Текст книги "Алгоритмы разума"
Автор книги: Николай Амосов
Жанр:
Философия
сообщить о нарушении
Текущая страница: 7 (всего у книги 17 страниц)
Такты деятельности и напряжение
Видимо, любой интеллект, даже сугубо сетевой разум человека, работает дискретно. О человеке разговор особый, а для АИ такты деятельности – обязательное условие. Для него «один такт» нужно понимать как действие по введению в кратковременную память одной новой модели или повторное активирование модели, уже бывшей в памяти. В каждый момент времени имеется одна самая возбужденная, самая активная модель. Как правило, она должна состоять из «слова» или короткой «фразы» —дватри, но не больше четырех «слов».
Рис. 26. Цепочка действий Д с моделями М.
На рис. 26 показано, как осуществляются действия с моделями. Каждая следующая модель выбирается в результате элементарного действия, с учетом связей с предыдущими моделями, возможно, в пределах нескольких тактов. Стимул нужен для действий, но он же определяет уровень активности выбранной модели, заставляя ее генерировать энергию согласно ее характеристике «вход» – «выход», в которой учтена тренированность. На «входе» учитываются энергия стимула и других моделей (так, например, для М2 не только от Д2, но и от М1).
Как отмечалось выше, действия с моделями могут иметь различный характер. Модель действий – это часть программы, и в ней тоже можно выделить иерархию: от «действий вообще» в данном направлении до конкретного действия с одной моделью (например, целая последовательность сравнений). Здесь следует ввести понятие «напряжение» как некоторый уровень активности, средний для определенного периода деятельности интеллекта. Напряжение определяется прежде всего активностью чувств или уровнем потребности, стимулом. Уже говорилось, что значимость потребностей различная: одни «жизненно необходимы» (например, страх в минуту опасности), другие (к примеру, любознательность) несут вспомогательные функции, и даже при максимальном «информационном голоде» стимул к поиску новых раздражителей нельзя сравнить со стимулом к поиску пищи или спасения.
Другой фактор напряжения– «сопротивление» объекта действия в момент его выполнения. Это понятие прежде всего касается внешней среды и подразумевает физическое сопротивление эффекторам (например, нагрузка, которую должны преодолеть мышцы, с тем чтобы действия достигли цели). Но напряжение интеллекта необходимо и для решения трудной задачи, когда поиск в памяти нужных моделей наталкивается на большое сопротивление ведущих к этим моделям связей, если они давно не использовались. Конечно, как в том, так и в другом случае для того, чтобы напряжение возникло, нужны стимулы соответствующей силы, поскольку, если их не будет, действие просто не состоится. При этом приходится учитывать «рефлекс цели» как дополнительный стимул, который начинает временно действовать тогда, когда на пути к достижению цели, сформированной за счет умеренной потребности и неспособной вызвать большое напряжение, появляется препятствие, ставящее под угрозу ее осуществление. В таких случаях сопротивление как бы усиливает саму первичную потребность.
Время
Время является той независимой переменной, которая, как и пространство, всегда участвует в деятельности интеллекта. Значительную часть своих программ он относит к будущему, несколько меньшую – к прошлому, большую часть – к настоящему. Интеллект должен иметь чувственное ощущение времени. Настоящее метится особой «буквой», указывающей на то обстоятельство, что в данный момент времени внешние или внутренние рецепторы работают. Прошлое воспринимается по действию извлечения из памяти, а будущее – по специфическим действиям с моделями настоящего и прошлого. Течение времени фиксируется переключением кадров в моделях кратковременной памяти. В частности, мысли о будущем можно представить как операции с «фразами», в начале которых стоят «слова», отражающие настоящее, то есть с подключенными рецепторами. Затем рецепторы отключаются, и «фраза» продолжается путем «дописывания» ее начиная от «слова» – настоящего уже с «буквой» – «будущее».
Время движется только в одну сторону. Это четко отмечается в последовательности любых «слов», «фраз», отражающих события, даже во «фразах» исследования объекта типа показанного на рис. 17, где как будто движение идет по пространственным структурам, но в действительности – параллельно и во времени. Время отмечается во всех действиях (последовательность вызова моделей из памяти, восприятия из внешней среды или из тела). Поскольку «буквы» действий всегда присутствуют в модели структур, то эта «метка» и создает отсчет времени, его направление. Операция обращения к прошлому или к будущему – это тоже действие, которое метит модели своей «буквой».
