Текст книги "Физические эффекты и явления"
Автор книги: Автор Неизвестен
Жанр:
Прочее домоводство
сообщить о нарушении
Текущая страница: 5 (всего у книги 15 страниц)
В эффекте Магнуса взаимосвязаны: направление и скорость потока, направление и величина угловой скорости, направление и величина возникающей силы. Соответственно можно измерять поток и угловую скорость.
Патент США N 3587327: В устройстве для измерения угловой скорости и индикации направления вращения газовая струя разделяется на две струи, каждая из которых тангенциально касается противоположных сторон диска неподвижно закрепленного на аксиально вращающемся валу. Вращение диска накладывается на струи разность давлений, величина которых пропорциональна скорости вращения вала. В зависимости от направления вращения вала на ту или другую струю накладывается большее относительное давление.
А.с. N 514616: Способ разделения неоднородных жидких сред на легкую тяжелую фракции, предусматривает общее воздействие на поток разделяемой среды центробежного и гравитационного полей отличающийся тем, что с целью повышения эффективности, поток разделяемой среды при воздействии на него центробежного и гравитационного полей перемещают ввиде ряда, например, параллельных слоев с расстоянием между слоями, меньшими величины диаметра частиц тяжелой фракции, и последовательно возрастающими при переходе от одного слоя к другому, скоростями обеспечивающими градиент скорости, направленной перпендикулярно перемещению слоев жидкости и создающий вращение частиц тяжелой фракции вокруг своей оси, и гидродинамическую подьемную силу, например силу эффекта Магнуса.
4.6. Дросселирование жидкостей и газов.
Дросселирование – расширение жидкости, пара или газа при прохождении через дроссель – местное гидродинамическое сопротивление (сужение трубопровода, вентиль, кран и другие), сопровождающиеся изменением температур. Дросселирование широко применяется для измерения и регулирования расхода жидкостей газов.
4.6.1. Э ф ф е к т Д ж о у л я – Т о м с о н а.
(Дроссельэффект) заключается в изменении температуры газа при его адиабатическом (без теплообмена с окружающей средой) дросселировании, т.е. протекании через пористую перегородку, диафрагму или вентель. Эффект называется положительным, если температура газа при адиабатическом дросселировании понижается, и отрицательным, если она повышается. Для каждого реального газа существует точка инверсии – значение температуры при которой измеряется знак эффекта. Для воздуха и многих других газов точка инверсии лежит выше комнатной температуры и они охлаждаются в процессе Джоуля-Томсона. Дросселирование – один из основных процессов, применяемых в технике снижения газов и получения сверхнизких температур.
А.с.257801: Способ определения термодинамических величин газов, например, энтальции, путем термостатирования исходного газа, дросселирования его с последующим измерением тепла, подведенного к газу, отличающийся тем, что с целью определения термодинамических величин газов с отрицательным эффектом Джоуля-Томсона, газ после дросселирования охлаждают до первоначальной температуры, затем нагревают до температуры после дросселя с измерением подведенного к нему тепла и по известным соотношениям определяют искомые величины.
4.7. Гидравлические удары.
Быстрое перекрытие трубопровода с движущейся жидкостью вызывает резкое повышение давления, которое распределяет упругой волны сжатия по трубопроводу против течения жидкости. Эта волна несет с собой энергию, полученную за счет кинетической энергии жидкости. Подход волны к какому-нибудь препятствию (изгибу трубопровода, задвижке и т.д.) вызывает явление гидравлического удара. Ослабление гидравлического удара может быть достигнуто или увеличением времени перекрытия, или же включением каких-либо, демпферов поглощающих энергию волны. Для увеличения силы удара целесообразно применять жидкости без неоднородностей и мгновенные перекрытия. Обычно вслед за гидравлическим ударом следует удар кавитационный, возникающий изза понижения давления за фронтом ударной волны сжатия (о кавитации смотри раздел 4.8). Волны сжатия в жидкости возникают также при различного рода врывных явлениях в движущейся или покоящейся жидкости (глубинные бомбы).
Патент США N 3118417: Способ укрепления морского якоря заключается в следующем. Подвижной якорь опускают в воду над тем местом, где он должен быть поставлен. Поток воду через расположенную над якорем колонну поступает в ограниченную полость где давление меньше давления жидкости в колонне и в окружающей среде. Резко остановленный поток воды передает гидравлический удар на якорь, что обеспечивает введение последнего в грунт.
