355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Автор Неизвестен » Физические эффекты и явления » Текст книги (страница 11)
Физические эффекты и явления
  • Текст добавлен: 20 сентября 2016, 16:08

Текст книги "Физические эффекты и явления"


Автор книги: Автор Неизвестен



сообщить о нарушении

Текущая страница: 11 (всего у книги 15 страниц)

Ослабление светового излучения при прохождении через среду объясняется также и рассеянием света. В случае наличия в среде оптических неоднородностей переизлучение энергии электромагнитной волны происходит не только в направлении проходящей волны(пропускание), но и в стороны. Эта часть излучения , наряду с дифрагированной, преломленной и отраженной на неоднородностях состовляющими, и образует р а с с е я н н ы й свет. Рассеяние обладает дисперсией. В атмосфере ,например, рассеиваются преимущественно голубые лучи; этим объясняется голубой цвет неба, в то время как свет , проходящий через атмосферу, обогащен красными составляющими – красный цвет зорь. При монохроматическом освещении даже в физически сильно неоднородной среде рассеяние не происходит при совпадении коэффициентов преломления компонентов среды. Выбрав компоненты с различными температурными коэффициентами пре, можно создать оптический термометр.

А.С. N.253408. Устройство для измерения температуры,содержащее измерительный элемент,устанавливаемый на иследуемый материал, и источник белого света, отличающийся тем,что с целью расширения интервала измеряемых температур,измерительный элемент выполнен в виде прозрачной кюветы,заполненой смесью,оптически неоднородных веществ,соответствующих заданному интервалу температур,показатели педложения которых зависят от длины волны и температурные коэффициенты показателей преломления отличаются знаком либо вличиной.

(Показатели преломления компонентов смеси совпадают для различных длин волн в зависимости от температуры. этом кювета становится оптически однородной для света с данной длиной волны,который пройдя через кювету,сообщает ей определенный цвет,соответствующей определенной температуре.Другие же составляющие белого цвета рассеиваются на неоднородностях системы и через кювету не походят).

Распределение интенсивности света,рассеянного средой по различным направлениям (и н д е к а т р и с с а рассеяния), может дать значительную информацию о микрофизических параметрах среды. Такого рода измерения находят применение в биологии,коллоидной и анилитической химии,составляя предает нефелометрических иследований,а также в аэрозольной технике.

Согласно а.с. 172094 определяют параметры капель жидкости, измеряя характеристики светового излучения,рассеянного на каплях.

Рассеяние наблюдается в чистых веществах. Оно объясняется возникновением оптической неоднородности, связанный с фуктуациями плотности, наример, тепловыми. Рассеяный свет по некоторым направлениям частично поляризован. (см."Анизотроприя и свет").

13.3.1 Вслучае комбинационного рассеяния света (эффект МандельштамаЛандсберга-Рамана) в спектре рассеянногоизлучения кроме линий, характеризующих падающий свет,имеются дополнительные линии (сателлиты), излучение которых является комбинацией частот падающего излучения и частот собственных тепловых колебаний молекул рассеивающей среды.

Согласно патенту США N 3820897 конт содержания загрязнений в большом объеме воздуха производится на основе анализа характеристического романовского излучения (сателлитов комбинационного рассеяния),возникающего при рассеянии лазерного излучения на атомах и молекулах загрязнений.

13.4. Испускание и поглощение света.

оПламя излучает свет.Стекло поглощает ультрафиолетовые лучи. Обычные фразы,привычные понятия.Однако здесь термины "излучает","поглощает" описывают только внешне,легко наблюдя, физика этих процессов непосредственно связана со строением атомов и молекул вещества.

Атом – квантовая система,его внутренняя энергия – это , в основном , энергия взаимодействия электронов с ядром; эта энергия согласно квантовым законам,может иметь только вполне определенные для када и состояния атомов значения. Таким образом,энергия атома не может меняться непрерывно,а только скачками – порциями,равными разности каких-либо двух разрешенных значений энергии.

