355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Амосов » Алгоритмы разума » Текст книги (страница 16)
Алгоритмы разума
  • Текст добавлен: 12 октября 2016, 03:38

Текст книги "Алгоритмы разума"


Автор книги: Николай Амосов


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 16 (всего у книги 17 страниц)

Метод эвристического моделирования

Принцип метода состоит в том, что создается математическая модель объекта на основании описательной гипотезы о его структуре и функциях с использованием имеющихся в литературе количественных данных и добавлением недостающих путем предположений, построенных исходя из гипотезы и качественных сведений. Естественно спросить: зачем нужна такая модель и чем она лучше словесного описания. Конечно, она не является реальной моделью. Однако создание ее имеет смысл и представляется мне неизбежным этапом на пути построения реальной модели. Значение эвристической модели в следующем :

а) она требует формулирования более или менее непротиворечивой гипотезы. Противоречия неизбежно вскрываются, когда при построении модели слова приходится заменять цифрами, а также при дальнейшем исследовании готовой модели. Важно, чтобы она вела себя адекватно объекту по возможности в широком диапазоне режимов;

б) создается язык будущей реальной модели;

в) модель четко формулирует задачи для экспериментов: нужно получить определенную количественную информацию для уточнения наиболее спорных мест;

г) по мере получения новых экспериментальных данных гипотетическая модель приближается к реальной;

д) модель можно исследовать вместо объекта, и она позволяет предположить его новые свойства;

е) наконец, ее можно использовать для управления объектом в тех пределах ее деятельности, где она достаточно точно совпадает с объектом.

Конечно, значимость отдельных пунктов меняется в зависимости от объекта.

Для создания эвристической модели предлагается типовой план:

1. Формирование цели работы или назначения модели: например, как этап в изучении объекта, как инструмент управления, для отработки языка, для проектирования экспериментов и пр. От цели зависит все последующее.

2. Выбор уровня модели. Все сложные системы построены по иерархическому принципу. Степень обобщенности модели определяется тем нижним структурным уровнем, начиная с которого модель должна воспроизводить объект. Уровень определяется назначением модели, наличной информацией и возможностями ее переработки. Для управления достаточны высокие уровни, для создания новой системы и ее изучения желательны, по возможности, низкие уровни. Пример: для понимания механизмов рака нужно моделировать организм с уровня макромолекул, а для управления кровообращением достаточно начинать с уровня органов.

3. Формирование качественной гипотезы о структуре и функциях объекта в пределах, ограниченных целями. Обычно приходится выбирать между несколькими противоречащими друг другу гипотезами. Первый выбор определяется общей точкой зрения авторов. В последующей работе гипотеза подвергается изменениям, если возникают непримиримые противоречия.

4. Построение блок-схемы объекта. Элементы, подсистемы и связи определяются гипотезой и выбранным нижним уровнем структур.

5. Выбор значимых переменных (ограничение числа связей). Сначала определяются все известные переменные для каждого из элементов, потом выбираются, согласно гипотезе, значимые с учетом поставленной задачи. Таким образом, уточняются связи и строится структурная схема объекта, которая становится основой модели.

6. Установление по тем же принципам внешних «входов» системы – сначала определяются все внешние воздействия, потом из них выбираются значимые для сформулированных целей. Устанавливаются граничные условия.

7. Установление характеристик элементов, то есть зависимостей «входы» – «выходы» и «время». Это наиболее произвольный и сложный этап работы, так как данные литературы либо противоречивы, либо недостаточны, либо вообще отсутствуют. Статические и динамические характеристики каждого элемента могут быть выражены графиками, алгебраическими или дифференциальными уравнениями, их системами.

8. Отладка модели. Задаются начальные внешние условия, исходное состояние элементов и производится «увязка» всех характеристик. При этом производится согласование «входов» и «выходов» как целой системы, так и ее элементов. В ходе такой работы обнаруживается противоречивость характеристик некоторых элементов при крайних режимах, требующая коррекций. Иногда возникает и полная невозможность сбалансировать модель, указывающая на непригодность принятой гипотезы. Отладка производится для нескольких граничных условий. Для сложной системы «типа живых» принципиально невозможно создать идеальную модель, так как нельзя повторить все ее низшие уровни.