А.с. N 269045: Способ повышения динамической устойчивости энергосистемы при аварии на линии электропередач путем снижения мощности гидротурбины, отличающийся тем, что с целью уменьшения напора перед гидротурбиной создают отрица гидравлический удар путем отвода части потока, например в резервуаре.
А.с. N 348806: Способ размерной электрохимической обработки с регулированием рабочего зазора путем переодического соприкосновения электродов с последующим отводом электрода инструмента на заданную величину, отличающийся тем, что для отвоинструмента используют силу гидравлического удара, возникающего в электролите, подаваемом в рабочий зазор.
4.7.1. Электро – гидравлический удар.
Волну сжатия в жидкости можно вызвать также мощным импульсным электрическим разрядом между электродами, помещенными в жидкость (электрогидравлический эффект Юткина). Чем круче фронт электрического импульса, чем менее сжатая жидкость, тем выше давление в ударе и тем "бризантнее" электрогидравлический . Электрогидравлический удар применяется при холодной обработке металлов, приразрушении горных пород, для диамульсации жидкостей, интенсификации химических реакций и т.д.
Патент США N 3566447: Формирование пластических тел при помощи гидравлического удара высокой энергии. Патентуется гидраввлическая система в которой столб жидкости, находящийся в баке гидропушки, напрвляется на заготовку. Для проведения жидкости в движение в указанном столбе жидкости производят электрический разряд, в результате чего генерируется направленная на заготовку волна, которая в сочетании с собственным высоким давлением жидкости осуществляет деформацию заготовки. Скорость струи напрвляемой на заготовку, составляет от 100 до 10000 м/с.
В США эффект Юткина применяют для очистки электродов от налипшего на них при электролизе металлов, а в Польше – для упрочения стальных колец турбогенераторов. При этом стоимость операций, как правило, снижается.
А.с. N 117562: Способ получения коллоидов металлов и устройство для осуществления при применении высокого напряжения за счет электрогидравлического удара между микрочастицами материала, диспергированного в жидкости.
Ударная волна возникающая в воде при быстром испарении металлических стержней электрическим током (см. ниже А.с. N 129945) вполне пригодна для разрушения валунов и других крепких материалов, для разбивки бетонных фундаментов, зачистки окальных оснований гидротехнических сооружений и других работ связанных с разрушением. Приведенные примеры иллюстрируют применение эффекта. Ниже даны примеры того, каким способом можно получить или усилить электрогидравлический удар.
В японском патенте N 13120 (1965) описан способ электрогидравлической формовки ртутно-серебрянными электродами. При парименении таких электродов сила ударной волны в воде возрастает, так как к давлению плотной плазмы, образующейся в канале разряда прибавляется давление паров ртути. Применение этого способа позволяет заметно уменьшить емкость конденсаторной батареи.
А.с. N 119074: Устройство для получения свервысоких гидравлических давлений предназначенное для осуществления способа по А.с. N 105011, выполненное ввиде цилиндрической камеры, сообщенной одним концом с трубопроводом, подающим жидкость, а другим – с ресивером, отличающееся тем, что с целью создания электрогидравлических степеней сжатия применены искровые промежутки, располагаемы по длине камеры на определенном расстоянии друг от друга.
А.с. N 129945: Способ получения высоких и сверхвысоких давлений для создания электрогидравлических ударов, отличающийся тем, что высокие и сверхвысокие давления в жидкости получают путем испарения в ней действием эмульсного заряда токопроводящих элементов в виде проволоки, ленты или трубки, замыкающих электроды.
4.7.2. С в е т о г и д р а в л и ч е с к и й удар.
Советские физики (А.М.Прохоров, Г.А.Аскарьян и Г.П.Шапиро) установили, что мощные гидравлические волны можно получить используя луч квантового генератора (открытие N65). Если луч мощного квантового генератора пропустить через жидкость, то вся энергия луча поглотится в жидкости, приводя к образованию ударных волн с давлением, доходящим до миллиона атмосфер. Это открытие находит, кроме обычных областей применения гидравлических ударов, очень широкое применение микроэлектронике, для условий особо чистых поверхностей, для обработки таких материалов и изделий, которые исключают пр электродов и т.д. Используя светогидравлический эффект, можно издалека, дистанционно, возбуждать в жидкости гидравлические импульсы с помощью луча света (см. также 17.7).
