355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Тарасенко » Что вы знаете о своей наследственности? » Текст книги (страница 1)
Что вы знаете о своей наследственности?
  • Текст добавлен: 7 апреля 2017, 12:00

Текст книги "Что вы знаете о своей наследственности?"


Автор книги: Николай Тарасенко


Соавторы: Галина Лушанова
сообщить о нарушении

Текущая страница: 1 (всего у книги 8 страниц)

Н. Д. Тарасенко, Г. И. Лушанова
Что вы знаете о своей наследственности?

АКАДЕМИЯ НАУК СССР

СИБИРСКОЕ ОТДЕЛЕНИЕ

2-е издание, исправленное и дополненное

Ответственный редактор доктор медицинских наук М. Н. Кириченко

Рецензенты

доктора биологических наук И. Ф. Жимулев, А. Н. Мосолов

Утверждено к печати Центральным сибирским ботаническим садом СО АН СССР

«Биография» книги Н.Д. Тарасенко, Г.И. Лушановой «Что вы знаете о своей наследственности?»

Первое издание книги, вышедшее в Сибирском отделении издательства «Наука» в 1980 г. (тираж 50 тыс. экз., количество заявок 380 тыс), отмечено первой премией Всесоюзного общества генетиков и селекционеров им. Н.И. Вавилова и переведено на японский, китайский и узбекский языки.

Второе, сокращенное, издание книги, вышедшее в издательстве «Медицина» в 1984 г., также имело большой спрос читателей (тираж 200 тыс, экз., количество заявок около 4 млн).

Третье, настоящее, издание переработано и дополнено новыми данными, полученными за последние 10 лет.

ТАРАСЕНКО Николай Дмитриевич -доктор биологических наук, специалист по генетике и цитологии, автор и соавтор более 200 научных работ, в том числе пяти монографий, и ряда научно-популярных книг. Более 30 его научных работ переведены на иностранные языки. Научная и общественная деятельность Н.Д. Тарасенко отмечена юбилейными медалями им. В.И. Ленина и им. Н.И. Вавилова.

ЛУШАНОВА Галина Ивановна – научный сотрудник Клинического центра Новосибирского института биоорганической химии СО АН СССР, специалист по генетике и цитологии, автор и соавтор более 30 научных публикаций. Ее главный научный интерес – изучение «поведения» лекарств в организме человека.

Предисловие

Современная биология, особенно ее фундаментальные разделы, касающиеся основ организации и воспроизведения живых организмов, стремительно развивается. Столь же быстро прогрессируют генетика человека и медицинская генетика.

На XIV Международном генетическом конгрессе в Москве (август 1978 года) упоминалось о более 2500 типах наследственных заболеваний, описанных главным образом за несколько предшествующих форуму десятилетий. Заболевания делятся на три большие группы – генные (ошибки в генах), хромосомные (нарушения числа и структуры хромосом) и тератогенные (повреждения эмбриона в период развития беременности). Установлено, что около 4,5—5% детей рождается наследственно неполноценными (отягощенными).

Однако за последние 10—12 лет количество известных наследственных заболеваний увеличилось и составляет в настоящее время около 4000 наименований. Иными словами, каждый год выявляется примерно 100 новых заболеваний. Это происходит из-за того, что, с одной стороны, наука все более проникает в генетические, физиологические и биохимические механизмы человека, а с другой – экологическая среда обитания все в большей степени становится загрязненной и матрицы человека активнее подвергаются воздействию, нарушаются.

Многие генетические заболевания (около 500) ученые научились «исправлять» или вести профилактику их посредством дието-, ферменто– и гормонотерапии с последующей генетической консультацией вступающих в брак.

За последние годы в нашей стране издано много специальных книг по генетике человека. Это – «Основы генетики человека» К. Штерна, «Введение в медицинскую генетику» В. П. Эфроимсона, «Цитогенетика человека», «Лекции по медицинской генетике» и ряд брошюр – «О наследственности: хромосомы и хромосомные болезни» И. Исаевой, «Наследственность человека» и «Генетика человека» Б. В. Конюхова и Ю. В. Пашина и др. Однако для широкого круга читателей эта литература сложна, а научно-популярной, где бы просто и ясно излагались основные положения генетики человека, явно недостаточно. Настоящая книга частично восполняет этот пробел.

