Текст книги "Смерть в черной дыре и другие мелкие космические неприятности"
Автор книги: Нил Тайсон
Жанры:
Физика
,сообщить о нарушении
Текущая страница: 10 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]
* * *
Хвосты комет при всей своей скудности и разреженности превышают по плотности окружающую межпланетную среду в тысячу раз. Хвост кометы отражает солнечный свет и испускает поглощенную энергию Солнца – и благодаря этому виден на удивление хорошо, если учесть, что состоит он практически из ничего. Отцом современной науки о кометах по праву считается Фред Уиппл из Гарвард-Смитсоновского центра астрофизики. По его лаконичному выражению, хвост кометы – это максимум, что можно сделать из минимума.
И в самом деле, если весь объем кометного хвоста длиной в 80 миллионов километров сжать до плотности обычного воздуха, весь газ из кометы займет объем куба со стороной меньше километра. Когда в составе комет открыли очень часто упоминаемый в астрономии, однако смертельно ядовитый газ циан (CN), а после этого стало известно, что в 1910 году Земле предстоит пройти сквозь хвост кометы Галлея во время ее очередного визита в Солнечную систему, легковерная публика массово скупала у шарлатанов от фармакологии противокометные пилюли.
Недра Солнца, где генерируется вся термоядерная энергия, – не то место, где можно найти вещество с низкой плотностью. Однако само ядро составляет всего 1 % от объема Солнца. Средняя плотность всего Солнца составляет всего четверть плотности Земли и лишь на 40 % плотнее обычной воды. То есть чайная ложка солнечного вещества утонет у вас в ванне, но не очень быстро. Тем не менее, за ближайшие 5 миллиардов лет ядро Солнца пережжет почти весь свой водород в гелий, а вскоре после этого начнет пережигать гелий в углерод. Яркость Солнца будет при этом увеличиваться в тысячи раз, а температура на поверхности упадет до половины нынешней. Законы физики учат нас, что тело может светиться ярче и при этом остывать только в одном случае – если оно увеличится в размерах. Как мы увидим в части V, в конце концов Солнце раздуется в исполинский шар разреженного газа, который захватит пространство далеко за орбитой Земли, а средняя плотность Солнца упадет при этом меньше чем до одной десятимиллиардной нынешнего значения. Океаны и атмосфера Земли к тому времени, конечно, испарятся в космос, все живое тоже, однако нас это тревожить не должно. Внешняя атмосфера Солнца, пусть и разреженная, будет тормозить движение Земли по орбите и вынудит нас мало-помалу устремиться по спирали к гибели в термоядерном котле.
* * *
Мы уже заглядываем за пределы Солнечной системы в межзвездное пространство. Человечество отправило туда четыре космических аппарата, скорости которых хватит для подобного путешествия: это «Пионер-10», «Пионер-11», «Вояджер-1» и «Вояджер-2». Самый быстрый из них – «Вояджер-2» – примерно за 25 000 лет улетит на расстояние, равное расстоянию до ближайшей к Солнцу звезды.
В межзвездном пространстве, конечно, пусто. Однако там есть газовые облака, столь же броские и заметные вопреки всему, как и хвосты комет: их плотность выше плотности окружающего пространства в 100–1000 раз, и они охотно заявляют о себе в присутствии ярких звезд. И здесь история повторилась: когда ученые только начали исследовать эти красочные туманности, они обнаружили незнакомые узоры в их спектрах. До поры до времени, в качестве метки на этом пробеле в наших познаниях поставили гипотетический элемент «небулий». В конце XIX века стало понятно, что в периодической таблице Менделеева свободного места для этого элемента не осталось. Методы получения разреженных сред в лаборатории постоянно совершенствовались, а незнакомые особенности спектров, как правило, оказывались связаны со знакомыми элементами, так что крепли подозрения, что небулий – это привычный кислород в непривычном состоянии; впоследствии так и оказалось. Что же это было за состояние? Все эти атомы были лишены двух электронов и обретались в практически идеальном вакууме межзвездного пространства.
Если покинуть пределы галактики, почти весь газ, пыль, звезды, планеты и космический мусор останутся позади. Мы очутимся в невообразимой космической пустоте. Поясню на примере, что такое пустота: в кубе межгалактического пространства со стороной в 200 000 километров содержится примерно такое же количество атомов, что и в полезном объеме внутри вашего холодильника. Глубокий космос не просто любит вакуум – он вырезан из него, словно скульптура.
