355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Автор Неизвестен » Физические эффекты и явления » Текст книги (страница 10)
Физические эффекты и явления
  • Текст добавлен: 20 сентября 2016, 16:08

Текст книги "Физические эффекты и явления"


Автор книги: Автор Неизвестен



сообщить о нарушении

Текущая страница: 10 (всего у книги 15 страниц)

А.с. 182 778: Низкотемпературное устройство на основе эффектов Пельтье и Эттингкгаузена, отличающийся тем, что с целью одновременного использования термоэлектрической батареи как генератора холода и как источника магнитного поля для охладителя Эттингсгаузена, термобатарея выполнена ввиде цилиндрического соленоида.

10.1.3. Изменяется сопротивление проводника, что эквивалентно возникновению добавочной разности потенциалов вдоль направления электрического тока. Для обычных металлов это изменение мало – порядка 0,1% в поле 20 кв, однако для висмута и полупроводников величина изменения может достигать 200% (в полях 80 кв.).

А.с. 163 508: Универсальный гальваномагнитный датчик, содержащий плоские токовые и холловские электроды точечность контакта которых обеспечивает перемычки в теле датчика, отличающийся тем, что с целью уменьшения эффекта закорачивания холловского напряжения токовыми электродами использования одного и того же единого гальваномагнитного датчика как датчика э.д.с. Холла или как датчика магнитосопротивления, или как гиратора, токовые электроды расположены вдоль эквипотенциальных линий поля Холла или под острым углом к ним, например по ребрам плоского датчика, а для перехода из одного используемого эффекта к другому применено коммутирующее устройство и регулируемый источник питания.

10.1.4. Термомагнитные явления – совокупность явлений, возникающих под действием магнитного поля в проводниках, внутри которых имеется тепловой поток.

при поперечном замагничивании проводника возникает следующие термомагнитные явления:

10.2.1. В направлении перпендикулярном градиенту температур и направлению магнитного поля возникает градиент температур (эффект Риге-Ледюка).

10.2.3. При продольном намагничивании образца изменяется сопротивление, термо – э.д.с., теплопроводность (появляется тепловой поток).

А.с. 187 859: Устройство для измерения э.д.с. поперечного эффекта Кернота-Эттингсгаузена в полупроводниковых материалах, содержащее нагреватель, холодильник и термопары-зонды, отличающиеся тем, что с целью исключения неизотермической части э.д. с. Нернота-Эттингсгаузена, уменьшения тепловых потерь и исключения цикуляционных токов на контакте полупроводникизмерительные зонды, термопары-зонды подведены к поверхности исследуемого образца через массивные металлические блоки холодильника инагревателя, находяшиеся в хорошем тепловом контакте с образцом, электрически изолированные от последнего.

В этом авторском свидетельстве физический эффект не применен для решения задач. Оно просто демонстрирует, что использование эффектов требует как их знания, так и решения сложных электрических задач.

10.2.4. Электронный фототермомагнитный эффект – появление э.д.с. в однородном проводнике (полупроводнике или металле), помещенном в магнитном поле, обусловленное поглощением электромагнитного получения свободными носителями заряда. Магнитное поле должно быть перпендикулярно потоку излучения. Этот эффект применяется в высокочувствительных 10 в минус тринадцатой степени вт, сек1/2 приемниках длинноволнового инфракрасного излучения. Постоянная времени эффекта – 10 в минус седьмой степени сек.

Л И Т Е Р А Т У Р А

к 10.1 "Радио", N'9, 1964, стр.53, А.с.249473, 255996; к 10.2 А.с.476463.

11.ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ.

11.1 В обычных услх любой газ,буть то воздух или пары серебра, является изолятором. Для того,чтобы под действием электрического полявозник ток, требуется каким-то способом ионизовать молекулы газа. Внешние проявления и характеристики разрядов в газе чрезвычайно разнообразны,что объясняется широким диапазоном параметров и элементарных процессов,определяющих прохождения тока через газ.Кпервым относятся состав и давление газа, геометрическая конфигурация разрядного пространства, частота внешнего электрического поля,сила тока и т.п.,ко вторым – ионизация и возбуждение атомов и молекул газа,рекомендация удары второго рода,упругое рассеяние носителей заряда,различные виды эмиссии электронов. Такое многообразие управляемых факторов создает предпосылки для весьма широкого пименения газовых разрядов.