4.8. K а в и т а ц и я.
Кавитацией называется образование разрывов сплошности жидкости в результате местного понижения давления. Если понижение давления происходит вследствии возникновения больших местных скоростей в потоке движущейся капельной жидкости, то кавитация называется гидродинамической, а если вследствие прохождения в жидкости акустических волн, то акустической.
4.8.1. Гидродинамическая кавитация
Возникает в тех участках потока, где давление понижается до некоторого критического значения. Присутствующие в жидкости пузырьки газа или пара, двигаясь с потоком жидкости и попадая в облать давления меньше критического, приобретает способность к неограниченному росту. После перехода в зону пониженного давления рост прекращается и пузырьки начинают уменьшаться. Если пузырьки содержат достаточно много газа, то при достижении ими минимального радиуса, они восстанавливаются и совершают несколько циклов затухающих колебаний, а если мало, то пузырек схлопывается полностью в первом цикле.
Таким образом, вблизи обтекаемого тела создается кавитационная зона, заполненная движущимися пузырьками. Сокращение кавитационного пузырька происходит с большой скоростью и сопровождается звуковым импульсом, тем более сильным, чем меньше газа содержит пузырек. Если степень развития кавитации такова, что возникает и захлопывается множество пузырьков, то явление сопровождается сильным шумом со сплошным спетром от несколько сотен герц до сотен кгц. Спектр расширяется в область низких частот по мере увеличения максимального радиуса пузырьков.
Если бы жидкость была идиально однороной, а поверхность твердого тела, с которым она граничит идеально смачисваемой, то разрыв происходил бы при давлении более низком, чем давление насыщенного паражидкости, при котором жидкость становится нестабильной. Теоретическая прочность воды на разрыв равна 1500 кг/см. реальные жидкости менее прочны. Максимальная прочность на разрыв тщательно очищенной воды, достигнутая при растяжении воды при 10 град. составляет 260 кг/см. Обычно же разрыв наступает при давлениях, насыщенного пара. низкая прочность реальных жидкостей связана с наличием в них так называемых кавитационных зародышей – плохо смачиваемых участков твердого тела, твердых частиц, частиц, заполненных газом микроскопических газовы предохраняемых от растворения мономолекулярными органическими оболочками, ионных образований, возникающих под действием космических лучей.
Увеличение скорости потока после начала кавитаци влечет за собой быстрое возрастание числа развивающихся пузырьков, вслед за чем происходит их обьединение в общую кавитациверну и течение переходит в струйное.
Для плохо обтекаемых тел, обладающих острыми кромками, формирование струйного вида кавитации происходит очень быстро. наличие кавитации неблагоприятно сказывается на работе гидравлических машин, турбин, насосов, судовых гребных винтов и заставляет принимать меры к избежанию кавитации. Если это оказывается невозможным, то в некоторых случаях полезно усилить развитие кавитации, создать так называемый режим "суеркавитации", отличающийся струйным характером обтекания и применив специальное профилирование лопастей, обеспечить благоприятные условия работы механизмов. Замыкание кавитационных пузырьков вблизи поверхности обтекаемого тела часто приводит к разрушению поверхности,– так называемой кавитационной эрозии. Чтобы избежать захлопывание кавитационных пузырьков, надо подать в область пониженного давления какой-нибудь газ, например воздух.
Так сделали специалисты Гидропроекта. Они построили на водосбросе Нурекской плотины в области максимальной кавитации искуственный трамплин, создав тем самым большую зону пониженного давления, которую соединили с атмосферой. Теперь кавитация засасывала воздух из атмосферы и сама себя разрушила.
Очень часто используют происходящие при кавитации разрушения для ускорения различных технологических процессов.
А.с. N 443663: Способ приготовления грубых кормов, включающий обработку их раствором щелочи, отличающийся тем, что с целью размягчения и ускорения влагонасыщения корма, обработку его осуществляют в кавитационном режиме.
4.8.2. Акустическая кавитация.