Увы, абсолютного, идеального атома нигде не найдешь и никак не создашь. Как мы видели в части II, среди прочих удивительных прогнозов квантовой механики есть и такой, что подлинный космический вакуум содержит целое море «виртуальных» частиц, которые постоянно то возникают, то исчезают в парах со своими двойниками из антивещества. «Виртуальны» эти частицы потому, что срок их жизни так краток, что их существование не удается непосредственно зарегистрировать. Это явление принято называть «энергией вакуума», и оно способно оказывать антигравитационное давление, которое в конечном итоге и заставляет Вселенную расширяться по экспоненте, все быстрее и быстрее, отчего межгалактический вакуум становится еще более разреженным.
А что же находится еще дальше?
Некоторые метафизики-дилетанты выдвигают гипотезу, что вне Вселенной, где нет пространства, все же есть что-то другое. Это гипотетическое место нулевой плотности можно назвать, например, «ничегошное ничто», хотя именно там мы, конечно, обнаружим сонмы исчезнувших кроликов.
Глава пятнадцатая
Где-то за радугой
Когда художники-карикатуристы рисуют биологов, химиков или инженеров, то обычно наряжают своих героев в белые лабораторные халаты, из нагрудных карманов которых торчат всевозможные ручки и карандаши. Астрофизики исписывают массу ручек и карандашей, однако лабораторных халатов мы не носим, разве что когда собираем какой-нибудь аппарат, который предстоит запустить в космос. Космос и есть наша главная лаборатория, и можно не бояться поставить пятно на рубашке или прожечь в пиджаке дыру пролившимися с неба едкими химикалиями – разве что шальной метеорит оставит подпалину.
Тут-то и таится подвох. Как, скажите на милость, изучать то, что даже одежду запачкать не может? Откуда астрофизики знают хоть что-то о Вселенной и разных космических объектах, если все, что они изучают, находится на расстоянии во много световых лет?
К счастью, свет, исходящий от звезды, говорит нам гораздо больше, чем ее яркость или положение на небосклоне. У атомов, из которых состоят светящиеся объекты, бурная, беспокойная жизнь. Их электрончики постоянно поглощают и испускают свет. А если вокруг достаточно жарко, в результате энергичных столкновений атомы лишаются некоторых или даже всех своих электронов, и они рассеивают свет во все стороны. В общем и целом атомы оставляют специфические следы на изучаемом свете, и по нему можно понять, какие химические элементы и молекулы поучаствовали в его создании.
Еще в 1666 году Исаак Ньютон пропустил белый свет сквозь призму и получил всем известный спектр из семи цветов – красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового (вы, конечно, знаете фразу, помогающую запомнить их порядок: «Каждый охотник желает знать, где сидит фазан»). Кстати, именно Ньютон ввел в обращение слово «спектр».
С призмами развлекались и другие ученые. Однако следующий опыт Ньютона прецедентов не имел. Он пропустил получившийся цветовой спектр через вторую призму – и снова получил чистый белый свет, с которого и начинал, продемонстрировав тем самым поразительное свойство света, которое невозможно воспроизвести на палитре художника: если смешать на палитре краски тех же цветов, получится цвет, напоминающий болотную грязь.
Кроме того, Ньютон попробовал разложить и сами цвета, но оказалось, что они чистые. И, несмотря на семь отдельных названий, спектральные цвета плавно перетекают один в другой. Человеческий глаз не в состоянии сделать то же самое, что и призма, – так что она позволяет открыть еще одно неоткрытое окно во Вселенную.
* * *
Тщательное изучение солнечного спектра при помощи точной оптики и приемов, которые во времена Ньютона были недоступны, показывает не только цвета «каждого охотника», но и узкие сегменты в тех частях спектра, где обычных цветов нет. Эти «линии» в свете открыл в 1802 году английский химик и врач Уильям Хайд Уолластон, который по незнанию (впрочем, вполне логично) предположил, что это естественные границы между цветами. Более полно исследовал и истолковал это явление немецкий физик и оптик Йозеф Фраунгофер (1787–1826), который посвятил свою профессиональную карьеру количественному анализу спектров и разработке оптических устройств, позволяющих генерировать различные спектры. Фраунгофера часто называют отцом современной спектроскопии, а я бы пошел еще дальше и сказал, что он стал отцом астрофизики. В 1814–1817 годах он пропускал сквозь призму свет от разных видов пламени и обнаружил, что общий узор линий напоминает узор солнечного спектра, а тот, в свою очередь, похож на спектры многих звезд, в том числе и Капеллы, одной из ярчайших звезд на ночном небе.