Временные отношения сложны для понимания (настоящее – это данный момент. Но, говоря «в этом году», тоже подразумевают настоящее). Модели, выражающие время, так же подлежат обобщению, как и любые другие. Один кадр восприятия внешнего мира – одна элементарная модель – соединяется с буквальным понятием «настоящее». Обобщение времени, то есть удлинение единицы его измерения, создание «крупноблочной» модели, производится одновременно с обобщением измеряемой этим масштабом деятельности или воспринимаемых во времени моделей. «Действие обобщения» касается времени и объектов деятельности. «Весь год пишу книги» – здесь обобщены действие и время. Нельзя обобщать их порознь, отрывать одно от другого. Как говорилось, «действие обобщения» состоит в том, что модели последовательно сравниваются друг с другом, выделяется общее из «букв» и «слов», и потом эта полученная при первых сравнениях модель сопоставляется со всеми последующими. Это касается моделей объектов и действий. Со временем проще – единицы его измерения одинаковы, поэтому обобщение времени – это использование иерархии его единиц. Операции с большими отрезками времени стали возможны только благодаря речи и счету.
Обобщение моделей действий по времени – основа долгосрочного планирования и предвидения. Поскольку интеллект может мыслить только короткими фразами, длительное предвидение обязательно связано с обобщенными моделями, которые могут развертываться в более частные единицы последующими операциями (об этом речь пойдет дальше).
Отношение событий во времени определяется по масштабу времени двух параллельно протекающих процессов, выраженных отдельными «фразами». Интеллект осуществляет слежение за многими объектами, поскольку существует несколько типов рецепторов и следящих систем. Слежение за временем, однако, единое. Поэтому для соотношения времени разных «фраз» по их началу, концу, продолжительности нужно сравнить их маркировку по времени.
Продолжающееся и законченное действие – понятия, тоже имеющие отношение к моделям времени. Первое – это продолжение действий, начатых в прошлом и еще не отмеченных «меткой» окончания, второе – законченное, для которого она уже есть. Обычно это касается действия, состоящего из повторяющихся однородных актов (например: «Я шагаю уже час»).
Операции переключения – настоящее, прошлое, будущее, операции обобщения по времени, определения отношения начала и конца обобщенного действия к данному моменту – позволяют выразить все типы грамматических времен, используемых речью.
Реальность
Еще одно важное понятие – реальность. Реально то, что есть, что воспринимается рецепторами, следящими за внешней средой, за телом, за самим разумом. Модель с «буквой» действующего рецептора реальна. Она реальна даже в том случае, когда извлекается из памяти, если в модели образа присутствует эта «буква» рецептора. Наоборот, реальность будущего проблематична. Однако не всякое будущее можно назвать нереальным. Его реальность прежде всего определяется вероятностью будущего события. Если событие произойдет непременно, его следует воспринимать как абсолютно реальное. Другое дело, если вероятность меньше единицы: реальность события тем более сомнительна, чем меньше вероятность. Но это не все.
Реальность имеет прямое отношение к чувствам. Чувства вызываются «платой», удовлетворяющей потребность. «Плата» в настоящем очевидна: она или есть, или ее нет. Плата в прошлом тоже вполне реальна: она отмечена памятью на чувство. Будущая «плата» сильно возбуждает чувства и является основным стимулом для действий. Если бы интеллект стимулировался только в настоящем времени, то его деятельность была бы весьма ограничена. Мы все время работаем «в долг», нас заставляют напрягаться будущие удовольствия от удовлетворения потребностей, но не в одинаковой степени.
Рис. 27. Изменение коэффициента времени в зависимости от предполагаемого срока ожидания «платы» для двух типов характера.
Чувства возбуждаются будущей «платой» с поправкой на реальность ее получения. Голодный человек, не имеющий никакой надежды получить пищу, не станет затрачивать силы на ее поиск, он будет просто страдать. Стимул появляется тогда, когда есть надежда удовлетворить напряженную потребность в результате направленной деятельности, то есть при наличии вероятности получить за усилия «плату».