Это образование и захлопывание полостей и жидкости под воздействием звука. Полости образуются в результате разрыва жидкости во время полупериодов сжатия. Полости заполнены в основном насыщенным паром данной жидкости, поэтому процесс иногда называется паровой кавитацией в отличие от газовой кавитацииинтенсивных нелинейных колебаний газовых (обычно воздушных) пузырьков в звуковом поле, существовавших в жидкости до включения звука. Если газовая кавитация может протекать с большей или меньшей интенсивностью при любых значениях амплитуды давления звуковой волны, то паровая лишь при достижении некоторого критического значения амплитуды давления, так называемого кавитационного порога. Величина этого порога – от давлениянасыщенного пара жидкости до нескольких десятков и даже сотен атмосфер (в зависимости от содержания в жидкости зародышей). Эксперементально установлено, что величина порога завист от многих факторов. Порог повышается с ростом гидростатического давления, после обжатия жидкости высоким (порядка 1000 атм.) статистическим давлением,при обезгаживании и охлаждении жидкости, с ростом частоты звука и с уменьшением продолжительности озвучивания. Порог выше для бегущей, чем для стоячей воды.
При захлопывании сферической полости давление в ней резко возрастает, как при взрыве, что приводит к излучению импульса сжатия. Давление при захлопывании особенно велико при кавитации на низких частотах в обезгаженной жидкости с малым давлен насыщенного пара. Если увеличить содержание газа в жидкости, то диффузия газа в полости усилится, захлопывание полостей станет неполным и подьем давления при захлопывании – небольшим. При содержании газа в жидкости выше 50% от насыщения возникает кавитационное обезгаживание жидкости – образование и всплывание газовых пузырьков и вырождение паровой кавитации в газовую. Если образовавшиеся паровые пузырьки колеблются вблизи границы с твердым телом, около них возникают интенсивные микропотоки. Появление кавитации ограничивает дальнейшее повышение интенсивности звука, излучаемого в жидкости, что влечет за собой снижение нагрузки на излучатель.
Акустическая кавитация вызывает ряд эффектов. часть из них, например, разрушение и диспергирование твердых тел, эмульгирование жидкостей, очистка – обязаны своим происхождением ударам при захлопывании полостей и микропотокам вблизи пузырьков. Другие эффекты (например, вызывает и ускоряет химические реакции) связаны с ионизацией при образовании полостей. Благодаря этим эффектам акустическая кавитация находит все более широкое применение для создания новых и совершенствования известных технологических процессов. Большинство практических применений ультразвука основано на эффекте кавитации.
В А.с. 200981 описывается установка, использующая в своей работе явление кавитации. Назначение установки – снятие заусенцев с деталей самой различной формы. Деталь помещается в жидкость под высоким давлением, насыщенную мельчайшими абразивными частицами. При возбуждении в жидкости интенсивной акустической кавитации заусеницы отделяются от деталей; вдобавок деталь очищается от стружки и масла не только на открытых поверхностях, но и глубоких отверстиях.
А.с. 285394: Способ создания кавитации в жидкости путем возбуждения непрерывных колебаний звуковой или ультразвуковой частоты, отличающийся тем, что с целью поваышения эрозионной активности жидкости возбуждают в полупериод сжатия дополнительный пиковый импульс сжатия, соответствующий по времени концу фазы расширения или началу фазы захлопывания кавитационных полостей.
А.с. 409569: Способ детектирования радиоактивных излучений по их воздействию на протекание акустической кавитации в жидкотях, отличающийся тем, что с целью увеличения надежности детектирования, в кавитирующее акустическое поле помещают тест-образец, определяют степень его эрозии, по изменению которой судят об интенсивности радиоактивного излучения.
А.с. 446757: Способ получения теплофизической метки, например, для измерения расхода путем воздействия излучением на исследуемый поток, отличающийся тем, что с целью расширения диапазона измеряемых сред, воздействуют на контролируемый поток ультразвуковым полем с интенсивностью выше порога кавитации, фокусируют звуковые волны в локальную область, создают кратковременный процесс кавитации и получают теплофизическую неоднородность за счет продуктов кавитации.
4.8.3. Сонолюминисценция.