Квантовая система (атом,молекула),получая из вне порцию энергии возбуждается, т.е. переходит с одного энергетического уровня вдругой более высокий. В возбужденном состоянии система не может находится сколь угодно долго; в какой-то момент происходит самопроизвольный (спонтанный) обратный переход с выделением той же энергии. Квантовые переходы могут быть излучательные и безизлучательные. Впервом случае энергия поглощается или испускается в виде порции электромагнитного излучения,частота которого строго определена разностью энергий тех уровней, между которыми происходит переход. В случае безызлучательных переходов система получает или отдает энергию при взаимодействиями с другими системами (атомами,молекулами,электронами) Наличие этих двух типов перходов объясняется оптикоакустический эффект Бейнгерова

13.4.1. При облучении газа,находящегося в замкнутом объеме,аомодулированном потоком инфракр.излучения в газе возникают пульсации давления (оптико-аккустический эффект).Его механизм давольно прост; поглощение инфракр.излучения происходит с возбуждением молекул газа, обратный же переход происходит безызлучательно,т.е. энергия возбуждения молекул переходит в их кинетическую энергию,что обуславливает изменение давления.

Колличественные характеристики эффекта весьма чувствительные к составу газовой смеси.Применение оптико-акустического эффекта для аналей характеризуется простотой и надежностью, высокой избирательностью и широким диапазоном концнтрацией компонентов.

Оптико-акустический индикатор педставляет собой неселективный приемник лучистой энергии,предназначенный для анализа газов Промудулированный лучистый поток через флюоритовое окно попадает в камеру с иследуемым газом.Под действием потока меняется давление газа на мембрану микрофона,в результате чего в цепи микрофона возникают электрические сигналы,зависящие от состава газа.

Оптико-акустический эффект используется при измерении времен жизни возбуждения молекул,в ряде работ по определению влажности и потоков излучения. (см.а.109939, 167072, 208328, 208329). Отметим, что оптико-акустический эффект возможен также в жидкостях и твердых телах.

13.4.2. Атомы каждого вещества имеют свою,только им присущую структуру энергетических уровней,а следовательно,и структуру излульных переходов,которые можно зарегистрировать оптическими методами (например,фотографически).Это обстоятельство лежит в основе сного анализа. Так как молекулы – тоже сугубо квантовые системы,то каждое вещество (совокупность атомов или мол) испускает и поглощает только кванты определенных энергиили электромагнитное излучение определенных длин волн) Интенсивность тех или иных спектральных линий пропорциональна числу атомов (молекул),излуча( или поглощающих)свет. Это соотношение составляет основу количественного спектрального анализа

США,патент N.3820901. Концентрацию известных газов в смеси измеряют по пропусканию излучения лазерного источника с определенной длиной волны. Предварительно облучают монохроматическими излучениями с различными длинами волн каждый из содержащихся в смеси газов, концентрация которых известна, и определяют коэффициент поглощения каждого газа для каждой длины волны. Затем при этих длинах волн измт поглощение испытуемой смеси и, используя полученные величины коэффициента поглощения,определяют концентрацию каждого газа в смеси. При измерениях с излучением,содержанием большее число длин волн, чем находится компонентов в газовой смеси,можно обнаружить наличие неизвестных газов.

Для атомов и молекул спектры излучения будут линейчатыми и полосатыми соответственно,то же и для спектров поглощения. Чтобы получить сплошной спектр,необходимо наличие плазмы, т.е. ионизированного состояния вещества. При онизации электроны находятся вне атома или молекулы, и, следовательно могут иметь любые, непрервно меняющиеся,энергии. При рекомендации этих элктронов и ионов получается сплошной спектр,в котором присутствуют все длины волн.

13.4.3. Возбуждение(повышение внутренней энергии) или ионизацияатомов происходят под действием различных причин;в частности, энергия для этих процессов может быть получена при нагревании тел. Чем больше температура, тем больше энергия возбуждения и тем все более короткие волны (кванты с большей энергией)излучает нагретое тело. Поэтому при постепенном нагреве сначала появляется инфракр.излучение (длинные волны),затем красное,к которому с ростом температуры добавляется оранжевое,желтое и т.д.; в конце концов получаетссвет Дальнейший нагрев приводит к появлению ультрафиолетовой компоненты.

США,патент N.3580277. Устройство для непрерывного измерения температуры ванны жидкого металла содержит стержень из светопроо материала обладающего высокой температурой и корозионной стойкостью. Стержень проходит сквозь стенку резервуара и внутри последнего заделывается в массу свободного от щелочей окисла с высокой температурой плавления,например окиси циркония. Конец стержня,находящийся в резервуаре,служит цветовым пирометром.