Один из авторов (Н. Д. Тарасенко) уже более четверти века читает лекции на курсах усовершенствования учителей, слушателей Высшей партийной школы (Новосибирск), областных и межобластных курсах о проблемах и успехах генетики микроорганизмов, растений, животных и человека. Его опыт показывает, что большинство вопросов слушателей так или иначе связано с генетикой человека – наследованием групп крови системы АВ0, резус-фактором, генными и хромосомными болезнями и причинами их появления[1]1
  Необходимо подчеркнуть, что генетика человека связана не только с его биологией и физиологией, но и с культурными обычаями и традициями, политическими и особенно социальными аспектами деятельности.


[Закрыть]
.

Авторы настоящей книги попытались ответить на наиболее часто встречающиеся вопросы.

Прежде всего рассказывается о клетке как основе всего разнообразия жизни. Рассмотрены такие вопросы, как код наследственности, синтез (сборка) белков, деление клетки.

Описаны довольно частые случаи отклонений в наборе хромосом, возникающих в период созревания половых гамет, в результате оплодотворения которых формируются дети с тяжелейшими заболеваниями. Это случаи рождения девочек с набором хромосом (кариотипом) мальчика, аномалиями половых хромосом, нарушениями неполовых хромосом (аутосом). Рассмотрены причины рождения детей с 47 хромосомами (на примере синдрома Дауна). Показана зависимость возраста матери и частоты аномалий нервной системы у детей. Частота хромосомных аномалий среди новорожденных высокая и составляет 1,5—2 %.

Повествуется о наиболее распространенных генных «матричных» заболеваниях у детей, причинах их возникновения, о характере наследования (доминантные и рецессивные), сцепления с половыми хромосомами (локализованными в половых хромосомах) и др. Небольшой раздел посвящен принципу обнаружения генных заболеваний.

Рассказывается о третьей группе врожденных аномалий, названных «тератогенными», то есть о заболеваниях, вызванных различными факторами (вирусами, лекарствами, курением, алкоголем и т. д.) в период формирования эмбриона. Эта группа составляет около 2,5—3,0 % новорожденных. Кроме того, значительное количество повреждений новорожденных происходит при рождении детей так называемыми старыми первородками – женщинами, рожающими первый раз в возрасте старше 25 лет.

Книга содержит современные статистические данные о рождаемости во многих промышленно развитых странах, в том числе и в СССР. Показана четкая зависимость между количеством детей в семье и развитием коллективистских черт их характера. В семьях с одним или даже двумя детьми, родившимися с разрывом в 8—12 лет, часто формируются личности с эгоистическими наклонностями, что в социологической литературе получило название «эффект одиночки». В этой связи нельзя не вспомнить выдающегося советского педагога А. С. Макаренко, который считал оптимальной семью, имеющую трех детей, родившихся с небольшим временным интервалом, что позволяет им оптимально формироваться в микроколлективе. В книге рассматривается особая, невосполнимая значимость первых трех лет воспитания в развитии человека. Подчеркивается важность этого периода в становлении его характера, формировании основы интеллекта.

Книга написана живым, доступным языком и читается с интересом. Авторам в основном удалось донести до читателей сложные и вместе с тем важные достижения и проблемы генетики человека. Представленная публикация, без сомнения, будет способствовать повышению знаний человека с самом себе.

