Текст книги "Пароход"
Автор книги: Николай Болгаров
сообщить о нарушении
Текущая страница: 3 (всего у книги 16 страниц)
Двигатель и движитель
Перейдем теперь в машинное отделение парохода. Цилиндры машины покоятся на массивных колоннах, скрепленных с фундаментной рамой. Сквозь днище цилиндров проходят длинные штоки. На верхнюю часть каждого штока насаживается поршень. А нижняя часть штока заканчивается поперечиной с ползуном. Ползун скользит вверх и вниз по шлифованным поверхностям параллелей, укрепленных на колонне машины. Параллели для движения поршня – это все равно что рельсы для трамвайного вагона. Они предохраняют шток от искривления.
Поперечина соединена со следующей тягой, которую называют шатуном.
Шатун устроен так, что его верхняя часть ходит вверх и вниз вместе с ползуном и штоком, а нижняя часть вращает, словно нога велосипедную педаль, одно из колен коленчатого вала машины.
Таким образом, прямолинейно-возвратное движение поршня в цилиндре преобразуется во вращательное движение коленчатого вала. И что интересно, вращение коленчатого вала при помощи особого передаточного механизма– эксцентрика – производит попеременный впуск пара то в верхнюю, то в нижнюю полость каждого цилиндра через специальную золотниковую коробку, расположенную рядом с цилиндром. Здесь мы имеем обратное явление: вращательное движение вала преобразуется эксцентриками в прямолинейно-возвратное движение задвижек коробки, называемых золотниками.
Золотники открывают окна то в верхней, то в нижней полости цилиндра, впуская туда пар. Пар от котла подводится по трубе через золотниковые коробки в цилиндр высокого давления, затем, последовательно, в цилиндры среднего и низкого давления, а из цилиндра низкого давления он уже отводится в конденсатор. Коленчатый вал машины соединен с целой линией валов. Эта линия тянется по специальному тоннелю иногда через несколько отделений парохода и заканчивается гребным валом, выходящим из кормовой части судна наружу. На этот вал насаживается гребной винт. Так движение поршней цилиндров заставляет вращаться коленчатый вал машин, судовой валопровод и гребной винт.

Паровая машина с тройным расширением пара. 1 – цилиндр высокого давления; 2 – цилиндр среднего давления; 8 – цилиндр низкого давления, 4 – золотниковые коробки; 5 – подвод пара; 6 – поршень; 7 – отвод пара в конденсатор; 8 – шток; 9 – параллели; 10 – шатун; 11 – коленчатый вал.
У первых пароходов гребных винтов еще не было. Были гребные колеса. Колеса удобны на реке, где мелко и нет больших волн. И сейчас еще много речных пароходов с колесами. На море с гребными колесами – просто беда, особенно когда разгуляются волны. Вот пароход кренится на правый борт. Колесо этого борта глубоко зарывается в воду, а левое обнажается. В этот момент работа левого колеса бесполезна. Оно хлопает лопастями в воздухе, а пользы для парохода никакой нет. Перевалится пароход на левый борт, правое колесо вращается впустую. А если так, то и машина работает неравномерно. Одно колесо перенапрягается, другое действует вхолостую. От такой работы части машин быстро изнашивались, выхолили из строя, а лопасти колес ломались.
Так было до тех пор, пока на пароходе не установили винт. Полезное действие винта было известно еще в глубокой древности. В те времена его использовали для выкачивания воды. Рассказывают, что еще в 1630 году из Китая в Европу привезли модель винта, предназначенного для движения судна. Но в эпоху парусного флота еще не было машин, которые могли бы вращать такой винт.
И только с появлением механического двигателя начали создавать и применять все более удачные конструкции гребных винтов. Очень интересный винт предложил чешский изобретатель Йосеф Рессель в 1827 году. Его винт в США и Австрии признали вполне пригодным для движения парохода. За создание гребного винта Ресселю даже поставили памятник в Вене и Нью-Йорке.
Необычайный случай произошел с другим изобретателем – англичанином Смитом: он испытывал в 1836 году судно, имевшее длинный деревянный винт Архимеда. При случайной аварии часть винта обломали, но судно пошло гораздо быстрее. Оказывается, винт получил более выгодную форму.
В нашей стране первым винтовым пароходом был фрегат «Архимед», построенный в 1848 году.