9. Исследование модели, то есть просчитывание многочисленных статических и динамических режимов, что осуществимо только при использовании вычислительных машин. Сначала нужно создать и отладить программу, что обычно требует некоторых коррекций в самой модели, прежде всего исправления характеристик элементов (например, приведения их к линейным). Само исследование уже позволяет получить новую информацию об объекте, предположить неизвестные дотоле качества.

10. Верификация модели – сравнение характеристики модели и объекта при одинаковых условиях, с целью определения достоверности модели и особенно границы ее применимости.

Эвристические модели некоторых сложных систем

В отделе биокибернетики Института кибернетики АН УССР за последние годы была проделана большая работа по созданию эвристических моделей. Описание каждой из них потребовало бы специальной главы; сведения о них опубликованы, поэтому я ограничусь лишь перечислением. Наиболее значительными были модели искусственного интеллекта, но об этом уже шла речь.

Следующей работой является «Модель личности», призванная воспроизвести поведение человека в самом обобщенном виде, что необходимо для создания моделей социальных систем. «Выходы» модели состоят из двух разделов:

а) напряжение и продолжительность основных видов деятельности или распределение труда и времени – на работу, дом, общение, развлечения, информацию, отдых;

б) высказывания и поступки «за» и «против» по отношению к семье, коллективу, обществу, своей и другим социальным группам.

«Входы» представлены воздействиями общества в виде различного рода шкал «платы» со знаком « + » или «—», направленными на удовлетворение основных биологических и социальных потребностей личности. Стимулами деятельности являются чувства – производные удовлетворения потребностей, которые в свою очередь представляют собой функцию интенсивности труда и шкалы «платы» за него. В зависимости от врожденной и воспитанной активности потребностейчувств, шкал «платы» и труда частные чувства изменяются в пределах некоторых величин от НПр до Пр. Сумма чувств составляет вместе уровень душевного комфорта, который и является главным показателем субъективного состояния. Таким образом, модель личности связывает общество с его моральными и материальными шкалами «платы» за деятельность, с психикой человека и его трудом. В свою очередь сами шкалы являются функцией труда граждан, уровня развития техники и совершенства общественного устройства, основанного на определенной идеологии.

Модели обобщенных личностей социальных групп могут служить базой для построения «Модели общества». Эта работа начинается в отделе биокибернетики Института кибернетики АН УССР.

Нами использован принцип эвристического моделирования и в сфере физиологии, при создании «Модели внутренней сферы» организма, воспроизводящей взаимоотношение органов между собой, с нервными и эндокринными регуляторами. Практически это означало моделирование кровообращения, дыхания, водного, солевого и энергетического обмена и терморегуляции. В первую очередь модель отрабатывала норму – физические нагрузки разной интенсивности при неодинаковой внешней температуре. Эта работа проделана, и получены удовлетворительные совпадения с опытом. Главной целью остается моделирование патологических состояний с тем, чтобы в практике использовать модель для управления лечением больных с острыми расстройствами в результате травм, операций, инфарктов и пр. Такая модель представит высший этап медицинской кибернетики, воспроизводящей не статистику болезней, как делается до сих пор, а физиологические механизмы нормальных и патологических процессов. Она может претендовать на определенный уровень теории физиологии. В качестве низшего уровня структур приняты органы, а клеточные механизмы учтены в обобщенном виде в характеристиках органов. Конечно, такая модель пригодна только для описания органной физиологии и не может объяснить, например, механизмы рака или склероза.

Я не буду подробно обсуждать математические проблемы эвристических моделей и ограничусь лишь кратким перечислением условий, связанных с их спецификой.

1. Много переменных. Количество их определяется назначением модели и наличием данных. Так, для физиологических моделей, больше других претендующих на приближение к реальным, количество переменных составляет несколько сотен, поскольку для дальнейшего увеличения их числа просто нет достоверной информации (например, чтобы «спуститься» с уровня органов на молекулярный). Модели интеллекта не рассчитаны на воспроизведение процессов в мозге, но количество «слов», которыми необходимо манипулировать доказательно, чтобы смоделировать мышление человека, видимо, должно исчисляться многими тысячами. Напротив, модель личности можно ограничить сотнями переменных, так как она по своему назначению предполагает высокую обобщенность и связана с ограниченными возможностями лабораторной оценки психики. Другое дело – общественные системы. Их объем, видимо, должен быть весьма велик.