11.1.1.П о т е н ц и а л о м и о н и з а ц и и называется энергия, необходимая для отрыва электрона от атома или иона. Для нейтронных невозбужденных атомов величина этой энергии изменяется от 4 ( ) до 24 (Не) электрон-вольт. В случае молекул и радикалов энергия разрывов связей лежит в пределах 0,06+ 11,1 э.в.( )

11.1.2. Ф о т о и о н и з а ц и я а т о м о в. Атомы могут понизироваться при поглащении квантов света, энергия которых равна потенциалу ионизации атома или превосходит ее.

11.1.3. П о в е р х н о с т н а я и о н и з а ц и я . Адсорбированный атом может покинуть нагретую поверхность как в атомном так и в ионизованном состоянии. Для ионизации необходимо, чтобы работа выхода поверхности была больше энергии ионизации уровня валентного электрона адсорбированного атома (щелочные металлы на вольфраме и платине)

11.1.4.Процессы ионизации используются не только для возбуждения различных видов газовых разрядов,но и для интенсификации различных химических реакций и для управления потоками газов с помощью электрических магнитных полей (см.6.1.1 и 6.7. 2.).

А.С.N 187894. Способ электродуговой сварки с непрерывной и импульсной моделей энергии,отличающийся тем,что с целью повышения точности выполнения сварного шва и облегчения зажигания дуги,ионизирующиедуговой промежуток.

А.С. N 444818: Способ нагрева стали в окислительной атмосфере, отличающийся тем,что с целью снижения обезуглеродивания, в процессе нагрева осуществляют ионизированные атмосферы.

А.С. 282684: Способ измерения малых потоков газа, выпускаемых в вакуумный объем,отличающийся тем,что с целью повышения точности измерения,газ перед запуском ионизируют и формируют в однородный полный пучек, а затем вводят ионный пучок в вакуумный объем,где его нейтрализуют на металлической мишени, и по току ионного пучка судят о величине газового потока.

11.2. Обычно газовй разряд поисходит между проводящими электродами создающими граничную конфигурацию электрического поля и играющими значительную роль в качестве источников и стоков заряженных частиц. Однако наличие электродов необязательно (высокочастотный тороидальный заряд).

11.3. При достаточно больших давлениях и длинах разрядного промежутка основную роль в возникновении и протекании разряда играет газовая среда. Поддержание разрядного тока определяется поддерживанием равновесной ионизации газа, происходящий при малых токах за счет гауноендовских процессов каскадной ионизации, а при больших токах за счет термической ионизации.

При уменьшении давления газа и длины разрядного промежутка все большую роль играют процессы на электродах; при P 0,02+0,4 мм.рт.ст/см процессы на электродах становятся определяющими.

11.4. При малых разрядных токах между холодными электродами и достаточно однородном поле основным типом разряда является тлеющий разряд, характеризующийся значительным (50 – 400 В) катодным падением потенциала. Катод в этом типе разряда испускает электроны под действием заряженных частиц и световых квантов, а тепловые явления не играют роли в поддерживани разряда.

Патент США 3 533 434: В устройстве, предназначенном для считывания информации с перфорированного носителя, используются лампы тлеющего разряда, имеющие невысокую стоимость, и, кроме того, обладающие высокой надежностью. Освещение ламп через перфорации носителя информации источником пульсирующего света вызывает зажигание некоторых из них, продолжающиеся и после исчезновения светового импульса. Таким образом лампы тлеющего разряда обеспечивают хранение информации и не требуют дополнительного запоминающего устройства.

11.5. Примесь молекулярных газов в разрядном промежутке при короноом разряде приведет к образованию страт, т.е. расположенных поперек градиента электрического поля темных и светлых полос.

11.6. Тлеющий разряд в сильно неоднородном электрическом поле и значительном ( P 100 мм.рт.ст.) давлении называют коронным. Ток короного разряда имеет характер импульсов, вызываемых электронными лавинами. Частота появления импульсов 10-100 кГц.

