Текст книги "Техника и вооружение 2001 10"
Автор книги: Автор Неизвестен
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 1 (всего у книги 9 страниц)
Техника и вооружение 2001 10
На первой стр. обложки: Автомобиль «Тарантул» СКБ «Кайман» (фото А. Разводова); паромно-мостовая машина ПММ-2М
ТЕХНИКА И ВООРУЖЕНИЕ вчера, сегодня, завтра…
научно-популярный журнал октябрь 2001 г.
Московская международная выставка автомобилей двойного применения – 2001 (25-26 августа 2001 г.)
Бронированный Урал-4320
Тягач балластный БАЗ-6306
Трак Триал – динамическая гонка
Фоторепортаж Александра Разводова
Владимир ЖАБРОВ Алексей СТЕПАНОВ
Инженерные переправочно– десантные средства СССР и России
К переправочно-десантным средствам относят военно-технические объекты, с помощью которых возможны форсирование и переправа через различные участки водных преград (реки, озера, водохранилища, узкие проливы и др.) личного состава и вооружения подразделений и частей различных видов вооруженных сил.
Переправочно-десантные средства в настоящее время включают самоходные средства (плавающие транспортеры для десантной переправы личного состава, вооружения и техники батальонов первого эшелона, самоходные паромы для переправы танков, приданных батальонам первого эшелона) и десантные лодки.
Преодоление войсками водных преград в ходе ведения боевых действий до сих пор является одной из сложнейших задач инженерного обеспечения. Поскольку термины «преодоление» водных преград, «переправа» через водную преграду и «форсирование» водной преграды даже в специальной литературе часто применяются не точно, целесообразно с самого начала определиться с используемой ниже терминологией.
В соответствии с Боевым Уставом «форсирование» – это преодоление войсками с боем водной преграды, противоположный берег которой обороняется противником; «переправа» – процесс преодоления водной преграды войсками без ведения боя.
Форсирование водной преграды заканчивается с захватом передовым отрядом или первым эшелоном наступающих войск плацдарма, исключающего возможность ведения противником огня прямой наводкой по форсирующим войскам. После захвата плацдарма начинается «переправа» через водную преграду всех остальных элементов боевого порядка войск. Оба термина «форсирование» и «переправа» могут быть при необходимости для краткости заменены одним термином – «преодоление» водной преграды.
Общий порядок преодоления войсками водной преграды, как правило, является следующим:
– форсирование водной преграды передовыми подразделениями с задачей захвата прибрежной полосы противоположного берега, разграждения ее, устройство выходов из воды, т.е. обеспечение высадки и перехода в атаку мотострелковых батальонов первого эшелона;
– форсирование мотострелковыми батальонами со средствами усиления с задачей расширения захваченной полосы и образование плацдарма на противоположном берегу;
– десантная переправа на паромах танков, приданных батальонам первого эшелона;
– переправа через водную преграду последующих эшелонов боевых порядков войск.
В этом сложном и тяжелом для наступающих войск процессе форсирования водной преграды в современных условиях используются как штатные плавающие средства мотострелковых подразделений (плавающие бронированные гусеничные и колесные бронетранспортеры, боевые машины пехоты и др.), так и инженерные переправочно-десантные средства, предназначенные для доставки десанта, боевой техники, боеприпасов и других предметов снабжения и обеспечения боевой деятельности войск.
Рис. 1 Плавающий автомобиль ГАЗ-НАМИ-011
Рис.2 Плавающий автомобиль МАВ (ГАЗ-46)
Переправочно-десантные средства армии нашей страны создавались и совершенствовались на протяжении всего времени существования инженерных войск.
Специальное переправочное имущество как табельное средство, движущееся за войсками, появилось в России в начале XVII века. Это был переправочный парк, перевозимый «при войсках наравне с артиллерийским вооружением». Он состоял из пяти лодок (стругов), обоза и команды из 20 плотников во главе с мостовым мастером.
Впервые понтонный парк, материальная часть которого использовалась для десантной переправы, был введен в старой русской армии в 1701 г. Конструкция понтонов парка последовательно совершенствовалась: сначала это был деревянный каркас с жестяной обшивкой, в 1759 г. обшивка была заменена парусиной (понтон А.Немого), в 1849 г. появились деревянные понтоны, в 1872 г. железные понтоны Томиловского, в 1916 г.– самоходные (на воде) понтоны Неговского.
В Первую мировую войну и Гражданскую было крайне ограниченное количество табельных средств, причем далеко несовершенных. Наибольшее применение получили поплавки Полянского вследствие их высокой транспортабельности. Однако плотики и паромы, собранные из этих поплавков, были уязвимы для пуль и осколков.
В предвоенные годы (193.5-1941 гг.), несмотря на ускоренное развитие, военная промышленность не успевала выполнять заказы на военную технику, в том числе инженерную, поэтому обеспеченность переправочными средствами была крайне низкой.
Боевой опыт, полученный в Отечественной войне по обеспечению преодоления рек, особенно при форсировании их с ходу, выявил настоятельную необходимость создания самоходных десантных средств различной грузоподъемности .