2. Сложные системы иерархичны по своей структуре, содержат множество «горизонтальных» связей в пределах уровня и «вертикальных» – между ними. Переменные на разных уровнях имеют разную специфику и временные характеристики. Все это должно быть представлено в модели, иногда при помощи и дополнительных переменных, отражающих качество основных.

3. Как правило, характеристики элементов нелинейны. Степени их нелинейности крайне различны, и некоторые точки кривых целесообразно выражать «скачками» (или логическими переключениями), отражающими дискретность в деятельности систем. Примером является переключение СУТ.

4. Необходимость обобщать переменные, то есть заменять несколько конкретных переменных одной обобщенной (условной), является неизбежной при моделировании. Нужны специальные правила, описывающие, что можно, а что нельзя объединять. По всей вероятности, они должны основываться на корреляциях показателей.

5. В эвристических моделях нет необходимости в точности вычислений, поскольку ее нет в экспериментальных науках, изучающих моделируемые объекты. Это очень важное условие, так как оно позволяет отказаться от сложных математических описаний. Так, например, можно отказаться в ряде случаев от дифференциальных уравнений в пользу алгебраических и динамику систем рассчитывать по временным тактам. Нелинейные характеристики можно заменять кусочно-линейными.

6. Модели должны предусматривать вероятностные расчеты. Поскольку в системах-объектах очень много неизвестного, то неизбежно несколько вариантов допущений, существенно влияющих на поведение системы. Так, например, в модели внутренней сферы, призванной воспроизводить динамику развития болезни, подобные варианты совершенно необходимы. То же касается моделей общества. Иное дело – искусственный интеллект, который можно создать строго детерминированным.

7. Специфика метода эвристического моделирования предъявляет свои условия к программированию моделей на ЦВМ. Программы должны быть гибкими, блочными, позволять произвольно изменять любую величину, любую характеристику. Это необходимо для процесса создания самой модели. Задача разработчика программы не ограничивается воспроизведением заданных формул и цифр, часто приходится их заново создавать и вносить поправки в ходе отладки модели, с тем чтобы получить некоторые предполагаемые по гипотезе конечные «выходы».

Создание эвристических моделей – творческая работа коллектива специалистов в данной области науки и математиков. Те и другие должны проникнуться общими идеями и достигнуть полного взаимопонимания. Роль ведущего в группе определяется не специальностью, а способностью широко охватить предмет и создавать гипотезы. Конечно, нужны также работникиэрудиты, хорошо ориентирующиеся в массе имеющихся фактических данных, программисты, кропотливо отлаживающие сложные программы и готовые в любой момент переделывать их заново в связи с изменением гипотезы.

Эвристические модели приближают нас к теории систем «типа живых», позволяя прогнозировать их поведение, исследовать возможности управления и даже реконструкции. Более того, эвристические модели обещают совершенно новый аппарат познания. Такие модели систем «типа живых» составляют основу для построения в будущем реальных моделей, призванных заменить традиционные книжные модели нашей науки. Разработка эвристических моделей интересна сама по себе, поскольку удовлетворяет чувство любознательности. В самом деле, что может быть заманчивее, чем попытаться заглянуть в механизм работы клетки, целого организма или понаблюдать поведение человека с заданными генами.

Разумеется, реальные модели систем «типа живых» такой сложности, чтобы по ним можно было создавать новые объекты и даже реконструировать их,– дело далекого будущего. Однако искусственный интеллект выше человеческого разума отстоит во времени, пожалуй, еще дальше.