М. Н. Кириченко

Глава 1. Клетка как основа жизни

Роль и синтез белков

Все многообразие живых организмов состоит из клеток. Клетка – это структурная и функциональная единица всего живого, производящая (строящая, синтезирующая) белки. Точное число белков, необходимое для нормальной жизнедеятельности клетки, неизвестно, но установлено, что оно достигает многих сотен тысяч. Нельзя найти двух людей, за исключением однояйцевых близнецов, имеющих полностью одинаковые белки. Белки состоят из 20 аминокислот: аланин, глицин, глютаминовая кислота, гистидин, глютамин, аспарагин, валин, лейцин, изолейцин, метионин, аргинин, лизин, треонин, тирозин, триптофан, фенилаланин, аспаргиновая кислота, серии, пролин и цистеин. Каждая молекула белка представляет собой цепь чередующихся в определенном порядке вышеперечисленных аминокислот, число которых может достигать шести – семи сотен.

В организме человека белки выполняют разнообразные функции. Из белков и их составных частей формируются ферменты, которые способствуют осуществлению множества реакций, протекающих в каждой клетке. Белки могут действовать и как гормоны.

При недостатке тех или иных аминокислот и белков отдельные жизненно важные химические реакции в организме могут быть приостановлены или даже выключены из обменных процессов, что приводит к нарушению обмена веществ и в итоге – к болезням. Полное лишение белковой пищи неизбежно приводит к смерти, даже при обильном питании жирами и углеводами.

Белки различных пищевых продуктов неравноценны по содержанию в них аминокислот. Из 20 аминокислот для синтеза белков не все одинаково нужны. При недостаточном поступлении одних аминокислот белки могут быть частично синтезированы из других. Это так называемые заменимые аминокислоты. Однако девять аминокислот (из 20) должны поступать в организм обязательно, так как они не способны синтезироваться из других аминокислот. Это незаменимые аминокислоты. Среди последних наиболее часто используются лизин, метионин и триптофан. Они получили название критических.

В опытах над животными установлено, что пища без незаменимых аминокислот очень скоро вызывает признаки белковой недостаточности – задержку роста, малокровие, выпадение волос и др.

В каждой молекуле белка аминокислоты чередуются в определенной последовательности. Замена одной аминокислоты другой приводит к изменению структуры и функции молекулы белка, поэтому для организма такая замена не проходит бесследно. Например, молекула гемоглобина состоит из четырех белковых цепочек. Замена в каком-нибудь определенном месте в одной из цепочек, состоящей из 146 аминокислот, глютаминовой аминокислоты валиновой приводит к тяжелейшему заболеванию – серповидно-клеточной анемии (формируются эритроциты серповидной формы, не способные переносить кислород).

Последовательность аминокислот при синтезе, сборке белков в клетках организма определяется генетической программой, заложенной в каждом организме. Эта программа хранится в ядре клетки в особых структурах, называемых хромосомами, в виде дезоксирибонуклеиновой кислоты (ДНК)[2]2
  Нити ДНК можно видеть в электронный микроскоп при увеличении в 7 300 000 раз. Они выглядят в виде спирали.


[Закрыть]
. Основной структурный материал хромосом – не чистая ДНК, а дезоксирибонуклеопротеид (ДНП), то есть комплекс, состоящий из белка и ДНК. Это химическое соединение было открыто еще в 1869 году, но только в 1948—1949 годах удалось доказать, что оно является молекулярным носителем наследственности.

Рис. 7. Химическое строение азотистых оснований нуклеиновых кислот.

Молекула ДНК состоит из двух цепочек, подобных друг другу, закрученных в спираль. Каждая из цепочек представлена, в свою очередь, четырьмя чередующимися элементами – нуклеотидами. Нуклеотиды состоят из фосфатного остатка, соединенного с сахаром дезоксирибозой и одним из четырех азотистых оснований: аденином (А), гуанином (Г), тимином (Т) и цитозином (Ц), которые соединены с фосфорной кислотой через сахар – дезоксирибозу (рис. 1). Две цепочки в молекуле ДНК соединены водородными связями, которые образуются между парой оснований: аденин – тимин и гуанин – цитозин. Если в одной цепочке стоит основание А, то во второй, напротив, находится обязательно Т (рис. 2). Примерно 1000 чередующихся пар оснований соответствуют одному гену, а в каждой клетке содержится до одного миллиона генов. Совокупность всех генов представляет генотип организма, а реальное выражение последнего в человеке называется фенотипом. Фенотип в значительной мере зависит от реальных условий, в которых функционирует генотип.