Величина стимула от будущей «платы» определяется двумя факторами. Первый и главный – напряжение потребности и ее значимость. На рис. 22 показана характеристика «плата» – чувство. Исходное состояние потребности определяется точкой а, показывающей остаточную ее удовлетворенность после полученной в прошлом «платы». Приращение чувства, которое стимулирует деятельность,– это теоретическое желание ЧМАКС от точки а до полного удовлетворения потребности как чувства – до предела притязаний. Абсолютная величина ЧМАКС зависит также от значимости самой потребности.
Следует заметить, что истинное приращение чувства Ч, то есть стимул, при очень напряженной потребности меньше, чем максимально возможное. Голодный человек мечтает не о максимуме наслаждений вкусными яствами, а о том, чтобы удовлетворить острый голод какой-нибудь пищей. Однако этой поправкой на уменьшение притязаний в первом приближении можно пренебречь.
Второй фактор (или коэффициент при стимуле) – это реальность получения «платы» в результате деятельности. Она определяется вероятностью успешности действий и некоторым коэффициентом времени. Представить этот фактор не просто. Можно привести множество примеров, но я ограничусь двумя. Человек переходит дорогу и видит мчащийся на него автомобиль. Откуда берутся силы! Тут коэффициент времени равен единице, так как главное не в том, что вероятность смерти высокая (но не стопроцентная, ведь человек знает, что не все умирают под колесами), а в том, что она угрожает немедленно. Другой пример. Достоверно известно, что курение угрожает человеку раком легкого. Тоже не всем, но с вероятностью 1:10. Однако не теперь, а в будущем, для молодого, может быть, лет через сорок. И юноша не бросит курить, даже если он врач и хорошо осведомлен о вреде курения. Дело снова в коэффициенте времени. На рис. 27 изображена гипотетическая функция величины этого коэффициента в зависимости от срока ожидания «платы». Показаны две кривые – одна для людей, живущих «сегодняшним днем», другая – для дальновидных и настойчивых. Коэффициент времени или поправки на будущее у них существенно разные. Видимо, этот коэффициент не является простым следствием уровня интеллекта, а заложен от природы, в генах. Интеллект только уточняет вероятность будущих событий, то есть определяет другой компонент реальности. У животных характеристика временн'ого коэффициента падает очень круто, не говоря уже о том, что они не могут прогнозировать события далеко вперед.
Реальность будущего и оба ее компонента являются непременной принадлежностью любого интеллекта, это один из краеугольных камней всей гипотезы. Он столь же важен, как понятия о критериях-потребностях, управляющих действиями с моделями, или механизм обобщения.
Функциональный акт
Любой интеллект функционирует дискретно. Если говорить точнее, то это сочетание непрерывных и дискретных процессов. Впрочем, существуют ли вообще чисто непрерывные процессы. Во всяком случае, в сложных системах любое непрерывное есть только статистика большого числа отдельных событий. В мозге, например, вся деятельность нейронов выражается отдельными импульсами.
Дискретность внешней деятельности интеллекта я выражаю термином «функциональный акт» (ФА), понимая под ним подготовку и выполнение последовательности движений, направленных на достижение цели. Целью является новое состояние объекта управления, выраженное его моделью, которая создается в процессе самого ФА или задается извне.
Простейший ФА состоит из трех этапов: восприятие – оценка – действие. В действительности даже у животных эта цепочка длиннее и представлена, по крайней мере, пятью элементами (рис. 28), причем каждый элемент расчленяется в свою очередь на несколько простейших действий.
Рис. 28. Этапы функционального акта.
В самом общем виде ФА можно описать так.
Первый этап – восприятие. Рецептор, настроенный на некоторый фрагмент среды, дает его первичную модель – картину.