11.7. Дуговой разряд наблюдается при силе тока не менее нескольких ампер. Для этого типа разряда характерно малое (до 10 В) катодное падение потенциала и высокая плотность тока. Для дугового разряда существенна высокая электронная эмиссия катода и термическая ионизация в плазменном столбе. Спектр дуги обычно содержит линии материала катода.

А.с. 226 729: Способ выпрямления переменного тока с помощью газоразрядного промежутка с полым катодом при низком давлении газа, соответствующим области левой ветви кривой Пашена, отличающийся тем, что с уелью повышения выпрямленного тока и уменьшения падения напряжения в течении проводящей части периода, при положительном потенциале на аноде систему "анод-полый катод" переводить в режим дугового разряда.

11.8. Искровой разряд начинается с образования стример саморапространяющихся электронных лавин, образующих проводящий канал между электродами. Вторая стадия искрового разряда главный разряд – происходит вдоль канала, образованного стримером, а по свим характеристикам близка к дуговому разряду, ограниченному во времени емкостью электродов и недостаточностью питания. При давлении 1 атм., материал и состояние электродов не оказывает влияния на пробивное напряжение в этом виде разряда.

Расстояние между сферическими электродами, соответствующее возникноаению искрового пробоя весьма часто служит для измерения высокого напряжения.

А.с. 272 663: Способ определения размера макрочастиц с подачей их на заряженную поверхность, отличающийся тем, что с целью повышения точности измерения, определяют интенсивность световой вспышки, сопровождающей электрический пробой между заряженной поверхностью и приближающейся к ней частицей и по интенсивности судят о размере частицы.

11.9. Факельный разряд – особый вид высокочастотного одноэлектродного разряда. При давлениях, близких к атмосферному или выше его, факельный разряд имеет форму пламени свечи. Этот вид разряда может существовать при частотах 10 МГц, при достаточной мощности источника.

11.10. При изучении заряженного острия наблюдается интересный эффект – так называемое стекание зарядов с острия. В действительности никакого стекания нет. Механизм этого явления следующий: имеющиеся в воздухе в небольшом количестве свободные заряды в близи острия разгоняются и, ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того де знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов создает впечатление стекания зарядов. При этом острие разряжается, и одновременно получает импульс, направленный против острия.

Несколько примеров на применение коронного разряда:

А.с. 485 282: Устройство для кондиционирования воздуха, содержащее корпус с поддоном и патрубками для подвода и отвода воздуха и размещенный в корпусе воздуховоздушный теплообменник с каналами орошаемыми со стороны одного из потоков, отличающийся тем, что с целью повышения степени охлаждения воздуха путем интенсификации испарения коронирующие воды, по оси орошаемых каналов теплообменника установлены электроды, прикрепленные к имеющему заземление корпусу с помощью изоляторов и подключенные к отрицательному полюсу источника напряжения.

Заявка СССР 744429/25: Авторы предлагали измерять диаметр проволоки тоньше пятидесяти микрон с помощью коронного разряда. Как известно, коронный разряд ввиде светящегося кольца возникает вокруг проводника, если к проводнику приложить высокое напряжение. При определении сечения проводника коронный разряд будет иметь вполне определенные характеристики. Стоить изменить сечение, тотчас изменяется и характеристика коронного разряда.

Л И Т Е Р А Т У Р А

Таблицы физических величин. М.,"Атомиздат", 1976, стр.427-439.

к 11.1 А.с.179599. к 11.4 А.с.234527.

12. ЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ.

Эффекты, связанные с относительным движением двух фаз под действием электрического поля, а также возникновение разности потенциалов при относительном смещении двух фаз, на границе между которыми существует двойной электрический слой, называется электрокинетическими явлениями.

12.1. Электроосмос (электроэндоосмос) – движение жидкостей или газов через капилляры, твердые пористые диафрагмы и мембраны, а также через слои очень мелких частиц под действием внешнего электрического поля (см.3.6.1.).

Электроосмос применяется при очистке коллоидных растворов от примесей, для очистки глицерина, сахарных сиропов, желатина, воды, при дублении кож, а также при окраске некоторых материалов.