Соперничество винта с колесом тянулось долго. А иногда приходилось ставить и винт и колесо одновременно. Так на построенном в шестидесятых годах гигантском судне «Грейт-Истерн» (оно имело около 200 метров длины) строители взгромоздили и колеса (диаметром по 17 метров!), и винт (весом около 36 тонн), да еще шесть мачт с парусами!
В 1842 году, чтобы окончательно решить, какой движитель лучше, сделали так: взяли два совершенно одинаковых фрегата с одинаковыми машинами (по 200 сил), но один сделали винтовым, а другой – колесным. Потом установили их кормой друг к другу, соединили крепкими цепями и дали полный вперед обоим кораблям.
Винтовой перетянул и поволок соперника со скоростью 2,5 узла.
Гребной винт и гребные колеса называют движителями судна. Кстати сказать, многие путают двигатель с движителем. Считают, что это одно и то же. На самом деле эти понятия разные. Двигатель – это машина, создающая необходимую для движения судна силу. Но сама по себе такая сила не может двигать судно. Требуется дополнительное приспособление, с помощью которого сила машины будет воздействовать на воду, отталкивать судно от нее. Это приспособление и есть движитель. Встречается много разных типов движителей. Но самым распространенным является пока гребной винт. Он состоит из трех или четырех лопастей и общей втулки – ступицы, которая насаживается на гребной вал. Суда чаще всего имеют один – два гребных винта и столько же машин.

Гребной винт состоит из трех-четырех лопастей и ступицы.
Как же работает гребной винт?
У колесного парохода видно, чем и как он гребет. У него по бортам колеса, насаженные на вал машины, идущий поперек судна. Лопастями своих колес пароход загребает воду, будто веслами. А у винтового вы видите за кормой только мощный поток бурлящей воды. Это гребной винт, сидящий глубоко в воде, вращаясь, ввинчивается в нее, с силой отталкивает воду назад, а судно движет вперед. Эта сила – упор винта, через специальный упорный подшипник на валу, передается всему пароходу.
Очень много значат для нормальной работы гребного винта правильно подобранные размеры и форма его лопастей. Вот какой случай произошел с нашим выдающимся кораблестроителем – академиком А. Н. Крыловым. Однажды он плыл на новом английском судне. Капитан этого судна был мрачен и очень неохотно отвечал на все вопросы Крылова.
Видимо, он чем-то был недоволен. В конце концов удалось выяснить причину плохого настроения капитана. Оказывается, его раздражала малая скорость парохода.
«Вы понимаете, – сердито говорил капитан, – как это неприятно: идти со скоростью черепахи на судне, которое по всем своим данным должно быть быстроходным. В чем здесь дело, ума не приложу». Крылов сочувственно слушал капитана. Ему была понятна печаль старого моряка. И он решил помочь ему. Когда пароход пришел в Англию, Крылов направился в контору общества, которому принадлежало судно, и увидел там модель злосчастного парохода. Модель в точности воспроизводила все устройство судна, но, конечно, с уменьшением (в 100 раз). Крылову сразу же бросилось в глаза, что у парохода винт непомерно велик. Он порекомендовал владельцу судна обрезать каждую лопасть винта на 200 миллиметров. Судовладелец послушался и потом не раскаивался в том, что доверился русскому ученому. Стоило уменьшить лопасти винта, и пароход стал давать скорость на несколько узлов больше. Оказывается, диаметр винта был подобран неправильно.
– Как вы могли так искусно определить болезнь моего судна? – спросил изумленный судовладелец.
– Я тридцать два года читаю «Теорию корабля» в Морской Академии в Ленинграде! – просто ответил Крылов.
Конструкторы много трудятся над тем, чтобы улучшить работу винта и этим увеличить скорость парохода без повышения мощности двигателя. Они пытаются создать и такие суда, где можно обойтись вообще без гребных винтов, колес и даже без рулей.
Вот какую картину можно было наблюдать однажды на реке Ман, южнее Красноярска. Тишину реки нарушил рокот мотора. Из-за поворота показался небольшой катер. Неожиданно ему преградило дорогу препятствие – нагромождение бревен. Но катер не остановился и не свернул. Подминая с полного хода под себя бревна, он вошел в самую гущу затора.

Катер вошел в самую гущу затора.