Второй этап – анализ. Он состоит из трех моментов:
а) распознавание – сравнение первичной моделикартины с моделями-эталонами разной степени обобщенности, взятыми из постоянной памяти. В результате сравнения получается «вторичная модель» – переписанная своими моделями-«словами» картина среды, в которой отражена субъективность и ограниченность интеллекта;
б) прогнозирование будущих изменений среды – новая «фраза», дописанная по «словам» вторичной модели;
в) оценка – активирование чувств распознанными моделями объектов. Чувства зависят от состояния удовлетворения соответствующих потребностей к моменту начала ФА. В результате формируется суммарный стимул и выбирается «первичное действие» – модель действия в самой обобщенной форме.
Третий этап – планирование. «Первичное действие» развертывается в три «фразы» моделей, представляющих собой план:
а) «фраза» последовательности действий;
б) «фраза» эффекта – модель изменения среды в ответ на действия вплоть до достижения цели;
в) «фраза» необходимых усилий или «фраза» чувств.
Четвертый этап – решение, представляющее собой включение плана в действие. Решение возможно только в том случае, если суммарный стимул больше суммы «тормозов», предполагаемых в процессе выполнения действий и учтенных при планировании. «Тормоз» определяется сопротивлением среды.
Пятый этап – действия по реализации плана, то есть «считывание» модели последовательности действий под контролем обратных связей, воспринимаемых изменений объекта и затрачиваемых усилий. При рассогласовании и недостатке стимулов действия прекращаются, и производится новое планирование.
Алгоритм упрощенного функционального акта
Реальные ФА очень сложны. Сложны модели среды, многочисленны критерии, разнообразны варианты действий. Чтобы представить алгоритм ФА, нужно упростить его до предела. На рис. 29 показана схема такого упрощенного ФА.
Рассмотрение его начнем с критериев (потребностей, чувств). Как минимум для понимания ФА необходимы четыре критерия. Первый (главный) – специфический, например голод как потребность «тела», второй – любознательность, третий – «рефлекс цели», четвертый – универсальный «тормоз» – утомление. Три последних критерия рабочие. Для каждого критерия необходимы характеристики и точки исходного состояния на них. Для голода, например, это будет зависимость чувства от количества пищи. Исходное состояние – некоторая низкая степень насыщения, оставшаяся после предыдущего приема пищи. Для критерия любознательности характеристика отражает потребность в информации, то есть зависит от числа и сложности новых моделей среды. Исходное состояние – некоторый «информационный голод». Критерий цели стимулируется от реальности цели, ее близости во времени и в соответствии с «процентом» выполнения плана. Вначале, естественно, он не действует. Критерий утомления включается от любого действия – в зависимости от его утомительности.
«Мысленные» этапы ФА – анализ, планирование – менее утомительны, но они надоедают, наскучивают. «Двигательные» этапы зависят от сопротивления объекта действия – «тормоз» от утомления может быть очень велик. По каждому виду действий – с моделями или с объектами, при восприятии или планировании – утомление отсчитывается от нуля. Значимость каждого критерия различна и задается заранее. Так, голод намного важнее, чем любознательность и удовольствие от достижения цели, но утомление в своем крайнем проявлении сравнимо с голодом.
Рис. 29. Алгоритм функционального акта.
Восприятие. Восприятие среды осуществляется рецептором, для настройки которого необходимо действие. Его мы обозначим Д1. Исходный стимул для него черпается из рабочего критерия любознательности, обеспечивающего некоторый минимальный уровень усилий. Для простоты будем считать стимул достаточным для такой настройки рецептора, чтобы получить модель среды.
В результате восприятия, как программы действия, в кратковременную память вводится модель внешней среды M1, например одного предмета или пространственной ситуации из нескольких объектов. Каждый из них представлен «фразой», состоящей из нескольких «слов» в кадрах памяти (см. рис. 17). Одно «слово» – обобщенная модель, другое – простейшая структура. В модель вводятся «буквы» настройки рецептора и координаты объекта.
Д2 – приведение объекта к стандартным размерам – осуществляется автоматически, за счет того же любопытства и не требует большого напряжения. Получается новая модель М2. Стимул при этом несколько уменьшается.
Анализ. Д3 начинает этап анализа и представляет собой программу распознавания приведенных моделей М2 путем вызова из внешней памяти моделей-эталонов МЭ, похожих на воспринятые. Для этого используются первые «буквы» каждого «слова», как в алфавитном словаре.