12.2. Эффект обратный электроосмосу – возникновение разности потенциалов между концами капилляра, а также между противоположными поверхностными диафрагмами мембраны для другой пористой среды при прода влении через них жидкости (потенциал течения).

12.3. Электрофорез (катофорез) – движение под действием внешнего электрического поля твердых частиц, пузырьков газа, капель жидкости, а также коллоидных частиц, находящихся во взвешенном состоянии в жидкой или газообразной среде.

Электрофорез применяют при определении взвешенных в жидкости мелких частиц, не поддающихся фильтрованию или сжиманию, для обезвоживания торфа, очистки глины или каолина, обезвоживания красок, осаждение каучука из латекса, разделения маслянных эмульсий, осаждения дымов и туманов.

А.с. 308 986: Способ снижения пористотости керамических изделий путем насыщения их дисперсионным материалом, отличающийся тем, что сцелью повышения электрической прочности, насыщения проводят за счет электрофоретического осаждения твердых частиц на суспенции с наводной дисперсионной средой.

12.4. Эффект обратный электрофорезу – возникновение разности потенциалов и жидкости в результате движения частиц, вызванного силами не электрического характера, например, при оседании частиц в поле тяжести, при движении в ультразвуковом или центробежном поле (седментационный потенциал или потенциал оседания).

12.5. Электрокапиллярные явления – явления связанные с зависимостью величины поверхностного натяжения на границе раздела электрод-раствор от потенциала электрода (см.3.3.6.).

Л И Т Е Р А Т У Р А

Краткая химическая энциклопедия. М.,1967, т.5, стр.934-936.

13. СВЕТ И ВЕЩЕСТВО.

13.1. Свет. Видимое. УФ и ИК-излучение. Свет это совокупность электромагнитных волн различной длины. Диапазон длин волн видимого света – от 0,4 до 0,75 мкм. К нему примыкают области невидимого света – ультрафиолетовая (от 0,4 до 0,1 мкм) и инфракрасная (от 0,75 до 750 мкм).

Видимый свет доносит до нас большую часть информации из внешнего мира. Помимо зрительного восприятия, свет можно обнаружить по его тепловому эффекту, по его электрическому действию или по вызываемой им химической реакции. Восприятие света сетчаткой глаза является одним из примеров его фотохимического действия. В зрительном восприяти определенной длине волны света сопутствует определенный цвет. Так излучение с длиной волны 0,48-0,5 мкм будет голубым; 0,56-0,59 – желтым; 0,62-0,75 красным. Естественный белый свет, есть совокупность волн различной длины, распространяющихся одновременно. Его можно разложить на составляющие и выцедить их с помощью спектральных приборов (призм, дифракционных решеток, светофильтров).

Как и всякая волна, свет несет с собой энергию, которая зависит от длины волны (или частоты) излучения.

Ультрафиолетовое излучение, как более коротковолновое, характеризуется большей энергией и более сильным взаимодействием с веществом, чем обьясняется широкое его использование в изобретательской практике. Например, излучение ультрафиолетом может инициировать или усиливать многие химические реакции.

А.с. 489 602: Способ соединения металлов путем заполнения зазора между соединяемыми деталями металлом, полученным разложением его химического соединения, отличающийся тем, что с целью устранения термического воздействия на соединяемые детали, разложение химических соединений осуществляет облучением ультрафиолетовым светом.

Существенно влияние ультрафиолета на биологические обьекты, например, его бактерецидное действие.

Следует помнить, что ультрафиолетовое излучение очень сильно поглощается большинством веществ, что не позволяет применить при работе с ним обычную стеклянную оптику. До 0,18 мкм исползуют кварц, фтористый литий, до 0,12 мкм – флюорит; для еще более коротких волн приходится применять отражательную оптику.

Еще более широко в технике используют длинноволновую часть спектра – инфракрасное излучение. Отметить здесь приборы ночного видения, ИК-спектроскопию, тепловую обработку материалов, лазерную технику, измерение на расстоянии температуры предметов.

А.с. 269 400: Способ противопожарного контроля волокнистого материала, например, хлопка-сырца, подаваемого по трубопроводу к месту его хранения, отличающийся тем, что с целью повышения надежности хранения, контроль осуществляется посредством расположенных по периметру трубопровода датчиков, реагирующих на инфракрасное излучение.