В момент захлопывания кавитационного пузырька наблюдается его слабое свечение, причиной этого явления является нагревание газа в пузырьке, обусловленное высокими давлениями при его схлопывании. Вспышка может длиться от 1/20 до 1/1000 сек. Интенсивность света зависит от колличесва газа в пузырьке: если газ в пузыорьке отсутствует, то свечение не возникает. Световое излучения пузырька очень слабо и становится видимым при усилении или в полной темноте.
Л И Т Е Р А Т У Р А
К 4.1. М.И.Шлионис, Магнитные жидкости. УФН. 1974, т.112.
авп. 3, стр.427
Н.З.Френкель, Гидравлика, М.-Л, 1956.
М.Д.Чертоусов, Гидравлика, М., 1957.
К 4.2. З.П.Шульман и др., Электрореологический эффект, Минск,
"Наука и техника", 1972.
К 4.3. И.М.Холостников, Теория сверхтекучести,
М., "Наука", 1977.
А.Роуз, Техника низкотемпературного эксперимента, М.,
"Мир", 1966.
К 4.4. Л.Лодж, Эластические жидкости, М., "Наука", 1969.
Физика ударных волн и высокотемпературных явлений,
М., 1963.
В.Н.Дмитриев, Основы пневмоавтоматики,
М., "Машиностроение", 1973.
Ю.Иванов, Была ли дырка в ванне Архимеда?
"Техника молодежи", 1972, стр.40.
А.Альтшуль и др., Визревые воронки, "Наука и жизнь",
1968, N'7.
К 4.6. М.П.Малков, Справочник по физико-химическим основам
глубокого охлаждения, М.-Л., 1963.
К 4.7. Н.Е.Жуковский, "О гидравлическом ударе в водопроводных
кранах", М.-Л., 1949.
М.А.Мостков и др., "Расчеты гидравлического удара",
М.-Л., 1952.
Г.В.Аронович и др.,"Гидравлический удар и уравнительные
резервуары", М., "Наука", 1968.
Л.А.Юткин, "Электрогидравлический эффект", М.,
"Машгиз", 1955.
К 4.8. Л.Родзинский, "Кавитация против кавитации", "Знание
сила", N'6, 1977, с.4.
Н.А.Рой, Возникновение и протекание ультразвуковой
кавитации, Акустический журнал, 1957, вып.I.
И.Пирсол, "Кавитация", М., "Мир", 1975.
5. КОЛЕБАНИЯ И ВОЛНЫ
5.1. Механические колебания.
Колебаниями называют процессы, точно или приблизительно повторяющиеся через одинаковые промежутки времени. По своему характеру колебания подразделяют на:
5.1.1. Свободные /или собственные/.
Свободные колебания – представляют собой колебания, совершаемые системами, представленными самим себе, около своего положения равновесия. Для возбуждения собственных колебаний требуется определенное количество энергии. Частота собственных колебаний определяется целиком свойствами самой системы.
А.с. 245 419: Способ определения главных центральных осей и моментов инерции геометрической фигуры, имеющей сложные очертания, путем измерения периода колебания пластинки, данной фигуре, отличающейся тем, что с целью повышения точности, в ластинке просверливают три отверстия, не лежащие не на одной прямой, протягивают через два из них нить, натягивают ее горизонтально и измеряют период колебания пластинки, затем протягивают нить через вторую пару отверстий и также измеряют период колебания пластинки, и по измеренным периодам колебаний подсчитывают значения осевых и центробежных моментов инерции относительно центральных осей инерции фигуры.
А.с. 280 014: Способ определения координат центра тяжести механической системы, заключающейся в том, что к системе поочередно прикладывают движущие моменты, и по величине этих моментов в зависимости от веса системы определяют координаты ее центра тяжести, отличающийся тем, что с целью повышения точности измерения при ограниченных углах поворота системы, движущие моменты, прикладываемые к системе, изменяют по гармоническому закону, с постоянной амплитудой на двух различных по частоте колебаний режимах, измеряют движущие моменты при прохождении системой нулевого положения и некоторого произвольного выбранного другого положения, отличного от нулевого, и по величине этих моментов в зависимости от частоты колебания системы и ее веса определяют координаты центра тяжести.