При таких условиях плавания у любого судна обязательно бы разлетелся вдребезги винт и он потерял бы всякую возможность двигаться и управляться. Но в том-то и дело, что у катера винта не было. Не было у него и машины с валами и руля. Вместо всего этого катер имел только мощный насос.
Этот насос через приемные отверстия в днище втягивает воду, а затем с огромной силой выталкивает ее через корму, а катер получает движение вперед. Такая установка называется водометной или реактивной.
Конструкторы создают и такие устройства, которые помогают небольшим винтовым судам развивать необычайно высокую скорость.
К таким устройствам относятся, например, подводные крылья. На заводе «Красное Сормово» в Горьком уже построен катер «Ракета». У него под корпусом два несущих крыла. На малой скорости хода такой катер движется как обычное судно. Но вот скорость катера увеличивается до 30 километров в час. Большей скорости из этого винта, казалось бы, выжать нельзя. Но тут и вступают в действие подводные крылья. Они, как крылья самолета, создают подъемную силу и выталкивают корпус катера из воды. Он как бы повисает над поверхностью воды. Погруженными в воду остаются только крылья, гребной винт и руль.
Благодаря этому сопротивление воды движению катера резко уменьшается, а скорость его увеличивается со сказочной быстротой: шестьдесят… восемьдесят… сто километров в час. Стремительно проносится катер вдоль живописных берегов.

Крылатый катер стремительно проносится мимо.
Инженеры считают допустимым создание и морских судов с подводными крыльями. Возможно, пройдет несколько лет, и на океанских просторах будут мчаться со скоростью 100 километров в час и более пассажирские экспрессы. Люди будут пересекать Атлантический океан самое большее за два дня.
Интересно напомнить, что переход через океан на парусных судах XV века совершался за 70 дней; первый пароход затратил на это 26 дней, а построенный в 1952 году лайнер «Юнайтед Стейтс» такой переход делает за 3 дня и 15 часов. Это огромный корабль длиною в 302 метра. 160 000 лошадиных сил его двигателей вращают четыре винта.
Но мы уже знаем, что паровая машина такой мощности обеспечить не может. Возникает вопрос: какие же там стоят двигатели?
Оказывается, на нем, как и на всех особо мощных и быстроходных боевых и транспортных судах, стоят не поршневые паровые машины, а паровые турбины.
Еще совсем недавно паровые турбины казались чудом современной техники. Давайте посмотрим, что это такое.
Пароход – турбоход
На протяжении всего XIX века изобретатели упорно, но безуспешно работали над тем, чтобы добиться возможно большей мощности от паровой машины. Это надо было сделать для того, чтобы крупные пароходы могли ходить с высокой скоростью. Рост кораблей обгонял возможности паровой машины. Все эти старания не дали нужных результатов.
Однако в конце концов кораблестроители выяснили, что этой цели можно достигнуть только в том случае, если соорудить паровую машину таких размеров, что она займет весь пароход.
Ясно, что на такой путь увеличения мощности машины становиться было нельзя.
Дело в том, что работа пара в самых лучших машинах используется всего на одну пятую его энергии. Поэтому-то и нельзя было добиться даже от самой, казалось бы, большой машины мощности больше 5000 лошадиных сил.
Мы уже знаем, что пар поступает в цилиндр машины через золотники. Поступает отдельными порциями. Поэтому поршень цилиндра получает от расширяющегося пара не непрерывный нажим, а отдельные толчки.
Кроме того, из-за малой высоты цилиндра каждая порция пара действует очень незначительное время. Да и скорость перемещения поршня в цилиндре при этом невелика – не более 5–7 метров в секунду.
Если ставить очень высокий цилиндр, чтобы пар поработал, разгоняя поршень, подольше, то опять придется увеличивать размеры машинного отделения и всего парохода в целом.
Вот хорошо бы иметь такой двигатель, в котором пар действовал бы равномерно в течение всего времени работы этого двигателя! Да и двигался бы побыстрее. Тогда мощность двигателя неизмеримо повысилась бы.
Такой двигатель с постоянно действующим паром, названный паровой турбиной, был создан в конце прошлого столетия. В этом двигателе, делающем несколько тысяч оборотов в минуту, пар мчится в 40 раз быстрее, чем в паровой машине.
Так что назвали его турбиной не случайно: по-латыни «турбо» означает «вихрь». И что интересно: проект турбины одновременно разработали два человека, совершенно не знавшие друг друга. Это были шведский инженер Г. Лаваль и англичанин Ч. Парсонс.