А.с. 271 550: Способ ремонта асфальтобетонных дорожных покрытий на основе применения инфракрасного излучения, отличающийся тем, что с целью обеспечения ремонта в зимнее время вначале создают тепловую защиту непосредственно в месте произвдства работ путем создания зон положительных температур посредством источников инфракрасного ихлучения, затем разогревают применяемые в качестве исходного материала асфальтобетонные брикеты одновременно с ремонтируемым участком дорожного покрытия до пластического состояния при помощи инфракрасных лучей.

Интересное свойство ИК-лучей обнаружил недавно польские ученые: прямое облучение стальных изделий светом инфракрасных ламп сдерживает процессы коррозии не только в условиях обычного хранения, но и при повышении влажности и содержания сернистых газов.

Сильным изобретательским приемом является переход от одного диапазона излучения к другому.

А.с. 232 391: Способ определения экспозиции засветки фоторезисторов на основе диасоединений и азидов в процессе фотолитографии, отличающийся тем, что с целью улучшения воспроизводимости и увеличения выхода годных приборов, полупроводниковый эпитаксиальный материал с нанесеным на него фоторезистом облучают ультрафиолетовым или видимым светом, причем экспозицию определяют по времени исчезновения полосы поглощения пленки фоторезиста в области 2000-2500 см. в минус первой степени . Здесь облучают коротковолновым светом, а изменение свойств регистрируют по поглощению в инфракрасной области – 2000 см. в минус первой степени соответствуют длине волны 3,07 мкм.

13.1.1. Световое излучение может передавать свою энергию телу не только нагревая его или возбуждая его атомы, но и ввиде механического давления. Световое давление проявляется в том, что на освещаемую поверхность тела в направлении распространения света действует распределенная сила, пропорциональная плотности световой энергии и зависящая от оптических свойств поверхности. Световое давление на полностью отражающую зеркальную поверхность вдвое больше, чем на полностью поглощающую при прочих равных условиях.

Обьяснить это явление можно как с волновой, так и с корпускулярной точек зрения на природу света. В первом случае это результат взаимодействия электрического тока, наведенного в теле электрическим полем световой волны, с ее магнитным полем по закону Ампера. Во втором – результат передачи импульса фотонов поглощающей или отражающей стенке.

Величина светового давления мала. Так, яркий солнечный свет давит на 1 кв.м. черной поверхности с силой всего лишь 0, 4 мГ. Однако простота управления световым потоком, "оксеонтактность" воздействия и "избирательность" светового давления в отношении тел с различными поглощающими и отражающими свойствами позволяют с успехом использовать это явление в изобретательстве (например, фотонная ракета).

Согласно патенту США 3 590 932: световое давление используется в микроскопах для уравновешивания малых изменений массы или силы. Измерительное фотоэлектрическое устройство определяет, какая величина светового потока, а следовательно исветового давления, потребовалась для компенсации изменения массы образца и восстановления равновесия системы.

А.с. 174 432: Способ перекачки газов или паров из сосуда в сосуд путем создания перепада давления на разделяющей оба сосуда перегородке, имеющей отверстие, отличающийся тем, что с целью повышения эффективности откачки, на отверстие в перегородке фокусируют световой пучек, излучаемый, напрмер, лазером.

2. Способ по п.1 отличающийся тем, что с целью осуществления избирательной отакачки газов или паров и, в частности, с целью разделения изотопных смесей газов или паров, ширину спектра излучения избирают меньше частотного разноса центров линий поглощения соседних с них компонентов, при этом частоту излучателя настраивают на центр линии поглощения откачиваимого компонента.

13.2. Отражение и преломление света.

При падении параллельного пучка света на гладкую поверхность раздела двух прозрачных изотропных сред часть света отражается обратно, а другая часть проходит во вторую среду, при этом направление пучка света меняется; происходит преломление света.

Угол отражения равен углу падения, а угол преломления связан с углом падения соотношением: где п1 и п2 – показатели преломления сред, и – углы падения и преломления.

Показатели преломления обычных газов (при нормальных условиях) близки к 1, для стекл эта величина порядка от 1,4 до 1,7.

