экстрасолярными планетами. Только тогда мы сумеем наконец разобраться, можно ли считать наш домашний уклад нормальным или мы живем в неблагополучной космической семейке.


    Ваша оценка произведения:

Популярные книги за неделю