Излучательные и безызлучательныепереходы в инфракр. области часто используются для процессов и охлаждения (см.ИК-излучение).

А.С. N.509545 Стеклоформирующий инструмент,включающий металлический корпус с покрытием, отличающийся тем,что с целью поьности и улучшения качества изделий,покрытие выполнено двухслойным,причем промежуточный слой выполнен из материала,поглощающего ближнюю инфракрасную область,например из графита,а наружный слой – из материала пропускающего в эже области спектра,например на основе прозрачной поликристаллической окиси алюминия.

А.С. N. 451002. Способ измерений коэффициента теплопроводности твердых тел,включающий изотермическую выдержку его охлаждение при постоянной температуре окружающей среды и регистрацию изменения температуры,отличающийся тем,что с целью измеренидности частично прозрачных материалов,образец на стадии поглощения помещают в вакуумное пространство и измеряют энергию,излучаемую поверхностью образца в спектральной области сильного поглощения.

13.4.4. Излучательные квантовые переходы могут происходить не только спонтанно,но и вынуждено под действием внешнего излучения, частота которого согласована с энергией данного перехода. Излучение квантов света атомами и молекулами вещества под действием внешнего электромагнитного поля (излучения) называют вынужденным или и н д у ц и р о в а н н ы м и з л у ч е н и е м .

Существенным отличием вынужденного излучения является то, что оно естьточная копия вынуждающего излучения.Совпадают все характеристики – частота,поляризация,направление распространения и фаза. Благодаря этому вынужденное излучение при некоторых обстоятельствах может привести к усилению внешнего излучения, прошедшего через вещество,вместо его поглощения. Поэтому иначе вынужденное излучение называют о т р и ц а т е л ь н ы м п о г л о щ е н и е м.

13.4.5.Для возникновения вынужденного излучения необходимо наличие в веществе возбужденных атомов, т.е. атомов, находящихся навнях в большей энергией.Обычно доля таких атомов мала. Для того чтобво усилило проходящее через него излучение,нужно , чтобы доля возбужденных атомов была велика,чтобы уровни с большей энергией были "заселены" частицами гуще,чем нижние уровни. Такое состояние вещества называют состоянием с инверсией н а с е л е н н о с т е й.

13.4.6.Открытие советскими физиками Фабрикантом,Вудынским и Бутаевой явления усиления электромагнитных волн при прохождении через среду с инверсией населенностей явилось основопологающим в деле развития оптических к в а н т о в ы х г е н е р а т о р о в (лазеров) крупнейшего изобретения века.

Стержень из вещества с исскуственно создаваемой инверсией населенностей , помещенный между двумя зеркалами, одно из которых полупрозрачно – вот принципиальная схема простейшего лазера.

Оптический резонатор из двух зеркал необходим для создания обратной связи:часть излучения возвращается в рабочее тело,индуцируя новую лавину фотонов. Излучение лазера монохроматично и котерентно в силу свойств индуцированного излучения.

Области применения лазеров обусловлены, основными характеристиками их излучения,такими как когерентность,монохромантичность,высокая концентрация энергии в луче и малая его расходимость. Помимо ставших уже традиционными областей применения лазеров,таких как обработка сверхтвердых и тугоплавких материалов,лазерная связь и лоя медицина и получение высокотемпературной плазмы,– стали определяться новые интересные сферы их использования.

Чрезвычайно перспективны разработанные в последнее время лазеры на красителях, в отличии от обычных позволяющие плавно изменят частоту излучения в широком диапазоне от инфракрасной до ултрафиолетовой области спектра. Так, например, предполагается лазерным лучом разрывать или наоборот, создавать строго определенные связи.

Ведутся работы по разделению изотопов с помощью перестраиваимых лазеров. Меняя частоту лазеров, настраивают его в резонанс с определенным квантовым переходов одного из изотопов и тем самым переводят изотоп в возбужденное состояние, в котором его можно ионизировать и, с помощью электрических реакций, отделить от других изотопов.

А вот чисто изобретательское применение лазера в качестве датчика давления:

А.с. 232 194: Устройство для измерения давления с частотным выходом, содержащее упругий чувствительный элемент, заполненный газом и соединенный через разделитель с измеряемой средой, и частотомер, отличающееся тем, что с целью повышения точности измерений, в нем в качестве упругог чувствительного элемента использована резонаторная ячейкагазового квантового генератора.