Моряки рассказывают такую историю. В 1897 году на Дуврском рейде для торжественного парада по случаю юбилея королевы Виктории выстроился английский флот. Могучие броненосцы и стремительные крейсеры замерли в ожидании яхты королевы. Все было наготове.
И вдруг вместо королевской яхты откуда-то вынырнуло и с невероятной скоростью промчалось перед строем небольшое узенькое суденышко.
Самый быстроходный сторожевик бросился в погоню за нарушителем порядка. Но куда там! Успели только прочитать надпись на корме – «Турбиния». Скорость хода этого судна была в полтора раза выше, чем скорость лучших морских ходоков мира.
Вот поэтому-то строителя и владельца судна не только не отдали под суд «за безобразие на рейде», но наоборот – очень любезно пригласили в Адмиралтейство.
Строителем оказался инженер Парсонс. На своем судне он впервые в мире применил паровую турбину.
Пар в турбине работает совсем иначе, чем в паровой машине. Если направить сильную струю пара, вытекающего из конической трубки – сопла, в криволинейный канал, то эта струя, протекая по каналу, будет давить на его вогнутую стенку больше, чем на выпуклую. На этом простом свойстве и основано действие пара в турбине. Пар из нескольких сопел под большим давлением устремляется на криволинейные лопатки, закрепленные по окружности колеса и вращает его примерно так же, как вода мельничные колеса.
У турбины две основные части: одна неподвижная, называемая корпусом, или статором, и другая подвижная – это диск, или ротор, который может вращаться. К внутренней стенке статора прикреплено множество направляющих лопаток. Обод ротора также усеян сотнями и даже тысячами рабочих лопаток особой формы. Они изогнуты в сторону, противоположную изгибу направляющих лопаток. Промежутки между рабочими лопатками и есть те криволинейные каналы, куда поступает с направляющих лопаток пар. Давление пара на рабочие лопатки заставляет вращаться ротор турбины. Так работает одноступенчатая паровая турбина. Ее и изобрел шведский инженер Лаваль.

Так работает одноступенчатая турбина. 1 – подвод пара от котла; 2 – направляющие лопатки (сопла); 3 – рабочие лопатки; 4 – диск (ротор), на котором закреплены рабочие лопатки; 5 – вал; 6 – выпускной патрубок; 7 – конденсатор; 8 – подача холодной воды, 9 – охлаждающие пар трубки; 10 – отвод воды охлаждения; 11 – отвод конденсата.
Но такая турбина не нашла распространения и в конце концов уступила место другим, более совершенным.
Произошло примерно то же, что и с паровой машиной, у которой стали делать несколько цилиндров.
Дело в том, что одноступенчатая турбина не могла иметь хорошего коэффициента полезного действия. Такой коэффициент в первую очередь зависит от того, с какой температурой и с каким давлением пар начинает и кончает свою работу. Оказывается, чем больше начальное давление и температура и чем ниже давление и температура пара, покидающего турбину, тем больше механической энергии для вращения ротора он дает. У современных судовых турбин пар входит в направляющие лопатки с температурой до 450 °C и давлением в 65 атмосфер и выше. Давление пара в конце его работы зависит от того, насколько разрежен воздух в конденсаторе турбины. А давление в конденсаторе в 15–20 раз меньше атмосферного. Чтобы довести расширяющийся пар с давления в 65 атмосфер до такого ничтожного давления в конденсаторе, пришлось бы строить турбину огромных размеров. Поэтому современную турбину делают не одноступенчатой, а многоступенчатой. Такую турбину впервые и создал Парсонс. В многоступенчатой турбине огромное количество тепла от пара теряется не сразу, а постепенно, – в последовательно расположенных ступенях. Как же это происходит?