К середине XIX века химики Густав Кирхгоф и Роберт Бунзен (прославившийся бунзеновской горелкой, которая наверняка была у вас в кабинете химии) увлеклись разложением при помощи призмы света от разных горящих веществ. Они сделали схемы узоров, получавшихся при горении известных элементов, и обнаружили много новых, в том числе рубидий и цезий. Каждый элемент оставлял в изучаемом спектре свой узор линий, свою визитную карточку. Это начинание принесло столь обильные плоды, что второй по распространенности элемент во Вселенной – гелий – был открыт в спектре Солнца еще до того, как его обнаружили на Земле. Об этом свидетельствует и само название элемента, ведь Гелиос – бог Солнца.
* * *
Точно и подробно объяснить, как именно атомы и их электроны формируют спектральные линии, удалось лишь полвека спустя, с началом эры квантовой механики, однако понятийная основа была уже заложена. Фраунгофер соотнес царство лабораторной физики с космосом – в точности как Ньютон в своих уравнениях тяготения соотнес царство лабораторной физики с Солнечной системой. Все было готово для того, чтобы впервые заявить, какие химические элементы составляют Вселенную и при каких условиях – температуре и давлении – они являют спектроскописту свои узоры.
Кабинетным философам случалось делать много громких недальновидных заявлений, однако здесь уместно вспомнить Огюста Конта (1798–1857), который в 1835 году в своем труде «Курс позитивной философии» («Cours de la Philosophie Positive») провозгласил:
Что касается звезд, все исследования, которые нельзя в конечном итоге свести к простым зрительным наблюдениям… нам, естественно, недоступны… Мы никогда не сможем никакими средствами изучить их химический состав… Я считаю, что нам никогда не будут доступны никакие достоверные сведения касательно средней температуры разнообразных звезд.
(Comte, p. 16)
Начитавшись подобных цитат, заречешься утверждать в печати что бы то ни было.
Прошло всего семь лет, и в 1842 году австрийский физик Кристиан Допплер открыл эффект, получивший его имя: длина волны, испускаемой движущимся телом, меняется. Казалось бы, все очевидно: движущееся тело должно растягивать волны позади (сокращать их частоту) и сжимать волны впереди (повышать их частоту). Чем быстрее движется предмет, тем сильнее свет сокращается перед ним и растягивается позади него. Простое соотношение между скоростью и частотой приводит к важным следствиям. Если знаешь, какую частоту испускало тело, а при этом измерения дают другую величину, то разница между ними прямо покажет, с какой скоростью тело движется на тебя или от тебя. В своей статье, опубликованной в 1842 году, Допплер делает пророческое заявление:
Почти наверняка можно утверждать, что это явление [эффект Допплера] уже в не столь отдаленном будущем станет для астрономов долгожданным средством определения движения… таких звезд, которые… до сего момента не позволяли надеяться на подобные измерения и заключения.
(Schwippell 1992, pp. 46–54)
Эта идея справедлива для звуковых волн, световых волн и вообще любых волн любого происхождения. (Вот бы Допплер удивился, если бы узнал, что когда-нибудь его открытие будет применяться в микроволновых «радарах», при помощи которых полицейские изымают деньги у людей, ведущих автомобиль со скоростью выше установленной законом!) К 1845 году Допплер уже провел эксперименты с оркестром, играющим на платформе, прицепленной к паровозу, а его помощники, обладатели абсолютного музыкального слуха, записали, как меняются ноты, когда паровоз приближается, а затем удаляется.
* * *
В конце XIX века, когда спектрографы уже широко применялись в астрономии, а к тому же появилась и новая экспериментальная наука – фотография, астрономия пережила второе рождение и превратилась в новую дисциплину – астрофизику. Один из самых авторитетных научных журналов в моей сфере деятельности – «Astrophysical Journal» – был основан в 1895 году и до 1962 года выходил с подзаголовком «Международный обзор спектроскопии и астрономической физики». Да и в наши дни практически любая статья, где рассказывается о наблюдениях над Вселенной, либо содержит собственный анализ спектра, либо нагружена спектроскопическими данными, которые получили другие ученые.