В заключении следует отметить, что лазеры являются основным инструментом последований в новой области физики – нелинейной оптике, которая самим своим возникновением полностью обязана мощным лазерам (см. "Эффекты нелинейной оптики").

Л И Т Е Р А Т У Р А

К 13.1.1. Г.С.Ландсберг. Оптика, М.,"Наука", 1976 г.

2. Л.Беллами. Инфракрасные спектры молекул, 1957.

3. В.В.Козелкин, И.Ф.Усольцев, "Основы инфракрасной

техники", М.,"Машиностроение", 1974.

4. В.Дитчберн, "Физическая оптика", пер. с англ.,

М., 1965.

5. А.с. 181372, 181824, 251912, 257096, 271532,

282777, 283327, 348498, 427990, 446530, 453664,

486225, 496270, 509416.

США, патенты 3554628, 3558881, 3560738, 3562520,

3796099.

К 13.2 и 13.3:

1. Г.С.Ландсберг, Оптика, М.,"Наука", 1976.

2. Р.Дитчберн, Физическая оптика, пер. с англ.,

М., 1965.

3. С.С.Бацианов, Структурная рефрактометрия, М., 1959.

4. А.с. 269357, 454511, 485076, 517786, 540276.

США, патенты 358864, 3588258, 3824017.

ФРГ ПЕТЕНТ 1249539,

К 13.4: 1. М.Борн, Атомная физика, пер.с англ., М., 1965.

2. М.А.Ельяшевич, Атомная и молекулярная

спектороскопия, М., 1962.

3. А.Н.Зайдин, Основы спектрального анализа,

М., 1965.

4. Квантовая электроника, М., "Советская

энциклопедия", 1969.

5. Б.Ф.Федоров, Оптические квантовые генераторы,

М., 1966.

6. Чернышов и др., "Лазеры в системах связи",

М., 1966.

7. В.В.Козелкин, И.Ф.Усольцев, Основы инфракрасной

техники, М.,"машиностроение", 1974.

8. Б.Лендьел, Лазеры, пер.с англ.,М.,1964.

9. А.с. 239423, 239694, 209638, 208328, 208329,

109939, 167072.

США патенты 3826576,3820897, 3826575, 3588253,

3588439, 3825347, 3588255.

14. ФОТОЭЛЕКТРИЧЕСКИЕ И ФОТОХИМЕЧЕСКИЕ ЯВЛЕНИЯ.

14.1.1. Фотоэффект.

Явление внешнего фотоэффекта состоит в испускании (эмиссии) электронов с поверхности тела под действием света; для этого явления эксперементально установленные зависимости обьединяются квантовой теорией света. Свет есть поток квантов; кванты света, попадая в вещество, поглощабтся им; избыточная энергия передается электронами, которые получают возможность покинуть это вещество – конечно, если энергия кванта больше, чем работы выхода электрона (см."Электронная эмиссия"). Заметим, что квантовый характер света проявляющийся в явлении фотоэффекта, не следует понимать как отрицание волновых свойств света; свет есть и поток квантов, и электромагнитная волна просто в зависимости от конкретного явления проявляются или квантовые, или волновые свойства. На основе внешнего фотоэффекта создан ряд фотоэлектронных приборов (фотоэлементы различного назначения, фотокатоды, фотоумножители и т.д.). Внешний фотоэффект играет большую роль в развитии электрических зарядов; фотоэффект в газах определяет распространение электрического заряда в газах при больших давлениях обуславливая высокую скорость распространения стримерной формы разряда (искры, молнии) (1-4).

А.с. 488 718: Способ спектрометрии оптического излучения, отличающийся тем, что с целью упрощения спектральных работ, спектральный состав излучения определяют по кинетическим энергиям фотоэлектронов генерируемых при фотомонизации атомов и молекул.

Кроме внешнего фотоэффекта, существует внутренний фотоэффект. Квант света, проникая внутрь вещества, выбивает электрон переводя его из связанного состояния (в атоме) свободное – таким образом, при облучении полупроводников и диэлектриков из-за фотоэффекта внутри кристаллов появляются свободные носители, тока, что существенно изменяет электропроводность вещества. На основе внутреннего фотоэффекта созданы различного рода фоторезисторы-элементы, сильно изменяющие свое сопротивление под действием света (5,6).