Многоступенчатая турбина состоит из двух и даже трех корпусов. Первый по ходу пара корпус называют турбиной высокого давления, следующий – турбиной среднего давления и последний – турбиной низкого давления. И внутри каждого корпуса не один, а много дисков с лопатками. Например, у турбины высокого давления их бывает до двенадцати. Диски отделены друг от друга перегородками – диафрагмами, – в которых расположены направляющие лопатки. Поступая в турбину высокого давления, пар расширяется в направляющих лопатках и, приобретая значительную скорость, идет на рабочие лопатки первого диска; затем – в направляющие лопатки следующей диафрагмы, расширяется в них, снова набирает скорость и опять идет на рабочие лопатки следующего – второго – диска, и так далее. Потом, совершив работу в первом корпусе, пар последовательно переходит в турбину среднего давления, а из нее – в турбину низкого давления, проделывая там такую же работу. Здесь давление пара уменьшается постепенно, и в каждом корпусе пар совершает полезную работу. Так, в турбину высокого давления он входит с давлением в 65 атмосфер, в турбину среднего давления—15 атмосфер, а в турбину низкого давления он поступает с совсем небольшим давлением – не более 2,5 атмосферы. На каждой ступени объем пара с уменьшением давления растет. Поэтому размеры направляющих и рабочих лопаток увеличиваются от ступени к ступени. Значит, растут в своих размерах и диски. Последние диски турбины низкого давления очень большие.
Многоступенчатое устройство турбин и позволило сооружать их такой мощности, о которой не могли даже и мечтать в начале нашего столетия. Теперь мощность судовой турбины достигает 75 000 лошадиных сил.

Турбина с зубчатым редуктором вращает винт парохода. 1 – котел: 2 – турбина высокого давления; 3 – турбина низкого давления; 4 – турбина заднего хода (на одном валу с турбиной низкого давления); 5 – главный паропровод; 6 – зубчатый редуктор; 7 – конденсатор; 8 – подача забортной воды для конденсатора, 9 – циркуляционный насос; 10 – отвод забортной воды; 11 – вспомогательные турбонасосы; 12 – упорный подшипник; 13 и 14 – промежуточные валы; 15 – гребной винт; 16 – руль; 17 – машинный люк; 18 – дымовая труба.
Для заднего хода судна имеется особая турбина.
Прежде турбины ставили главным образом на быстроходных военных кораблях и больших трансатлантических экспрессах – лайнерах. Теперь их начинают применять и на обычных торговых судах. На одном из судостроительных заводов нашей страны приступают к постройке торговых судов (грузоподъемностью в 10 000 тонн), на которых будет установлена двухкорпусная турбина мощностью в 13 000 лошадиных сил. Она будет сообщать судну очень высокую скорость – 18,5 узла.
Паровая турбина – быстроходный механизм. Ее вал вращается со скоростью нескольких тысяч оборотов в минуту. Что же получится при вращении гребного винта с такой скоростью? Получится бесполезная работа, так как лопасти винта будут только разбрасывать воду по сторонам, образуя вокруг себя пустоту. Тут уже не будет давления винта на упорный подшипник, а значит, и пароход не будет двигаться.
Именно так сначала и произошло на «Турбинии». Долго Парсонс ничего не мог понять: мощная турбина вращала гребной винт с бешеной скоростью – 2000 оборотов в минуту, а судно двигалось еле-еле.
Три года мучался Парсонс, переменил десять винтов на «Турбинии», пока не выяснил, что гребной винт, для вращения которого и служит турбина, не должен вращаться с такой скоростью. Для хорошей его работы нужна скорость вращения не более 250 оборотов. Как же быть в таком случае? Как заставить быстроходную турбину вращать винт с нужной неторопливостью? Для этого придумали соединять вал турбины с судовым валопроводом при помощи специальной зубчатой передачи – редуктора.
Конечно, все вы видели лебедку для подъема или перетаскивания тяжелых грузов. У такой лебедки два зубчатых колеса, сцепленных друг с другом. Диаметр того колеса, что ближе к рукоятке лебедки, в несколько раз меньше другого. Применение таких колес дает большой выигрыш в силе. При вращении рукоятки предмет поднимают или тащат легко, но зато очень медленно. Примерно то же самое получается и с редуктором. Его зубчатые колеса соединяют вал турбины с судовым валопроводом, а через него – с гребным винтом. Размеры колес подобраны таким образом, что судовой валопровод и гребной винт вращаются во много раз медленнее вала быстроходной турбины. В последнее время очень часто вместо такого редуктора применяют электрическую передачу. Тут зубчатые колеса заменяются электрическим током. Ток подают тихоходному двигателю, и он спокойно вращает гребной винт с той скоростью, какая нужна. Суда с электрической передачей от турбины к гребному винту называют турбоэлектроходами, в отличие от дизель-электроходов, на которых электропередача передает на валы работу дизелей. Суда с дизельными установками называют теплоходами.