Мне представляется, что для сложных объектов будет целая система действующих моделей – полных, разной степени обобщенности, и частных, в которых воспроизведены детали. Модели эти отразят разные уровни структурной иерархии. Например, можно представить себе действующую модель организма как целого – с его «входами» извне и «выходами» в виде поступков. Наша обобщенная модель личности примерно соответствует этому понятию. Мыслима действующая модель организма на уровне органов – это наша модель внутренней сферы в самом первом приближении. Конечно, в биологии главной должна быть действующая модель клетки как самого низкого структурного уровня, на котором и осуществляются все биологические процессы. Они еще недоступны.

Как бы ни были сложны модели, они никогда не могут стать копией живой клетки или организма, даже если для копирования будут использованы гены данного живого существа. Поэтому модели будут всегда лишь вероятностными. Для того чтобы использовать такие модели в целях управления, придется их «привязывать» или «настраивать» на объект, но и в этом случае возможно лишь вероятностное управление с коррекцией эффекта обратными связями. Это примерно то же, что делает человеческий разум в процессе любого функционального акта. Разница лишь в степени сложности управляемых объектов и в вероятности эффекта управления.

Действующие модели – аппарат внешней памяти будущего. Они должны заменить библиотеки книг. Однако это не имеет прямого отношения к проблеме интеллекта.

Искусственный интеллект выше человеческого разума

Каким можно представить себе такой искусственный интеллект.

Уже говорилось, что мыслимы различные интеллекты – неодинаковой «мощности» и направленности. Направленность я представляю как градации от универсального к специализированному интеллекту. Разница выражается прежде всего в критериях. Универсальный интеллект создается по типу человеческого: он отражает потребности «тела», разума, среды, в том числе среды социальной – общества, при значительной самоорганизации в смысле возможности самовоспитания. Специализированный направлен на оптимальное управление определенной сложной системой, и его главные критерии диктуются именно ею. «Личные» качества нужно ограничить, так же как и «воспитуемость». Подобный интеллект наиболее приближается к традиционному понятию робота. Например, он сможет присматривать за маленьким ребенком. Искусственный интеллект такого направления при высоком уровне сознания должен быть личностью, поскольку ему придется общаться с людьми. Однако требование преимущества главной потребности – стремления к «благу» управляемого сложного объекта – должно оставаться непреложным. Здесь вступает в силу главный «закон робототехники»: не вредить людям. Сомнительно лишь, возможно ли его соблюсти, поскольку высокий уровень ИИ предусматривает творчество и способность к перевоплощению, Он должен уметь создавать новые методы управления в связи с изменением объекта и обстановки. Не придумает ли он и новые убеждения. Можно ли найти ограничители, способные удержать его в положении специалиста-служаки, живущего одними только интересами дела.

Универсальный интеллект высокого уровня подобен очень умному человеку. Думаю, что у него должен быть тот же принцип действия: сознание, подсознание через СУТ, обобщение моделей разного уровня, ФА. Реализация всего этого зависит от технологии. От того, будет ли это чисто алгоритмический интеллект или в него заложат элементы сетевого интеллекта на физических элементах, зависит многое.

Важнейший вопрос – выбор потребностей (критериев, чувств); видимо, нужен такой же набор их, как и у человека. Вся трудность – в выборе характеристик, значимости, в определении возможности ограничений и воспитуемости. При высоком уровне сознания убеждения приобретают главенствующее значение, однако «врожденные» потребности в большой степени их направляют. Сразу возникает сомнение: а не будет ли ИИ способен регулировать характеристики этих «врожденных» потребностей. Человек не может этого делать, и воспитуемость его в зрелом возрасте весьма ограничена. Но у ИИ будут другие возможности! Этот вопрос об ограничителях, иными словами, та же модифицированная «робототехника» остается самым важным.

Не буду останавливаться на «характере» ИИ, он связан с теми же проблемами характеристик.

Речь у ИИ, разумеется, будет представлена, причем в нескольких вариантах: одна – для общения с людьми и книгами, другая – для связей с подобными себе. Эта последняя система знаков может быть более совершенной и «технологической».