А.с. 309339: Устройство для управления световым лучом, выполненное ввиде конденсатора между электродами которого заключен слой вещества изменяющего прозрачность под действием электрического поля, отличающееся тем, что с целью уменьшения габаритов, один из электродов конденсатора связанный с источником управляющей электродвижущей силы выполнен из материала, обладающего эффектом возникновения фотоэлектродвижущей силы.

А.с. 508828: Пьезоэлектрический преобразователь с оптическим управленим, содержащий фоторезисторный слой, светопровод и металлический электрод, отличающееся тем, что с целью расширения частотного диавпазона в облать низких мегагерцевых и высоких килогерцевых частот, он выполнен ввиде пьезокерамической платины, на одну сторону которой нанесен металлический электрод, а на противоположную – фоторезисторный слой и прозрачный электрод, являющийся одновременно светопроводом.

Разновидностью внутреннего фотоэффекта является вентильный фотоэффект – появление э.д.с. в месте контакта двух полупроводников (или полупроводника и металла). Основное применение вентильных фотоэлементов – индикация электромагнитного излучения.

На основе вентильного фотоэффекта работают также солнечные батареи. Одним из приборов работающих на вентильном фотоэффекте, является фотодиод, обладающий многими преимуществами по сравнению с обычными фотоэлементами (7).

А.с. 475719: Устройство для регулирования напряжения электромагнитных генераторов содержащее датчик тока, ввиде шунта в цепи его нагрузки и импульсный транзисторный усилитель, ко входу которого подключены последовательно стабилизаторон с ограничивающим резистором и формирователь пилообразного напряжения, к выходу обмотка возбуждения генератора, отличающееся тем, что с целью повышения надежности и точности регулирования параллельно упомянутому шунту включен светодиод одноэлектронной пары, фотодиод который через цепь подпитки подключен параллельно огрничивающему резистору.

14.1.2. Эффект Дембера (фотодиффузный эффект).

Внесобственных полупроводниках коэффициенты диффузий носителей тока (электронов и дырок) различные. Таким образом, если какой-то части проводника фотоактивное освещение создает одинаковое число электронов и дырок, то диффузия этих носителей будет происходить с разной скоростью, в результате чего в кристалле возникает э.д.с. (1).

14.1.3. Фотопьезоэлектрический эффект.

Обеспечить различие подвижности фотоэлектронов и фотодырок в полупроводнике можно каким-либо внешним воздействием. Так, при одностороннем сжатии освещенного полупроводника на грани кристалла, перпендикулярно направлению сжатия, возникает э.д.с., знак которой зависит от направления сжатия и направления светового потока, а величина пропорциональна давлению и интенсивности света. Эффект возникает из-за того, что подвижности разноименных носителей тока, обусловленных внутренним фотоэффектом, при упругой деформации кристалла становятся не одинаковыми по отношению к различным направлениям (3).

14.1.4. Эффект Кикоина-Носкова (фотомагнитный эффект).

Суть эффекта состоит в возникновении электрическго поля в полупроводнике при перемещении его в магнитное поле и одновременном освещении светом, в составе которого имеются сектральные линии, сильно поглощаемые полупроводником. При этом возникшее электрическое поле перпендикулярно магнитному полю и направлению светового потока. Величина света магнитной э.д.с. пропорциональна магнитной индукции и интенсивности светового потока. Эта пропорциональность нарушается при брльших освещенностях, когда происходят "насыщения". Механизм эффекта таков:

В результате внутреннего фотоэффекта вблизи освещенной поверхности полупроводника в избытке образуются электроны и дырки, которые диффудируют вглубь кристалла. Продольный диффузионный ток под действием поперечного магнитного поля отклоняется и расщепляется, что приводит к возникновению поперечной э.д.с.

14.2. Фотохимические явления.

Виды воздействия светового излучения на вещество весьма разнообразны. В частности, под действием света могут происходить реакции химических превращений веществ (фотохимическая реакция). Одни из этих реакций приводя к образованию сложных молекул из простых (например, образование хлористого водорода при освещении смеси водорода и хлора), другие – к разложению молекул на составные части (например, фотохимеческое разложение бромистого серебра с выделением металлического серебра и брома), в результате третьих молекула не изменяет своего состава, изменяется лишь ее пространственная конфигурация, приводящая к изменению ее свойств (возникают тереоизомеры).