Если вытянуть в одну нить все ДНК из одной клетки человека, то ее длина составит 3 м 60 см. Во время митоза (процесса деления клетки) вся ДНК укладывается в хромосомы (хромо – цвет, сома – тело). Хромосом всего 23 пары, то есть 46 штук, и общая длина их не превышает 200 мкм.

Рис. 2. Модель строения дезоксирибонуклеиновой кислоты (ДНК).


Рис. 3. Схема репликации ДНК.

Одно из важнейших свойств ДНК – ее способность к самовоспроизводству, названная репликацией. При определенных условиях в клетке происходит репликация пар А – Т и Г – Ц. Две нити ДНК расходятся, причем на каждой из них, как на матрице, сразу же синтезируются аналогичные нити (рис. 3).

Сама ДНК непосредственного участия в синтезе белка не принимает, однако она влияет на этот процесс опосредованно, через другую кислоту – рибонуклеиновую (РНК). В отличие от ДНК РНК одноцепочна, вместо сахара дезоксирибозы имеет рибозу и вместо основания тимина – урацил (см. рис. 1).

В синтезе белка принимают участие три типа РНК: информационная (синтезируется на ДНК, как на матрице, в ядре клетки, затем покидает ядро и направляется к определенным структурам цитоплазмы – рибосомам, на которых осуществляется синтез белка); рибосомальная и, наконец, транспортная (доставляет определенные аминокислоты к рибосомам для сцепления их в молекулу белка).

Каким же образом последовательность четырех оснований (А, Г, Т и Ц) в ДНК определяет (кодирует) последовательность 20 аминокислот в белке? Для этого природа в процессе эволюции создала так называемый генетический код.

Как азбукой Морзе (тире с точкой) можно записать и передать любое сообщение, так и генетическим кодом, выраженным четырьмя основаниями в виде триплетов, можно записать последовательность каждой из 20 аминокислот и поставить их в определенное место в белковой цепочке – молекуле.

Генетический код, открытый в 1961—1964 годах, оказался именно триплетным, то есть три нуклеотида в строго определенной последовательности кодируют свою аминокислоту в белке при его создании на специальной матрице – информационной РНК. Триплет – это не просто случайная группировка из трех нуклеотидов: каждый триплет определяет (кодирует) включение только своей аминокислоты. Установлено, что восемь аминокислот могут быть закодированы в среднем двумя разными триплетами, пять аминокислот – четырьмя, а три аминокислоты – аргинин, серин и лейцин – даже шестью триплетами, и только две аминокислоты имеют по одному кодирующему триплету (рис. 4).

Рис. 4. Словарь генетического кода.

Способность кодировать (устанавливать на определенное место) одну и ту же аминокислоту разными триплетами получила название вырожденности генетического кода. Благодаря последней природе удается как бы снять шумы (возможные ошибки), возникающие при работе генетического материала, особенно при его удвоении.

Из-за вырожденности (повторенности) генетического кода не каждое изменение оснований в триплетах может отражаться на последовательности и наборе аминокислот в белке, то есть изменять генетический смысл. Явление вырожденности генетического кода снижает частоту возможных спонтанных (естественных) и экспериментальных изменений (мутаций) на 24,5 %. Наличие вырожденности генетического кода является, можно сказать, непреодолимым барьером на пути получения наследственных изменений определенных признаков (локусов) по многим генам.

Генетический код – удивительно универсальное явление, присущее всем известным организмам от бактериофагов до человека. Это подтверждает общность (из одного источника) происхождения всего живого, в том числе и человека.