Эффекты отражения и преломления лежат в основе работы всех оптических систем, которые позволяют передавать световую энергию и изображения, фокусировать свет в мощные пучки, разлагать его в спектр (см. Дисперсия).

США патент 3 562 530: Способ получения и нагревания незагрязненных пламоидов заключается в том, что мишень располагается в первой сопряженной фональной точке закрытой камеры, которая представляет собой зеркально отражающую систему, во второй фональной точке, сопряженой спервой, генерируют короткий импульс электромагнитной энергии. Эта энергия фокусируется на мишень, которая нагревается до очень высокой температуры.

Отраженный свет может нести значительную информацию о форме предмета (а также о структуре его поверхности) как в случае зеркального, так и диффузного отражения.

А.с. 521 086: Способ определения пайки выводов радиодетале, напрмер, резисторов, при котором производят погружение вывода в каплю расплавленного припоя и регистрируют интервал времени между соприкосновением вывода с каплей и замыканием капли над ним, отличающийся тем, что с целью повышения точности измерения времени пайки, на поверхность капли припоя направляют луч света в форме узкой полосы и фиксируют интервал времени между началом отклонения отраженного от поверхности капли луча до его возвращения в исходное положение, используя фотоэлемент, соединенный со счетчиком времени.

А.с. : Способ определения частоты обработки поверхности, заключающийся в том, что напрвляют световой поток на контролируемую поверхность и регистрируют световой поток, отраженный от нее, отличающийся тем, что с целью повышения точности измерения, поворачивают контролируемую поверхность вокруг оси, перпендикулярной плоскости падения светового потока, регистрируют угол наклона, при котором отраженный от него световой поток будет составлять заданую часть, например, половину от максимального, и по алгебраической разности определяют чистоту обработки поверхности.

Процессы отражения и преломления связаны с внутренней структурой вещества; измерение показателя преломления – один из важнейших методов структурных исследований (3).

А.с. 280 956: Способ исследования тепловых напряжений на прозрачных моделях путем просвечивания образца монохроматическим светом, отличающийся тем ,что с целью определения полного теплового напряжения, вызываемого неоднородным нагревом, предварительно определяют градиент температур в исследуемом образце, измеряют соответствующий ему угол отклонения светового луча в данной точке, и по полученным данным судят о величине теплового напряжения.

А.с. 541 484: Способ регулировки температуры размягчения донного продукта отпарного аппарата в зависимости от изменения режимного параметра в зоне питания аппарата, отличающийся тем, что с целью повышения качества регулировки, режимный параметр корректируют в зависимости от коэффициента преломления дистиллярного продукта, выводимого из аппарата.

В общем случае, лучи отраженный и преломленный – это лучи поляризованного света (см.Поляризация). Степень поляризации зависит от угла падения. При определенном значении этого угла (угол Брюстера) отраженный свет полностью линейно поляризован перпендикулярно плоскости падения. При падении же под углом Брюстера света, уже поляризованного в плоскости падения, отражения вобще не происходит, не смотря на скачок показателя преломления (см.Анизотропия и свет).

А.с. 501 377: Акустооптический дефлектор, содержащий акустооптический эффект и пьезопреобразователь, отличающийся тем, что с целью увеличения его разрешающей способности с одновременным уменьшением потерь света на отражение, входная поверхность акустооптического элемента выполнена по отношению к поверхности, на которой расположен пьезопреобразователь, под углом, равным сумме угла Брюстера и угла дефракции Брегга для данного материала, а выходная поверхность – под углом, равнымразности между углом Брюстера и углом дифракции Брегга.

13.2.1. При определенных условиях может наблюдаться полное внутреннее отражение света, при котором вся энергия световой волны, падающей награницу двух двух прозрачных сред со стороны среды, оптически более плотной, полностью отражается в эту среду. В частности это явление используется в призмах биноклей и перископов, но диапазон его применения в изобретательстве гораздо шире (1).