Фотохимические процессы вызываются только поглащаемым светом, действующим на движение валентных электронов в атомах и молекулах. В основе таких процессов лежит явление фотоэффекта.

Многие фотохимические превращения идут в два этапа. Первичный процесс характеризуется изменением молекулы под действием поглощенного ею кванта света – это собственно фотохимическая реакция. Во всех вторичных процессах мы имеем дело с сугубо химическими реакциями продуктов первичных реакций. Так при образовании хлористого водорода первичным является лишь расщепление молекулы хлора, поглотившей квант света, на атомарный хлор, который далее через день вторичных химических реакций приводит к образованию конечного продукта. Для первичных процессов справедлив закон эквивалентности. Каждому поглощенному кванту света соответствует превращение одной поглотившей свет молекулы. В общем случае количество химически прореагировавшего вещества пропорционально поглощенному световому потоку и времени его воздействия. Величина коэффициента пропорциональности определяется природой вторичных процессов.

Фотохимическую реакцию может вызвать лишь излучение, энергия кванта которого больше энергии активации молекулы. Этим обьясняется повышение фотохимеческой активности ультрафиолетового излучения.

Следует отметить, что фотохимеческими процессами обьясняются многие природные явления, такие как синтез углеводов листьв в листьях растений или чувствительность глаза к световому излучению.

Фотохимическая реакция разложения бромистого серебра (и других его коллоидных солей) использована для получения фотографических изображений. Изображение представляет собой локальные почернения фотоматериала из-за выделившихся под действием отраженного от обьекта света частичек серебра.

14.2.1. К фотохимическим явлениям относится и так называемый фотохромный эффект, который состоит в следующем.

Некоторые химические вещества обычно со сложным строением молекулы, изменяют свою окраску под действием видимого или ультрафиолетового излучения. В отличии от обычного выцветания красок этот эффект обратим. Первоначальная окраска или отсутствие таковой восстанавливается через некоторое время в темноте, под действием излучения другой частоты или при нагревании. Но наведенную окраску можно и сохранить сколь угодно долго, если охладить фотохромное вещество или обработать его некоторыми газами, фотохромизм восстанавливается при соответсвующей вторичной обработке.

Скорость окрашивания и интенсивность окраски зависят не только от структуры молекул самого фотохромного соединения, но и от среды в которую оно может быть введено (стекло, керамика, жидкость, пластмасса, ткань и др.).

Многие фотохромные вещества при облучении интенсивным светом могут темнеть, причем их "быстродействие" достигает несколько микросекунд. Это позволяет использовать фотохромные тела как светохатворы для защиты глаз или светочувствительных приборов от неожиданной вспышки мощного излучения. Есть возможность использовать их как регуляторы светопропускания в зависимости от интенсивности света.

Фирма "Корнинг Гласс" выпустила светозащитные очки с фотохромными стеклами, изменяющими степень светопропускания в зависимости от интенсивности потока ультрафиолетовых лучей.

А.с.267 967: Устройство для представления информации в трехмерной форме, отличающееся тем, что с целью улучшения стереоскопического восприятия трехмерных изображений и упрощения устройства оно содержит три параллельных ряда плоских панелей, на противоположных концах которых нанесены изготовленные из фотохромного материала активные зоны одна из которых служит для просмотра изображения, а другая – для обработки информации, причем все панели установлены на разной высоте на трех осях вращения, сдвинутых относительно друг друга на 120 градусов.

2. Устройство по пункту 1, отличающееся тем, что над каждой из фотохромных информационных панелей в зоне, противоположной зоне просмотра, установлена матричная излучающая панель.

3. Устройство по пункту 1, отличающееся тем, что к каждой из панелей подведена линейка волоконных световодов связанных с источником импульсов излучения активизирующего фотохромный материал.

Патент США 3 558 802: Устойчивое фотохромное воспроизводящее устройство, предназначенном для работы с плекой покрытой фотохромным материалом, содежащим сахарин, имеется центральная камера, в которой находится электроннолучевая трубка. На нормальной прозрачной пленке образубтся непрозрачные участки обратимого изображения соответствующего изображению на экране электронно-лучевой трубки. При обработки пленки двуокисью серы, находящейся в газообразном состоянии, проэкспонированные участки фотохромного материала остаются непрозрачными. После этого газ откачивается и камеру подается тепловое излучение, обращающее те обработанные газообразной двуокисью серы участки, которые были прозрачными во время экспонирования. Участки пленки, временно сделавшиеся не прозрачными под воздействием изображения, проявляющегося на экране электронно-лучевой трубки, постоянно фиксируются. В состав конструкции устройства входит камера для ввода пленки и камера для вывода пленки , связанные с вакуумной откачивающей системой. Выходящая из центральной камеры двуокись серы в газообразном состоянии засасывается вакуумной откачной системой и не попадает в атмосферу.