Д4 – выбор наиболее похожих из вызванных моделей. Они выписываются в кратковременной памяти рядом с М2 с последующим автоматическим сравнением и определением степени сходства. В результате получается новая «фраза» – модель распознанного объекта, переписанная собственными «словами» с указанием степени сходства,– М3. Любознательность (источник энергии) во время этих действий значительно уменьшается и одновременно нарастает «тормоз» – «надоело». Распознавание может быть продолжено, но для упрощения задачи ограничимся этим.
Д5 – оценка распознанного объекта как возможная «плата» для удовлетворения специальной потребности, в нашем случае – голода. Специальная «фраза» М'3, с которой связана модель распознанного объекта, вызывается из постоянной памяти и указывает степень удовлетворения потребности. Если ее подставить в характеристику главной потребности, отложив от исходной точки (см. рис. 22), можно получить максимальный стимул ЧМАКС. Он определяет основную энергию для всех последующих этапов ФА. Если насытившемуся человеку предложить невкусную пищу, то есть низкую «плату», то стимул Ч будет очень мал. ФА закончится на первых этапах – рассмотрение и анализ, которые отработаны на стимуле «любознательность». Человек не захочет напрягаться изза ерунды (об этом еще будет разговор). Сейчас предположим, что стимул весьма велик.
Планирование. Д6 – определение цели. Принцип утилитарности интеллекта предусматривает автоматическое рассмотрение любой внешней картины с точки зрения ее использования для повышения удовольствия, то есть для удовлетворения потребностей. Важнейший стимул (голод) дает достаточно энергии для первой прикидки использования объекта. Суть действия состоит в создании модели цели. Зрительно это выражается в модели объекта в том виде, каким он должен стать в результате воздействий интеллекта (например, часть структуры объекта должна быть оторвана и перенесена к «телу» или попросту – взять и откусить). Такая цель может быть выражена короткой «фразой» – часть объекта, его перемещение в пространстве к новому месту. Откуда возьмется новая модель – цель. Она есть во внешней памяти в разных вариантах «фраз», связанных с моделью «съедобного» объекта. Для нахождения такой модели нужны входные данные: обобщенная модель объекта и действия с ним. Энергия для извлечения модели из внешней памяти и переноса ее в кратковременную память черпается из стимула, определившегося в предыдущем действии. При этом стимул несколько уменьшится за счет утомления. Таким образом мы получаем новую модель – цель М4.
Д7 – выбор движения для достижения цели. Его модель М5 может быть представлена на разных уровнях обобщения. Самая общая модель – это «взять», «достать» как основное движение с «буквой» обобщения. Такая модель тоже имеется во внешней памяти в виде «фразы», где связаны модель-цель и модельдвижение. Движения задаются моделью рецепторов, заложенных в органах движения.
Д8 – определение сопротивления движению со стороны объекта – представляется как частная модель М6 некоторого качества объекта. Найти ее можно по основной модели объекта или по сочетанию этой модели с моделью действия.
Д6, Д7 и Д8 представляют собой самое упрощенное выражение этапа планирования. По существу, после каждого из этих действий должен производиться перерасчет стимулов, но для простоты эту процедуру мы объединим в одну операцию.
Д9 – новый перерасчет стимулов и «тормозов» для определения их суммы М7, который подготавливает важный этап – принятие решения. Предыдущие три действия были связаны с расходованием энергии стимула, подсчитанного в Д5 на основании величины потребности и «платы», которую может обеспечить объект, воспринятый и распознанный на первых двух этапах. За время планирования этот стимул изменился: во-первых, за счет утомления от самой процедуры расчетов, во-вторых, за счет уточнения «ценности» объекта, которая была связана с уточнением цели, в-третьих, за счет будущих усилий для запланированных движений. Последний пункт особенно важен: мы не начинаем действий, если не уверены в том, что они нам под силу.