Деление клетки

При рассмотрении клетки в обычный световой микроскоп видно, что границы ее, благодаря наличию оболочки, четко очерчены. Часто в клетках заметно ядро (рис. 5, 6), также имеющее оболочку. В некоторых клетках ядра не видно, но различаются структуры, названные хромосомами. Основной структурный материал хромосом (90 % массы) – дезоксирибонуклеопротеид (ДНП), то есть комплекс, состоящий из белка и ДНК. Отдельные участки хромосом, ответственные за проявление определенных признаков, называются генами.

Рис. 5. Внешний вид клетки.

Хромосомы есть во всех клетках без исключения. Однако наблюдать их с помощью микроскопа можно только в том случае, если они сжаты, спирализованы, плотно упакованы. В период деления клетки ядерная оболочка растворяется, а хромосомы укладываются в спираль, хорошо окрашиваются специальными красителями и становятся видимыми в световой микроскоп. Далее хромосомы располагаются по экватору клетки, делятся и расходятся к разным полюсам. Делится и цитоплазма. Хромосомы вновь деспирализуются (раскручиваются) и образуют ядерную оболочку. Так из одной материнской клетки образуются две дочерние, совершенно одинаковые. Интересно, что количество ДНК в новых клетках не уменьшается, а остается прежним, так как до начала деления происходит его удвоение (репликация). Такое удвоение получило название митоза.

Рис. 6. Внутреннее строение клетки (схема).

Хромосомы в клетках обнаружены учеными давно, однако только в 1902—1935 годах Томасом Г. Морганом и представителями его школы сформулирована хромосомная теория наследственности. Известно, что у одного и того же вида животных и растений количество хромосом одинаково во всех клетках (кроме половых), у разных же видов – различно. Так, у мыши их 40, крысы – 42, лисицы – 34, свиньи – 38, кролика – 44, человекообразной обезьяны – 48, осла – 62, лошади—64, дрозофилы – 8. Только в 1956 году было точно установлено, что у человека в клетках содержится 46 хромосом – 44 аутосомы и 2 половые хромосомы, а до этого времени считалось, что их 48, как и у обезьяны. Точный анализ хромосом удалось провести благодаря тому, что наука обогатилась новыми методами приготовления препаратов.

Уже в 1959 году была выявлена хромосомная аномалия у человека – так называемый синдром Клайнфельтера. Эта болезнь была описана врачом еще в 1942 году. Ее характерные признаки: высокий рост, гинекомастия, атрофия яичек, мягкая форма дебильности и др. Причина появления этого синдрома – наличие лишней Х-хромосомы в генотипе больного (44 + + XXY). Интересно, что в 1949 году М. Барр обнаружил в ядре неделящейся клетки присутствие интенсивно красящегося объекта, который был назван именем ученого – тельцем Барра (половой хроматин). Последнее присутствует только в клетках женщин и отсутствует в клетках здоровых мужчин. Позднее было установлено, что при наличии двух Х-хромосом в клетке одна из них находится в плотно сжатом состоянии, образуя тельце Барра. У мужчин с синдромом Клайнфельтера в ядрах клеток также присутствует тельце Барра.

В каждой клетке организма человека или животного имеются две хромосомы одного размера и одинаковой формы. Одна из них (гомологичная) получена or отца, другая – от матери. Чтобы число хромосом не возрастало от одного поколения к другому, в половых клетках (гаметах) их должно быть вдвое меньше, чем в зиготе (оплодотворенной яйцеклетке). Уменьшение же числа хромосом вдвое происходит в результате особого клеточного деления – мейоза, наблюдающегося при образовании гамет. При мейозе каждая из хромосом удваивается, гомологичные хромосомы сближаются, образуя пары. Этот процесс носит название конъюгации хромосом. Хромосомы вытягиваются (деспирализуются), что обеспечивает тесное сближение их отдельных участков. При этом в некоторых местах происходит перекручивание хромосом, составляющих пару. Затем, вследствие спирализации, конъюгирующие хромосомы укорачиваются, располагаются по экватору клетки и в анафазе (стадии деления ядра) сближенные ранее гомологичные удвоенные хромосомы расходятся к разным полюсам.