Чтобы измерить спектр объекта, требуется собрать гораздо больше света, чем для того, чтобы просто получить изображение, поэтому самые большие в мире телескопы, например десятиметровые телескопы в обсерватории им. Кека на Гавайях, предназначены в основном для того, чтобы получать спектры. Коротко говоря, если бы мы не научились анализировать спектры, то не знали бы о происходящем во Вселенной практически ничего.
Перед преподавателями астрофизики стоит педагогическая задача высшего разряда. Астрофизики-исследователи черпают, можно сказать, все свои познания из изучения спектров. Однако от анализа спектра того или иного объекта до выводов о его природе нужно пройти нескольких уровней умозаключений. Тут помогут аналогии и метафоры – они привязывают сложные и абстрактные идеи к более простым и осязаемым. Биолог описывает форму молекулы ДНК как две спирали, соединенные друг с другом перекладинами наподобие лестницы. Представить себе спираль я могу. И представить себе две спирали тоже могу. И перекладины на лестнице. В результате я могу представить себе форму молекулы ДНК. Все части описания отстоят от самой молекулы всего на один уровень умозаключений. И они прекрасно складываются в голове в осязаемый образ. Теперь уже можно говорить на любые научные темы, связанные с этой молекулой, и на простые, и на сложные.
А вот для того, чтобы объяснить, откуда мы берем скорость удаляющейся от нас звезды, требуется пять последовательных уровней абстракции.
Уровень 0. Звезда.
Уровень 1. Изображение звезды.
Уровень 2. Излучение звезды, которую мы видим на изображении.
Уровень 3. Спектр излучения звезды, которую мы видим на изображении.
Уровень 4. Сдвиги линий, вплетенных в спектр света от изображения звезды.
Переход от уровня 0 к уровню 1 – тривиальный ход, который мы проделываем всякий раз, когда делаем фотоснимок. Однако к тому времени, когда объяснение дойдет до уровня 4, слушатели либо одуреют, либо уснут. Вот почему широкая публика почти ничего не знает о роли спектров в изучении космоса: эти данные оказываются далеки от самих объектов, поэтому очень трудно объяснить происходящее доходчиво и простыми словами.
Когда ходишь на выставки в естественнонаучные музеи и вообще в любые музеи, где ценятся реальные предметы, обычно ожидаешь увидеть экспонаты, которые можно выставить в витрине – камни, кости, орудия труда, окаменелости, реликвии и так далее. Все это – образчики «уровня 0», они почти не требуют когнитивных затрат, чтобы объяснить, что, собственно, такое перед вами. Если же выставка посвящена астрофизике, не стоит и пытаться выставить в витрине звезды или квазары: от этого весь музей испарится. Поэтому обычно подобные выставки делаются на уровне 1 – там представлены исключительно изображения, впрочем, очень красивые и интересные. Самый знаменитый телескоп современности – космический телескоп им. Хаббла – известен широкой публике в основном благодаря прекрасным, высококачественным, полноцветным изображениям разных объектов во Вселенной. Беда в том, что после таких выставок преисполняешься телячьим восторгом перед поэзией Вселенной – однако ни на шаг не приближаешься к подлинному пониманию ее устройства. Чтобы разобраться в нем, нужно выйти на уровни 3 и 4. И хотя телескоп им. Хаббла дает много надежных научных данных, СМИ никогда не расскажут вам, что основа наших познаний о космосе – это по-прежнему анализ спектров, а не разглядывание красивых картинок. А лично мне хочется потрясти читателей не только уровнями 0 и 1, но и уровнем 4, для чего, приходится признать, нужно куда больше умственных усилий как со стороны ученика, так и со стороны учителя (а может быть, со стороны учителя даже больше).
* * *
Одно дело – увидеть красивую цветную фотографию туманности в нашей галактике Млечный Путь, снятую в видимом свете. И совсем другое – по ее радиоволновому спектру понять, что под наслоениями облаков таятся еще и недавно сформировавшиеся звезды очень большой массы. Это газовое облако – звездный питомник, где выращиваются будущие источники света для Вселенной.