А.с. 288 383: Способ измерения натяжения движущейся магнитной ленты в лентопротяжных механизмах по частоте ее колебаний, отличающийся тем, что с целью повышения точности, регистрируют крутильные колебания ленты вокруг ее продольной оси, и по частотному спектру колебаний определяют среднюю величину натяжения ленты.
Свободные колебания из-за непрерывного расхода энергии на преодоление сил трения, всегда являются затухающими. Скорость затухания определяется характеристиками среды, в которой происходят колебания.
А.с. 246 101: Способ измерения массового расхода жидкостей и газов путем сообщения колебаний участку трубопровода со средой, отличающийся тем, что с целью повышения точности измерения, участку трубопровода сообщают периодические колебания и измеряют время затухания свободных колебаний участка трубопровода между двумя фиксированными уровнями колебаний, обратно пропорциональное количеству прошедшей за это время среды.
А.с. 274 276: Способ измерения давления, воспринимаемого индикатором в виде кварцевой пластинки отличающийся тем, что с целью повышения чувствительности и надежности измерения, указанную пластинку приводят в резонансное колебание и по изменениям ее импеданса и декремента затухания судят о воспринятых ее давлениях.
А.с. 348945: Способ определения содержания в яйце плотной жидкой фракци, отличающийся тем, что с целью сохранения плотности яйца и сокращения продолжительности проведения процесса, содержания плотной жидкой фракции в яйце определяют по числу колебаний его содержимого путем воздействияна яйцо маятниковых маятниковых колебаний до заданной амплитуды затухания и последующего пересчета полученного числа колебаний по предварительно построенной калибровочной кривой на содержание плотной и жидкой фракции яйца.
5.1.2. В ы н у ж д е н н ы е колебания совершаются под действием внешней периодической /или почти периодической/ силы, например, колебания мембраны микрофона, барабанной перепонки уха, ударного элемента отбойных молотков, пластины магнитострикционного преобразователя ультразвуковых агрегатов. Частота вынужденных колебаний равна частоте вынуждающей силы, а амплитуда колебаний зависит от свойств системы.
А.с. 271 868: Способ автоматического контроля начала образования неразрушаемой структуры бетонной смеси при виброформировании путем фиксации момента изменения свойств бетонной смеси, отличающийся тем, что с целью повышения точности измерения, определяют момент совпадания величин амплитуд вибрации бетонной смеси и стола виброплощадки.
А.с. 301 551: Способ измерения массы, включающий определение параметров колебания, отличающийся тем, что с целью точного измерения и исключения влияния внешних механических помех, например, при контроле массы рыбы загружаемой в консервную банку на плавучем рыбоконсервном заводе, на измеряемую упруго подвешенную массу периодически воздействует возмущающей силой с частотой, отличающейся от частоты помех и по амплитуде вынужденных колебаний, возникающих при этом, судят о величине массы.
А.с. 560 563: Способ контроля выдаиваниявымени животных при машинном доении, включающий определение степени опорожнения вымени по изменениям физических свойств его с помощью известных устройств, отличающийся тем, что с целью повышения точности контроля, определения степени опорожнения долей вымени ведут по изменению уровня и частоты акустических колебаний возникающих в них.
Вынужденные колебания, возбуждаемые в системе внешними силами, часто приводят к интенсификации многих, технологических процессов.
А.с. 460 072: Способ распыления жидкостей, по которому на распыляемую жидкость накладывают высоко частотные колебания, отличающийся тем, что с целью повышения эффективности распыления, применяют последовательное наложение колебаний различных частот.
А.с. 512 893: Способ электроэрозионной обработки с подачей в межэлектродный зазор одновременно с рабочей жидкостью нейтрального газа, отличающийся тем, что с целью интенсификации процесса, газ вводят в пульсирующем режиме с частотой 0,15 -0,2 Гц.
Патент США 3 467 331: Способ разматывания ленты, заключающийся в том, что участок ленты, сматывающейся с подающего рулона, приводят в колебания, под действием которого преодолевается сила сцепления между витками ленты подающего рулона.
Если на сверло наложить в процессе сверления возвратопоступательные колебания, направленные вдоль его оси, то процесс сверления намного упрощается, так как сверло многократно /с частотой колебания/ как бы возвращается в исходное положение, поэтому его не уводит, трение уменьшается, повышается чистота поверхности сверления.