Таким образом, к каждому полюсу отходит лишь одна из парных гомологичных хромосом. Обычно вслед за этим сразу начинается второе деление. Однако у человека в отличие от животных и растений эти два деления в значительной степени разделены во времени: первое редукционное деление хромосом (уменьшительное) плода происходит в период 3—6 месяцев внутриутробного развития, второе – спустя 10—12 лет (а последней половой клетки – примерно через 40 лет).

Итак, в отличие от обычного деления (митоза) в мейозе ядро делится на два ядра, а хромосомы удваиваются один раз. В результате этих делений из одной клетки образуется четыре, число хромосом в которых уменьшается вдвое. Новые клетки содержат не двойной (диплоидный – 2п), а одинарный (гаплоидный – 1n) набор хромосом (рис. 7). При слиянии двух гаплоидных гамет в зиготе диплоидный набор хромосом восстанавливается.

Сколько отцовских и сколько материнских хромосом получит каждая зигота? Это очень важно, так как оказывается, что хромосомы, полученные от отца и матери, рекомбинируются (обмениваются участками) в процессе мейоза совершенно свободно. При расхождении гомологичных хромосом к одному полюсу могут отойти две материнские, к другому – две отцовские. Однако с равной вероятностью могут состояться и другие комбинации – например, к каждому полюсу отойдут одна материнская и одна отцовская хромосомы. А если у человека 23 пары хромосом, то сколько же разнообразнейших комбинаций может возникнуть в гаметах? И каждый участок хромосомы (ген) оказывает специфическое влияние на развитие наследственных признаков организма. Таким образом, именно мейоз обеспечивает возникновение огромного разнообразия сочетания признаков родителей и потомков.

Рис. 7. Мейоз и образование сперматозоидов (а) и яйцеклетки (б) у человека (схема).

Это разнообразие увеличивается еще и тем, что в процессе конъюгации гомологичные хромосомы обмениваются участками, наследственные особенности которых не всегда одинаковы. Первоначальное предположение о каком-то определенном расположении генов в хромосомах возникло тогда, когда на модельных объектах было установлено, что некоторые признаки, обусловленные генами, наследуются связанно друг с другом. Тенденцию признаков наследоваться совместно, а не порознь назвали сцеплением. Групп сцепления столько, сколько пар хромосом у конкретного вида. Ученые, тщательно изучив закономерности появления различных признаков при гибридизации у животных и растений, обнаружили, что сцепление признаков характерно как для животных (в том числе человека), так и для растений.

В результате анализа сцепления и связанного с ним процесса обмена участками конъюгирующих хромосом в каждой паре (одна хромосома – от отца, другая – от матери) установлено, что гены в хромосомах расположены в линейном порядке.

В настоящее время не только подтверждено линейное расположение генов в хромосомах, но и выяснена их сложная химическая структура в виде огромных молекул ДНК. Сейчас принято считать, что ген – это линейная последовательность пар нуклеотидов (от нескольких сотен до тысячи и даже более), кодирующая определенную функцию, а хромосома – это линейная последовательность генов.

Основные закономерности наследования признаков описаны еще в 1865 году Грегором Менделем и основаны на расхождении хромосом в мейозе. Поскольку мейоз характерен для всех организмов, размножающихся половым путем, то закономерности наследования у них одни.

Однако вернемся к митозу. Мы выяснили, что наследство распределяется наследницам поровну. В то же время при делении клетки и репликации (удвоении) генетического материала, хотя и редко, но происходят ошибки. Более того, именно путем проб и ошибок шла вся эволюция живых организмов. Именно ошибкам – отклонениям от генетической программы развития, которые происходят всегда и на всех уровнях жизни, обязан прогресс организмов, видов, родов, семейств. Некоторые отклонения от нормы как бы сообщают данному организму дополнительные возможности, а, значит, и некоторые преимущества перед другими организмами. Изменения, происходящие в наследственных структурах (ДНК), влияют на развитие и проявление новых признаков, морфологических, физиологических или биохимических особенностей.


    Ваша оценка произведения:

Популярные книги за неделю