А.с. 287 363: Устройство для измерения температуры, содержащее измерительный элемент, установленный в контролируемой среде, и источник белого света с диафрагмой, отличающийся тем, что с целью повышения точности измерения температуры и увеличения светосилы устройства, измерительный элемент выполнен ввиде двух прозрачных прямоугольных призм, сложенных наклонными гранями, между которыми расположен слой прозрачного вещества с показателем преломления, зависящим от длины волны и температуры, причем источник света расположен относительно измерительного элемента так, что ось светового потока наклонена к плоскости входной грани призмы под предельным углом полного внутренненго отражения.

А.с. 288 464: Устройство для активного контроля распыления жидкости, выполненное из источника света, воздействующего через собирательную линзу через фоторезистор, к которому подключен усилитель, отличающийся тем, что с целью увеличения надежности контроля, на пути света за линзой последователены оптический многогранник полного внутреннего отражения и охватывающая его изогнутая шторка, образующая с одной из граней клинообразное входное пространство.

США патент 3 552 825: Переменный цифровой элемент состоит из прямоугольной призмы, над гипотенузой грани которой располагаются несколько отражающих слоев. Луч света проходит через одну из катетных граней призмы и падает на ее гипотенузную грань под углом, который равен критическому углу или больше его. Обычно луч света будет испытывать полное внутреннее отражение в призме и выходить через другую ее катетную грань. Однако, если отражающий слой, расположенный над гипотенузой грани, имеет с ней оптический контакт, полное внутреннее отражение нарушается и луч проникает в этот отражающий слой. На гипотенузной грани могут располагаться несколько отражающих слоев. Явление полного внутреннего отражения, а также нарушение его, используется для определения колличества отражающих слоев, пройденных лучем света прежде, чем испытать полное внутреннее отражение, пройти обратный путь через отражающие слои, призму и выйти через вторую ее катетную грань. Отражающие слои изготавливаются из стекла, либо представляют собой полости, заполненные жидкостью. Изгиб того или иного слоя и, следовательно, нарушение оптического контакта этого слоя со смежной поврхностью, может быть осуществлен с помощью пьезоэлектрического кристалла.

На основе явления полного внутреннего отражения созданы светводы, которые гораздо эффективнее обычных линзовых систем. Широкие одиночные светопроводы передают излучение; применение волоконной оптики – пучков очень тонких светопроводов – позволяет передавать также изображение в том числе и по непрямым путям,т.к. пучок тонких волокон может быть сильно изогнут без разрушения и потери прозрачности.

А.С. N210677. Устройство для выравнивания косогорных машин или их рабочих органов, содержащее маятниковый датчик наклона и электрогидравлический механизм выравнивания,отличающийсятем,что с целью повышения надежности,оно снабжено гибкими световодами,измеряющими поперечное сечение под воздействием маятника,с одной стороны которых установлен источник света, а с другой – фотоэлементы,включенные в электрическую схему механизма выравнивания.

2.Устройство по 1, отличающееся тем,что ,между источником и гибким световодами установлены промежуточные световоды, например, из стекловолокна.

13.3. Поглощение и рассеяние света. В предыдущем разделе явления рассматривались как педположение что среды оптически однородны и абсрлютно прозрачны для света В действительности дело обстоит иначе. Процесс прохождения света через вещество это процесс поглощения атомами и молекулами энергии электромагнитной волны, которая идет на возбуждение колебания электронов и последующего переизлучения этой энергии в При этом, не вся энергия переизлучается, часть ее переходит в другие виды энергии например тепловую. Это приводит к поглощению света с в зависит от длины волны света и имеет максимумы на частотах,соответющих частотам собственных колебаний электронов в атомах, самих атомов и молекул (см."Поглощение и излучение света").Естественно, поглощение зависит от толщины слоя поглощающего вещества.

США, ПАТЕНТ N.3825755. Толщину полимерной пленки измеряют,сравнивая потоки ИК-излучения: отражающего от поверхности ипрошедшего сквозь пленку , ослабленного за счет поглощения в слое полимера.

Великобритания, заявка N.1332112. Для определения влагосодержания предмета его облучают светом с диной волны , лежащей в области поглощения воды, и измеряют сигнал ослабленного излучения.

А.С. N 266560. Контролируют процесс сушки по ИК-поглощению паров растворителя.


    Ваша оценка произведения:

Популярные книги за неделю