Одно дело знать, что звезды большой массы то и дело взрываются. Это, в принципе, и на фотографиях видно. Однако рентгеновские и оптические спектры этих умирающих звезд показывают, что в них содержатся целые арсеналы тяжелых элементов, которые после взрыва обогащают галактику и прослеживаются во всей живой природе на Земле. Так что не только мы живем среди звезд, но и звезды живут внутри нас.
Одно дело смотреть на плакат с красивой спиральной галактикой. И совсем другое – по допплеровским сдвигам в ее спектре понимать, что эта галактика вращается со скоростью 200 километров в секунду, из чего мы делаем вывод о присутствии в ней 100 миллиардов звезд, которые подчиняются ньютоновым законам гравитации. Кстати, из-за расширения Вселенной эта галактика удаляется от нас со скоростью, равной одной десятой скорости света.
Одно дело смотреть на ближайшие звезды, напоминающие Солнце яркостью и температурой. И совсем другое – сверхчувствительными приборами измерять эффект Допплера при движении звезды и делать выводы о существовании планет на орбите вокруг них. Сейчас, когда эта книга готовится к печати, наш каталог планет уже перевалил за отметку в 200, не считая наших соседей по Солнечной системе.
Одно дело наблюдать свет от квазара, расположенного на краю видимой Вселенной. И совсем, совсем другое – анализировать спектр квазара и определять по нему структуру невидимой части Вселенной, где газовые облака и прочие препятствия, лежащие на пути квазарного света к Земле, так и норовят поглотить кусок этого спектра.
К счастью для тех из нас, кто интересуется магнитогидродинамикой космических объектов, структура атомов под влиянием магнитного поля немного меняется. Излучение атомов, подвергшихся воздействию магнитного поля, меняет свой спектральный узор, и эти изменения мы можем увидеть.
Вооружившись эйнштейновской релятивистской версией уравнения Допплера, из спектров бесчисленных галактик, ближних и дальних, мы выводим темп расширения Вселенной в целом – а значит, можем сделать выводы и о ее нынешнем возрасте, и о ее будущей участи.
Вполне можно сказать, что о Вселенной мы знаем больше, чем гидробиолог об океанском дне или геолог о центре Земли. Современные астрофизики перестали быть беспомощными зеваками, которые только и могут, что глазеть на звезды; они до зубов вооружены инструментами и приемами спектроскопии, которые позволяют крепко стоять обеими ногами на Земле и при этом, не обжигая пальцев, прикасаться к звездам и утверждать, что мы знаем о них столько, сколько не знал никто и никогда.
Глава шестнадцатая
Окна во Вселенную
Если верить рекламе, человеческий глаз – это чуть ли не самый поразительный орган в нашем теле, и об этом мы уже упоминали в части I. У большинства из нас перечень его небывалых черт возглавляют способность фокусироваться на близких и далеких предметах, приспосабливаться к широкому диапазону яркости и различать цвета. Но давайте вспомним, какой широкий диапазон излучения остается для нас невидимым – и тут уж волей-неволей придется признать, что люди как биологический вид практически слепы. А слух – кого мы им удивим, скажите на милость?! Летучие мыши с легкостью дадут нам сто очков вперед: чувствительность их слуха превосходит нашу на порядок. А если бы человеческое обоняние было сравнимо с собачьим, то контрабанду на таможне в аэропорту вынюхивал бы Фред, а не Рекс.
Вся история открытий, которые совершало человечество, пронизана безудержным желанием преодолеть врожденную ограниченность наших органов чувств. Именно это желание и помогает нам открывать новые окна во Вселенную. Например, начиная с 60-х годов прошлого века, когда первые советские и американские космические аппараты были отправлены на другие планеты и на Луну, стандартным инструментом космической экспансии стали зонды с компьютерным управлением, которые мы вполне можем называть роботами. У роботов в космосе масса очевидных преимуществ перед людьми: их дешевле запускать, они могут проводить высокоточные эксперименты без неудобного скафандра, кроме того, с традиционной точки зрения они не живые, а значит, не могут погибнуть в результате космической аварии. Однако пока еще компьютеры не могут обладать ни человеческим любопытством, ни человеческими озарениями, они пока еще не научились синтезировать информацию и распознавать случайные находки и открытия, даже если уткнутся в них носом (и даже если не уткнутся), и поэтому роботы остаются всего лишь орудиями, придуманными для того, чтобы делать открытия, которые мы уже ожидаем.