Творчество – вот главная цель создания искусственного интеллекта уровня выше человеческого разума. Как было сказано, простые программы создания новых моделей представляют собой перебор моделей низшего уровня по обобщенным моделям, которыми выражена задача. Успех такого «конструкторского» творчества определяется эрудицией – набором имеющихся в памяти моделей-деталей для обобщенных моделей. Для творчества высокого порядка характерно наличие только самых общих моделей, описывающих объект – будущую машину, которую нужно изобрести, или сложную систему, работу которой, например, нужно объяснить. Для этого приходится привлекать данные из других областей науки, с тем чтобы заполнять предположениями большие пробелы между «островками» отдельных фактов. Можно полагать, что ИИ высокого уровня в этом отношении превзойдет человеческий разум, поскольку у него будет больше знаний и совершенная система подпрограмм подсознательного поиска данных в разных областях науки. Я совсем не преуменьшаю трудности такого поиска даже при очень совершенной организации памяти, особенно если нужно собрать целую цепь моделей для создания гипотезы, объясняющей работу сложной системы. Тем не менее они преодолимы. При поиске нового человеку трудно выйти из узкого круга привычных истин просто потому, что это не позволяют хорошо натренированные модели и связи, которые и представляют собой данную область науки. Даже подсознательный поиск не помогает – за редким исключением гениев. Искусственный интеллект может себе позволить «раскованное мышление», и его творчество будет более эффективным. Впрочем, в этом таятся свои опасности, но не станем снова вдаваться в фантастику. Еще очень далеко до такого интеллекта!

Проект алгоритмической модели интеллекта

Как же практически подойти к построению алгоритмической модели. Согласно правилам эвристического моделирования прежде всего нужно определить ее назначение, выбрать цель. Смоделировать человеческий разум – это кажется столь же просто, сколь и невозможно. Нужен компромисс. Минимально доказательные человеческие качества интеллекта – это речь с перевоплощением в собеседника с образным и словесным мышлением, это третий уровень сознания – слежение за собственными мыслями. Наши предыдущие модели этих качеств не имели, попытки воспроизвести речевое (вербальное) поведение были, но они совершались в отрыве от других программ интеллекта.

Для того чтобы «вместить» эти многообещающие задачи в модель и достигнуть демонстративности, необходимо наметить ограничения. Прежде всего они определяются сюжетом. Я предполагаю воспользоваться привычным для нас путешествием по некоей искусственной среде, хотя можно было бы взять задачу моделирования другого вида деятельности, например работу врача по диагностике и лечению больного или строителя, создающего конструкции из элементов. Предполагается по сюжету, что «субъект» должен иметь главную цель – дойти по компасу и найти предмет – какие-нибудь «три дерева», чтобы обнаружить там «награду», «плату», действующую на чувство собственности. По пути он преодолевает умеренные трудности, выбирает маршрут, мобилизуя иерархию ФА, думает, используя внутреннюю речь, и периодически общается по радио с партнерами, к которым питает положительные чувства и в личности которых «перевоплощается». Важно, чтобы разнообразие «входов» среды было минимальным, чтобы число уровней усложнения объектов, за которыми следуют уровни обобщения моделей, было ограничено двумя-тремя. Например: модели-образы деревьев (ветки, листья, высокие, средние, низкие, густые, редкие) должны характеризовать лес.

Минимизация разнообразия должна касаться всех элементов модели. К примеру, такой минимум действий: идти – шагать – быстро, медленно, сидеть, есть, разговаривать, думать, вспоминать. Речь придется ограничить ответами на вопросы и, может быть, короткими рассказами.

Модели действий будут разбиты по степени обобщенности на несколько уровней. Наверху – обобщенные действия, которые соответствуют желаниям: «напрягаться» – «расслабиться», «двигаться» – «отдыхать», «самовыражаться» (в смысле «рассказывать») – «замкнуться», «устраняться», «избегать» – «сопротивляться» и т. п.

Первичных желаний будет немного. Так же придется ограничить и расшифровку желаний в конкретные действия – от обобщенных до детальных.

Восприятие будет ограничено условным рецептором зрения с минимальной настройкой по направлению, глубине и напряжению. То, что попадает в поле зрения, станет автоматически кодироваться цифровым шифром: «главная фигура» и «фон». Рецептор слуха будет действовать только для речи.