14.2.2. В основе фотохимических процессов лежит взаимодействие излучения с электронами вещества. Это преполагает наличие возможности управлять ходом фотохимической реакции воздействие электрического поля. Возможно, что природа недавно открытого фотоэлектрического эффекта обьясняется стимуляцией фотохромного эффекта электрическим полем. Эффект состоит в следующем: На тонкую прозрачную пластину керамики с включением железа, свинца лантана, цикония и титана, помещенную в постоянное электрическое поле, перпендикулярное ее поверхности, проектируют негативное изображение видимых и ультрафиолетовых лучах. При этом в пластине появляется видимое позитивное изображение здесь наблюдается интересная особенность: При изменении направления поля на обратное, изображение из позитивного становится негативным. Изображение устойчиво и стирается лишь при равномерном облучении ультрафиолетовыми лучами с одновременной переполюсовкой поля.

Американские специалисты открывшие этот эффект предполагают его использовать в утройствах для хранения визуальной информации.

Л И Т Е Р А Т У Р А

к 14.1.1. С.Ю.Лукьянов, Фотоэлементы, М-Л, 1968.

2. С.Таланский, Революция в оптике, М.,"Мир",1971.

3. А.В.Соколов, Оптические свойства металлов, М.,1961.

4. А.Н.Арсеньева-гейль,Внешний фотоэффект с полупровод

ников и диэлектриков, М.,1957.

5. Р.Бьюб,Фотопроводимость твердых тел,М.,1962.

6. С.М.Рывкин, Фотоэлктрические явления в полупровод

никах, М.,1963.

7. А.М.Васильев и др., Полупроводниковые преобразова

тели, М.,"Соврадио",1971. к 14.2.1. Г.С.Ландсберг,"Оптика", М.,"Наука",1976.

2. Б.Баршевский,Квантовооптические явления, М.,

"Высшая школа",1968.

3. Фотоферроэлектрический эффект,"Техника молодежи"-5,

1977.

15. ЛЮМИНИСЦЕНЦИЯ.

Люминесценцией называется излучение, избыточное над тепловым излучением тела, и имеющее длительность, прерывающую период световых колебаний. Люминесценция возникает при возбуждении вещества за счет притока энергии, и в отличии от других видов "холодного" свечения (например, излучение Вавилова-Черникова), продолжается в течении некоторого времени после прекращения возбуждения (1,2).

О продолжительности после свечения выделют флуоресценцию (менее 10 сек.) и фосборесценцию; последнее продолжается в заметный промежуток времени после снятия возбуждения (от 10 сек. до нескольких часов).

Способность люминесцировать обладает большая группа, газообразных, жидких и твердых веществ, как органических так и неорганических (люминофоров). Характер процесса люминесценции существенным образом зависит от агрегатного состояния вещества и типа возбуждения.

Люминофоры являются своеобразными преобразователями энергии из одного вида в другой; на входе это может быть энергия электромагнитного излучения, энергия ускореннго отока частиц, энергия химических реакций или механическая энергия, – любой вид энергии, кроме тепловой, – на выходе – световое излучение. Отдельные атомы и молекулы люминофора, поглощая один из этих видов энергии, возбуждаются, т.е. перходя на более высокие энергетические уровни по сравнению с павновесным состоянием, и затем самопроизвольно совершают обратный переход излучая избыток энергии ввиде света. Способ возбуждения лежит в основе классификации различных видов Люминесценции.

15.1. Люминесценции, возбуждаемая электромагнитным излучением.

15.1.1. Фотолюминесценция – свечение возникающее при поглощении люминофором ИК, видимого или УФ-излучения. Спектр поглощения и излучения люминофоров связаны правилом Стокса-Люмиаля, согласно которому максимум спектра излучения смещен по отношению к максимуму спектра поглощения в сторону длинных волн (например, при облучении ультрафиолетом люминофор излучает видимый свет).


    Ваша оценка произведения:

Популярные книги за неделю