К сожалению, очень может быть, что самые важные вопросы о природе мироздания мы еще просто не задавали.
Более всего нам удалось усовершенствовать наши убогие органы чувств, когда мы научились заглядывать в невидимые части так называемого электромагнитного спектра. В конце XIX века немецкий физик Генрих Герц проделал эксперименты, которые помогли объединить в рамках одной системы понятий различные формы излучения, которые раньше считали не связанными между собой. Радиоволны, инфракрасное излучение, видимый свет и ультрафиолет оказались близкими родственниками из семейства света – как выяснилось, они отличаются друг от друга всего лишь энергией. Полный спектр, в том числе все его части, открытые после работ Герца, простирается от низкоэнергичной области, которую мы называем радиоволнами, а далее в порядке возрастания энергии спектр переходит последовательно в микроволновое, а затем в инфракрасное излучение, в видимый свет (который охватывает семь цветов радуги – красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый), в ультрафиолет, рентгеновское излучение и гамма-лучи.
Современные ученые ничем не уступают Супермену с его рентгеновским зрением. Он, конечно, немного покрепче среднего астрофизика, зато нынешние астрофизики «видят» во всех основных частях электромагнитного спектра. Не будь у нас такого супер-зрения, мы были бы слепы и невежественны: многие астрофизические явления видны только через определенные окна, а в других окнах от них не видно и следа.
* * *
А теперь заглянем во все эти окна во Вселенную по очереди – и начнем с радиоволн, для которых нужны совсем не те датчики, что находятся у человека в сетчатке.
В 1932 году Карл Янский, сотрудник Телефонных лабораторий Белла, вооружившись радиоантенной, первым «увидел» радиосигналы, исходившие из внеземного источника: он открыл центр галактики Млечный Путь. Радиосигнал от этого источника так интенсивен, что если бы человеческий глаз воспринимал только радиоволны, центр галактики был бы одним из самых ярких объектов на небе.
При помощи хитроумных электронных устройств можно передавать особым образом закодированные радиоволны, а затем превращать их в звуки. Это гениальное изобретение получило известность как «радио». Так что благодаря усовершенствованию зрения мы, в сущности, улучшили еще и слух. Однако любой источник радиоволн, как и практически любой другой источник энергии, можно использовать так, чтобы он заставлял вибрировать диафрагму динамика, хотя журналисты иногда неверно понимают этот простой факт. Например, когда было открыто радиоизлучение с Сатурна, астрономам оказалось несложно придумать радиоприемник, оборудованный подобным динамиком. В нем радиоволновой сигнал преобразуется в слышимые звуковые волны, из-за чего один журналист заявил, что-де с Сатурна «доносятся звуки» и его обитатели хотят нам что-то сказать.
Теперь мы располагаем гораздо более чувствительными и хитроумными радиодетекторами, чем Карл Янский, и исследуем не только Млечный Путь, но и всю Вселенную. К первым данным о радиоволнах относились с недоверием, пока они не получили подтверждение благодаря наблюдениям на обычных телескопах – лишнее подтверждение нашему предрассудку, что «лучше один раз увидеть, чем сто раз услышать». К счастью, большинство радиоизлучающих объектов испускают и какой-то видимый свет, так что от ученых не всегда требовалась слепая вера. Впоследствии радиотелескопы привели нас к целой сокровищнице открытий, в том числе, с их помощью были открыты квазары, которые до сих пор во многом остаются для нас загадкой (слово «квазар» – это вольное сокращение от «quasi-stellar radio source» – «квазизвездный радиоисточник») и относятся к числу самых далеких объектов в известной Вселенной.
Богатые газом галактики испускают радиоволны с помощью атомов водорода, которые находятся там в изобилии (атомы водорода составляют свыше 90 % всех атомов во Вселенной). При помощи больших массивов радиотелескопов, связанных друг с другом быстрой электроникой, можно получать изображения газа, содержащегося в галактиках, с высоким пространственным разрешением, которое позволяет обнаружить всевозможные неочевидные особенности распределения водорода – вихри, сгустки, бреши, волокна. Задача картографирования галактик во многом похожа на ту, что стояла перед географами XV и XVI веков, чьи попытки передать очертания континентов, несмотря на все искажения, отражали отважное стремление человечества описать миры, остававшиеся физически недосягаемыми.