Чувства-потребности являются важнейшим элементом любого интеллекта. Минимальный их набор примерно такой: голод, боль, страх, любопытство, потребность действовать, утомление и скука, свобода, отношение (симпатия) к партнеру по разговору, самовыражение. Убеждения будут представлены долгом и волей: словесными формулами, диктующими, как нужно поступать в тех или иных случаях. Разумеется, будут универсальные чувства Пр – НПр, которые и являются главным критерием для выбора действия из нескольких возможных вариантов. Их соотношение определяет уровень душевного комфорта. Эмоции мне представляются как крайнее выражение чувств: радость – при самом высоком уровне Пр, горе – при самом высоком уровне НПр. Гнев, агрессивность – это ответ на угрозу, на ограничение свободы. Страх, ужас – пассивная эмоция как ответ на подавляющую угрозу. Каждая эмоция имеет свое желание – обобщенное действие. Гнев, например, вызывает желание оказать сопротивление источнику угрозы. Вопрос об эмоциях требует еще дополнительной проработки. Характер вырисуется в соотношениях Пр – НПр и характеристиках чувств и СУТ.

Кроме перечисленных чувств, будут еще дополнительные критерии, о которых уже шла речь. Первый критерий – обобщенность модели, находящейся в сознании, второй, используемый при сравнении моделей,– вероятность, третий – коэффициент времени для оценки значимости будущих событий и четвертый – реальность.

Человек, личность имеет прошлое, оно постоянно присутствует в настоящем. Биографию придется придать и нашему «субъекту». Пока трудно определить ее объем, но он должен быть минимально необходимым.

Ограничения по времени выразятся в продолжительности временного такта – что-нибудь около 5– 10 секунд реального времени. Длительность исследования модели, то есть путь, который будет пройден по местности-карте, будет целиком зависеть от возможностей программ, компьютеров и настойчивости экспериментатора. Отрезок времени должен дать доказательную информацию о «человекоподобии» модели.

Схема интеллекта в самом общем виде показана на рис. 4, 21. Поскольку это алгоритм, а не сеть, то отражать на схеме связи, видимо, нет смысла, так как получится многомерная структура. При создании модели она понадобится, но будет столь сложна, что окажется непригодной для восприятия. Тем не менее нужна какая-то систематизация. Поэтому модели, выполняющие одинаковые функции, придется объединить в сферы, которые явятся в то же время и «координатами» сознания. Примерный перечень сфер таков:

1. «Входы» – модели объектов среды.

2. «Выходы» – модели действий. Сюда войдут и модели настройки рецептора.

3. Чувства – модели всех перечисленных критериев, кроме последней группы дополнительных. Каждое чувство должно иметь свой отдел в сфере.

4. Модель самого себя и отношений к среде. Складывается из ощущений, получаемых с различных следящих систем – с рецепторов, воспринимающих внешнюю среду, с рецепторов «тела», дающих некоторые чувства, со следящей системы, регистрирующей переключения СУТ, то есть наблюдающей за своими действиями и моделями.

б. Комплекс моделей собеседника с его чувствами, действиями и предполагаемыми мыслями, то есть то, что реализует программу перевоплощения. Сочетание этой сферы с предыдущей составят «чувства сопереживания» – компоненты собственных чувств, вызванных чувствами собеседника.

6. Независимая координата времени. Она должна иметь свои модели и свою сферу. Ее разделы – настоящее, прошедшее, будущее.

7. Отдельная сфера для критериев вероятности, реальности, обобщенности. Это важные критерии – координаты для любой «вещественной» модели.

8. Сфера программ переключения этапов функционального акта. Ее модели осуществляют слежение за выполнением алгоритма и этапов ФА – восприятие, анализ, планирование, решение, действия.

Думаю, что не нужна отдельная сфера «речь», просто потому что модели слов будут содержаться в каждой сфере в качестве отдельного кода, наряду с моделями-образами.