Принятие решения. Подсчетом стимулов заканчиваются «мысленные» этапы ФА. Решение занимает промежуточное положение: с одной стороны, действия еще не начаты, а с другой – их начало уже определено, и для этого обеспечены стимулы. Они должны быть значительно сильнее, чем для предыдущих этапов, поскольку призваны обеспечить высокое напряжение моделей движений, способное преодолеть действительное, а не воображаемое сопротивление объекта, например мышечное усилие для поднятия тяжести. Важно понять, что во время восприятия и анализа стимул Ч, как функция неудовлетворенной потребности, может быть достаточно большим, но он не используется, поскольку напряжение нужно лишь для преодоления сопротивления связей, чтобы вызывать модели из внешней памяти.
Однако такое положение бывает не всегда. Стимул для действий, в том числе и для мыслительных, то есть «чистых» действий с моделями, расходуется на преодоление сопротивления связей при введении новых моделей из памяти и их активации. Это сопровождается утомлением. Оно сильно возрастает, если процесс мышления требует большого напряжения, длится непрерывно и не достигает успеха (нет решения задачи). Удовлетворения потребности при этом нет, наоборот, она активируется и стимул все более возрастает. Соответственно возрастанию стимула и противостоящего ему утомления увеличивается напряжение при низком УДК. Такое положение возникает при интенсивной умственной работе или в трудных жизненных ситуациях, вызывающих сильные чувства и не предлагающих легкого решения.
Д10 – решение. Внешне это короткий акт – включение в действие ранее составленных планов, но он весьма значителен. В момент решения необходимо скачкообразно повысить напряжение, чтобы активировать модели плана M8, поскольку нужно преодолеть сопротивление действию со стороны объекта. У человека это связано с сокращением мышц, то есть большим расходом энергии. Решение вызывает особенно сильное напряжение, когда оно бесповоротно, когда уже невозможно остановить начатое действие (пример – прыжок через ров, разрез кожных покровов при операции).
Действия. Д11 – действия в буквальном смысле слова: сокращение мышц у человека либо включение двигательных или манипуляционных устройств у ИИ.
Действия – это считывание модели плана. Она может быть задана в двух вариантах: в виде структурного образа объекта внешней среды как модельцель или в виде последовательности ощущений с рецепторов органов движения. В первом случае обратной связью является орган зрения, воспринимающий объект и сверяющий изменения, которые он претерпел, с моделью цели действий. Во втором случае рецепторы с мышц сами дают обратную связь. Однако как в том, так и в другом варианте само считывание состоит в активации моделей, непосредственно управляющих органами движения. Сами по себе они не представлены в рецепторных зонах, а выражаются только через рецепторы органов движения, но тем не менее это элементы интеллекта, такие же, как и другие. Сложные двигательные акты состоят из последовательности автоматических элементарных движений («слова» и «фразы» из «букв»).
Активность моделей действий должна быть настолько велика, чтобы органы движения, управляемые от них, были способны преодолеть сопротивление объекта воздействий. От модели плана, записанной в кратковременной памяти, поэтапно включаются модели элементарных движений, управляющие эффекторами. Одновременно рецепторами «глаза» и «мышц» воспринимается эффект производимых движений. Как и всякое восприятие, он тоже записывается в кратковременную память в виде модели М9. Таким образом, в кратковременной памяти активно функционирует несколько параллельных моделей: «старые» модели плана, «новые» модели объекта, измененного действием, и модели с рецепторов «мышц», показывающие их сокращения и усилия. Не представлены, но есть модели самих движений – как последовательность активации эффекторов. Эти модели, доведенные до высокой активности многократными повторениями, в дальнейшем могут стать основой автоматических сложных движений. Такими являются любые хорошо заученные двигательные акты, например произнесение слов. Разговаривая, мы просто «включаем» модели слов, а орган слуха воспринимает произносимое и выполняет роль обратной связи (в отличие от имитации чужого произношения, когда мы «считываем» звуковой образ).
Модели выполненных действий, по крайней мере две из них – изменение объекта и мышечных усилий, дают материал для чувственного контроля действий, корректируют планы получения «платы» и утомления.