5.1.3. Особую роль в колебательных процессах играет явление р е з о н а н с а – резкого возрастания амплитуды вынужденных колебаний, наступающего при приближении частот собственных и вынужденных колебаний системы. Явление резонанса используется для интенсификации различных технологических процессов.
А.с. 119 132: Вибрационный транспортер, выполненный ввиде желоба или трубы с размещенными вдоль них с определенным шагом вибраторами, отличающийся тем, что с целью уменьшения количества вибраторов, приводящих транспортер, часть из них заменена подпружиненными реактивными массами, настроенными в резонанс со всей колеблющейся системой.
А.с. 508 543: Способ обработки металлических изделий, включающий нагрев до температуры отпуска с одновременным приложением механической вибрации, отличающийся тем, что с целью предотвращения образования усталостных трещин и интенсификации процесса снятия внутренних напряжений в сварных изделиях, обработку ведут при местном нагреве зоны сварного шва с одновременной вибрацией всего изделия, осуществляемой в резонансном режиме с частотой, соответствующей частоте при его нагреве.
А.с. 515 006: Способ сушки дисперсных материалов, например, солода, в кипящем слое путем продувки его восходящим пульсирующим потоком теплоносителя, отличающийся тем, что с целью интенсификации тепломассообмена, продувку ведут в режиме резонанса с увеличением в зависимости от влажности материала частоты пульсаций потока теплоносителя, например, для солода от 6 до 14 Гц., и поддержанием ее средней частоте собственных колебаний плотности кипящего слоя, и для измерения каких-либо характеристик системы.
А.с. 175 265: Резонасный датчик уровня сжижения газов, содержащий колебательный контур, выполненный ввиде стержней с укрепленными токопроводящими элементами, отличающийся тем, что с целью повышения точности измерения, стержни настроены на различные резонансные частоты и расположены относительно друг друга на расстоянии, позволяющем образовать электрическую емкость, достаточную для возбуждения одного из стержней.
А.с. 271 051: Способ измерения массы вещества в резервуаре, например, жидкого, отличающийся тем, что с целью повышения точности и надежности измерения возбуждают механические резонансные колебания системы резервуар – вещество, измеряют их частоту, по величине которой судят о массе вещества.
А.с. 275 514: Способ определения химической стойкости пористого материала к воздействию агреесивных сред, отличающийся тем, что с целью повышения точности определения, образец подвергают воздействию механических колебаний, замеряют резонансную частоту его собственных колебаний, затем помещают в агрессивную средуи выдерживают необходимое время, зависящее от материала образца, после чего извлекают, промывают, сушат, снова подвергают воздействию механических колебаний с замером резонансной частоты собственных колебаний, и, по изменению упругих свойств, например, модуля упругости, вычисленного на основании замеренных величин резонансной частоты собственных колебаний образца, определяют его химическую стойкость.
А.с. 509 798: Способ испытания конструкций без разрушения материалов, заключающийся в том, что в элементе конструкции возбуждают колебания на его собственной частоте и увеличивают эту частоту при определении усилий, отличающийся тем, что с целью повышения точности, длину колеблющейся части элемента ограничивают положением дополнительных механических связей, после чего измеряют собственную частоту элемента под этой нагрузкой, и, сравнивая эти частоты, судят о величине начальных усилий.
А.с. 519 239: Способ обнаружения налипания металлов в калибрах валков чистовой клети при прокатке, например, арматурной стали, включающей измерения амплитудно частотных характеристик процесса и сравнения их с эталонными, отличающийся тем, что с целью упрощения и повышения надености способа, контролируют колебания раската в вертикальной плоскости на выходе из чистовой клети, из сп выделяют составляющую колебаний полосы с частотой вращения валка и судят о налипании металла по трех-четырех кратному увеличению амплитуды выделенной составляющей колебаний.
5.1.4. А в т о к о л е б а н и я – незатухающие колебания, которые осуществляются в неконсервативной системе при отсутствии переменного внешнего воздействия /за счет внутреннего источника энергии/, причем амплитуда и период этих колебаний определяются свойствамисамой системы. Классический пример автоколебательной системы – маятниковые часы. Как правило, автоколебательные системы склонны к самовозбуждению.