Сферы в то же время предполагают определенную организацию памяти, как кратковременной, так и внешней. Но сначала поговорим о «кирпичиках» памяти – элементарных моделях. Мне представляется, что для модели данного интеллекта нужно задать «словарь слов», то есть перечень элементарных моделей – понятий, образов и слов речи – для каждой сферы, с делением их по степени обобщенности. Иначе говоря, создать иерархически построенную систему моделей. Приблизительная прикидка такой системы приведена для сферы «выходы – действия». Индекс степени обобщенности должен присутствовать в модели (рис. 42). Модель низкого уровня (детальная) следует снабдить адресом, указывающим на принадлежность ее к более высокому классу понятий.

Модель «шагать с усилием» должна включать цифры, указывающие, что это значит «идти», что это «движение», «действие». Обобщенная по классу I модель «действие» предполагает «вакантные» места для понятий следующего уровня обобщенности – как бы адреса соответствующих моделей.


Рис. 42. Система моделей «Выходы».

Таким же образом строятся системы моделей для понятия «предметы» (имеется в виду внешняя среда). В подробности сейчас я не вдаюсь просто потому, что работа над моделью только начата и все еще очень неопределенно.

Элементарные модели разной степени обобщенности составляют «словари слов» в каждой сфере. Однако основой мышления являются не «слова», а «фразы», причем «фразы» короткие, не более трех слов. «Словари фраз» могут составляться из «слов» данной сферы, например между моделями разных уровней обобщенности («движение» – «лежать», «движение» – «сидеть» или, наоборот, «идти» – «движение»). То же относится к соединению моделей-образов с моделями слов речи (образ камня и слово «камень»).

Однако самые важные «фразы» объединяют «слова», принадлежащие к разным сферам, например «предмет – чувство» или «чувство – действие». Видимо, между каждыми двумя сферами должно существовать пограничное поле, наполненное такими «фразами» поскольку связи между ними имеют одностороннюю направленность. Мало того, при связях должен еще быть «коэффициент проходимости», указывающий на степень сродства двух понятий. Можно представить себе довольно много «словарей фраз» и еще большее число возможных сочетаний «слов» во «фразах». В этом заключается вся трудность: придется ограничивать число «слов», иначе модель быстро сделается необозримой.

Внешняя память вся представлена «словарями фраз», составленными так, что на первом месте стоят наиболее употребительные, на последнем – редко встречающиеся «фразы».

Мне трудно сейчас определить состав кратковременной или оперативной памяти. В ней должны находиться модели, являющиеся «координатами» сознания. Это прежде всего модели из каждой сферы, поскольку здесь представлено слежение, осуществляемое всеми типами рецепторов. Зрение определяет «субъекта» в пространстве, «служба времени» отмечает, какое сейчас время, рецепторы «тела» говорят об ощущениях и чувствах, так же как рецепторы самого интеллекта – например следящие за переключением сознания. В оперативной памяти каждой сферы будет сколько-то активных моделей, которые получены рецепторами от объектов своего слежения. Чем более активная сфера, то есть чем более напряжен соответствующий рецептор, тем больше будет моделей, тем они будут активнее. «Старые» модели станут частью забываться, частью переводиться во внешнюю память в том случае, если они долго хранились в оперативной памяти и повторно привлекались в сознание. Другим источником моделей для оперативной памяти является память внешняя. По алгоритму ФА будут извлекаться модели – «фраза» по их первому «слову» для вспоминания, сравнения, прогнозирования. Подробности этого механизма еще не прояснились.

Расчет активности моделей в оперативной памяти является важнейшей операцией алгоритмического интеллекта, поскольку активность моделей определяет движение сознания. Параметры активности всех моделей оперативной памяти пересчитываются в каждый такт времени. Для расчета служат характеристики – статические и динамические, по типу показанных на рис. 6 и 7. Самым трудным явится расчет циркуляции энергии по связям между моделями оперативной памяти, от которого зависит их активность. Все подсознание зиждется на таком расчете. По всей вероятности, для этого придется привлекать коэффициенты проходимости связей, зафиксированные в «словарях фраз» внешней памяти. Например, если в оперативной памяти есть слово «волк» и чувство «страх», введенные из разных источников, то они будут влиять друг на друга по принципу: более активное слово – на менее активное, а степень влияния определится коэффициентом связи.


    Ваша оценка произведения:

Популярные книги за неделю