Д12 – подсчет уровня чувств, стимулов и «тормозов» после выполнения первого этапа движений (предположим, что весь план был разбит на 2—3 этапа). Для этого нужно определить, в какой степени модель измененного действием объекта М10 соответствует модели – цели данного этапа действий. Недовыполнение плана уменьшает реальность всего ФА, снижает активность потребности и уменьшает стимул. С другой стороны, уже определено, каково действительное сопротивление и насколько оно соответствует «силам» эффектора. От этого зависит действительное утомление, то есть величина «тормоза», которая вычитается из стимула для определения их суммы. Если план выполнен, этапный эффект получен, а сопротивление оказалось меньше предполагавшегося, стимул возрастает и следующий этап может быть выполнен быстрее. Если же это невозможно вследствие особенностей объекта, ФА в целом может вызвать в дальнейшем большее удовлетворение. При более сильном сопротивлении «тормоз» может полностью нейтрализовать стимул и возникнет необходимость в прекращении действия, ФА останется незаконченным. Однако в этом случае включается другой «рабочий» стимул – «рефлекс цели». Невыполнение плана, отдаление цели или появление обстоятельств, угрожающих ее осуществлению, являются для него «платой» (довольно странной, но это так), уменьшающей чувство приятного, но побуждающей к деятельности, как и всякая угроза. Он суммируется с положительным стимулом надежды на истинную «плату», позволяет пересилить «тормоз» и продолжать действия, то есть перейти к их следующему этапу, который осуществляется по тем же принципам.
Уровень душевного комфорта в процессе выполнения действий зависит от их эффективности. При затруднениях он оказывается ниже предполагавшегося, если же сопротивление было переоценено,– то выше.
Д13 – завершение ФА. Оно сводится к подведению итогов, определению окончательных чувств и УДК, но в этом и состоит его важность.
Предположим, что план выполнен полностью, «плата» получена, и это прежде всего резко изменяет главное чувство. Точка на характеристике потребности (в нашем примере – голод) перемещается в зону «приятного» и соответственно стимул для действия уменьшается до нуля. С другой стороны, накопившееся утомление представляет неприятный компонент чувственной сферы и понижает сумму чувств, то есть УДК.
Рис. 30. Характеристика «рефлекса цели»: ЧЦ – стимул цели в зависимости от степени выполнения плана.
Третий, снова приятный, компонент дает «рефлекс цели». Он тем значительней, чем больше было преодоленных трудностей. Характеристика этого компонента показана на рис. 30. В ходе выполнения ФА «утомились», или «прискучили», или «насытились» обе рабочие потребности – любознательности и цели, следовательно, их значимость уменьшилась. Так закончился ФА, представленный в самом упрощенном виде.
Воспроизведение простого ФА в алгоритмическом интеллекте, мне кажется, не будет трудным. Потребности и их чувства, то есть критерии, задаются в виде «центров» со своими характеристиками и постоянно находятся в оперативной памяти. То же самое касается центров – моделей настройки рецепторов. Они всегда обладают хотя бы минимальной активностью. Направление рецепторов на цель и их дополнительное активирование включаются как действие, модель которого («куда направить взгляд») всегда имеется в оперативной памяти, поскольку она часто используется. Компоненты этого действия – настройка и активация рецепторов. Действие дает «первичную картину», которая тут же перекодируется цифровым кодом по особой подпрограмме. Так получается цифровая первичная модель. Этап «анализ» сводится к извлечению цифровых моделей из длительной памяти и сравнению их с первичной моделью. В результате создается вторичная модель. Планирование осуществляется по тем же принципам. Пересчет чувств, УДК, определение стимулов и «тормозов» производится после каждого этапа. Построив планы и получив достаточный суммарный стимул, АИ «принимает решение» – включает считывание плана действий. Для этого цифровая модель перекодируется в сигналы, управляющие органами движения – эффекторами. Они изменяют структуру объекта согласно «модели цели», полученной при планировании. Контроль за изменениями структуры объекта осуществляется рецептором зрения, напряжение мышц при работе оценивается специальными рецепторами, полученные картины кодируются и сравниваются с планом. В промежутках между отдельными движениями пересчитываются чувства и стимулы. «Отработанные» модели находятся в оперативной памяти до тех пор, пока активность их снижается, согласно характеристике, до определенного порога, после чего они стираются. Результат ФА в виде основных моделей – «первичной картины», последовательности действий и картины объекта после осуществления ФА – переносится в длительную память. Основная трудность алгоритмизации даже простого ФА состоит в перекодировании пространственной структуры объекта.