* * *
Если бы человеческий глаз воспринимал микроволновое излучение, это окно спектра позволило бы вам видеть сигнал от радара в руках дорожного инспектора, спрятавшегося в кустах на обочине автомагистрали. А телефонные вышки прямо-таки сияли бы ослепительным светом. Однако отметьте, что внутренность микроволновки у вас в кухне выглядела бы по-прежнему, поскольку дверца с вделанной в нее сеткой отражает микроволны обратно и не дает им вырваться наружу. Так она не дает стекловидному телу ваших любопытных глаз испечься вместе с едой.
Широко применять микроволновые телескопы для изучения Вселенной стали лишь с конца 60-х годов. Они позволяют нам заглянуть в холодные плотные облака межзвездного газа, которые затем схлопываются и образуют звезды и планеты. Тяжелые элементы в этих облаках охотно образуют сложные молекулы, чьи характерные признаки в микроволновой части спектра ни с чем не спутаешь, поскольку они соответствуют точно таким же молекулам, которые есть на Земле.
С некоторыми космическими молекулами мы давно познакомились у себя дома:
NH3 (аммиак),
H2O (вода).
Есть среди них и смертоносные:
CO (угарный газ),
HCN (синильная кислота).
Кое-какие напоминают о больнице:
H2CO (формальдегид),
C2H5OH (этиловый спирт).
А кое-какие ни о чем не напоминают:
N2H+ (диазиниум),
CHC3CN (цианодиацетилен).
Всего в космосе обнаружено почти 130 видов молекул, в том числе глицин – аминокислота, служащая строительным материалом для белка, а следовательно, и для жизни в том виде, в каком мы ее знаем.
Именно микроволновому телескопу мы, безусловно, обязаны самым важным открытием в астрофизике за всю ее историю. Жар, оставшийся от Большого Взрыва, положившего начало Вселенной, уже остыл до температуры примерно в три градуса по абсолютной шкале Кельвина. (Мы еще поговорим подробнее о том, что нуль градусов по абсолютной температурной шкале соответствует самой низкой возможной температуре, поэтому отрицательных температур на ней нет. Абсолютный нуль соответствует –273 градусам по Цельсию, а комнатная температура – примерно 300 градусов по Кельвину.) В 1965 году реликты Большого Взрыва случайно открыли сотрудники Телефонных лабораторий Белла Арно Пензиас и Роберт Уилсон, за что и получили Нобелевскую премию. Эти реликты представляют собой вездесущий и всеобъемлющий океан излучения, в котором преобладают радиоволны.
Пожалуй, это открытие – эталон научного везения. Пензиас и Уилсон ставили перед собой очень скромную цель – найти источники земного происхождения, которые интерферируют с микроволновыми линиями связи, – а нашли неоспоримое свидетельство, что теория происхождения Вселенной в результате Большого Взрыва верна. Это все равно что удить уклеек, а поймать голубого кита.
* * *
Если двинуться дальше по электромагнитному спектру, мы попадем в инфракрасный диапазон. Для человека он тоже невидим, зато прекрасно знаком любителям фаст-фуда: картошку-фри в ожидании покупателей держат под инфракрасными лампами, чтобы не дать ей остывать по нескольку часов. Эти лампы испускают и видимый свет, однако их активный ингредиент – именно многочисленные невидимые инфракрасные фотоны, которые и впитывает готовое блюдо. Если бы человеческая сетчатка воспринимала инфракрасный свет, то в обычных домах по ночам, с выключенным светом, были бы видны все предметы, температура которых превышает комнатную, – в том числе утюг (если он был включен и еще не успел остыть), металл вокруг горелок на плите, трубы горячей воды и обнаженная кожа всех людей, которые попадут в поле зрения. Конечно, это далеко не такая информативная картина, как в видимом свете, однако два-три творческих способа пустить полученные сведения в дело вы наверняка придумаете – например, поглядеть на свой дом зимой и увидеть, где крыша или окна пропускают тепло.
В детстве я был уверен, что ночью, при выключенном свете, в инфракрасном диапазоне видны чудовища, которые прячутся в шкафу в спальне, но только при условии, что они теплокровные. Однако всем известно, что ночные чудовища – чаще всего рептилии, и кровь у них холодная. Поэтому инфракрасное зрение ничуть не поможет разглядеть чудовище: оно сольется со стенами и полом.