В результате в первый послевоенный период и в дальнейшем были разработаны и поступали в войска плавающие автомобили и плавающие гусеничные транспортеры для переправы вооружения и военной техники передовых отрядов и подразделений первых эшелонов при форсировании водных преград, десантные лодки для десантной переправы мотострелковых подразделений, самоходные паромы для десантной переправы танков и тяжелой артиллерии.
Развитие вооружения и техники различных родов сухопутных войск вплоть до настоящего времени требовало на каждом этапе ускоренного создания новых и модернизации существующих переправочно-десантных средств.
Рассмотрим кратко основные переправочно-десантные средства в их историческом развитии.
ПЛАВАЮЩИЕ АВТОМОБИЛИ И ПЛАВАЮЩИЕ ГУСЕНИЧНЫЕ ТРАНСПОРТЕРЫ
В первый послевоенный период (1946-1953 гг.) велась интенсивная разработка новых переправочно-десантных средств, которых до этого в инженерных войсках нашей страны не было. Это плавающий гусеничный транспортер К-61, разработанный в 1948 г. под руководством А.Ф.Кравцева, и большой 6x6 плавающий автомобиль БАВ (ЗИЛ– 485), созданный в 1949 г. под руководством В.А.Грачева. Обе эти машины стали в те послевоенные годы основными переправочными средствами в процессе десантной переправы личного состава, вооружения и техники мотострелковых подразделений при форсировании водных преград. Почти одновременно в 1948 г.был создан малый плавающий автомобиль НАМИ– 011. Опыт его разработки использовался в 1952 г. при создании малого плавающего автомобиля для разведки МАВ (ГАЗ-46) .
Плавающий автомобиль НАМИ-011 разрабатывался под руководством Б.В.Шишкина группой конструкторов и научных работников НАМИ (В.Ф.Горанов, К.С. Карпухин, П.А.Лобунский , А.Г. Архаров и др.) на базе автомобиля высокой проходимости ГАЗ-67Б.
Основные технические характеристики плавающего автомобиля НАМИ– 011 (рис. 1) были следующими. Колесная формула 4x4, трансмиссия механическая, водоизмещающий корпус – металлический. Собственная масса 2000 кг при грузоподъемности на суше и на воде 500 кг. Мощность карбюраторного двигателя – 40 кВт. Максимальная скорость движения по суше – 95 км/ч, по воде – 9,1 км/ч. Водоходный движитель машины – один четырехлопастный гребной винт диаметром 465 мм с установленным за ним водяным рулем. Тяга винта на швартовах – 4,22 кН.
В результате автомобиль при удельной мощности 16 кВт/т имел относительную скорость (число Фруда по водоизмещению) Frv = 0,693 и удельную тягу на швартовах 24,87 кН/м² .
Водооткачивающий насос – коловратного типа с подачей 150 л/мин. Диаметр циркуляции – 12 м. Тяговое усилие кабестана, установленного в передней части корпуса, составляет 14,71 кН.
Но судьба создателей этого автомобиля и его самого была необычной и печальной. За разработку этой машины перечисленные выше лица во главе с Б.В.Шишкиным получили Сталинскую премию. Видимо, это вызвало среди части сотрудников ГАЗа неприязнь, следствием которой было письмо на имя И.В.Сталина, в котором критиковались технические характеристики созданного плавающего автомобиля и давались обещания создать подобного рода автомобиль, но с существенно более высокими значениями технических параметров. Например, утверждалось, что скорость движения по воде будет не меньше чем 16 км/ч, и давались другие обещания, наряду с необоснованной критикой и рядом обвинений в адрес руководства ГАЗа и руководителей конструкторского бюро. Инициатором и автором этого пмсьма был В.А.Крещук. В результате достаточно быстрого, но в то же время необъективного рассмотрения содержания этого письма специальной комиссией в 1950 г. сотрудники НАМИ были лишены Сталинской премии с прекращением работ по плавающим автомобилям, а в конструктоском бюро ГАЗа произошли кадровые изменения, которые поставили во главе работ по плавающим автомобилям В.А. Крещука. Через некоторое время выяснилось, что обещания, которые он давал, не могут быть выполнены, поскольку являлись следствием решений некомпетентного в вопросах теории и практики плавающих машин человека. В результате последовала вторая серия кадровых перестановок на ГАЗе и подтверждение заказа на создание новых моделей плавающих автомобилей, одной из которых был ГАЗ-46.
Плавающий 4x4 автомобиль МАВ (ГАЗ-46) (рис.2) был создан на базе автомобиля высокой проходимости ГАЗ-69. При его проектировании учитывался опыт боевой эксплуатации и конструкция американского плавающего автомобиля Форд-GPA, переданного нашей армии в последние годы Второй мировой войны в количестве нескольких сотен единиц. Руководил работами по проектированию ГАЗ-46 главный конструктор А.А.Смолин. Эта небольшая колесная амфибия создавалась с использованием многих агрегатов, узлов и систем автомобиля высокой проходимости ГАЗ-69. Вместе с тем автомобиль был оснащен необходимыми для движения по воде дополнительными агрегатами и системами: водоизмещающим герметичным корпусом, гребным винтом с установленным за ним водяным рулем, водооткачивающим насосом и др.
Максимальная мощность установленного на автомобиле в переднем отсеке корпуса 4-х-тактного карбюраторного двигателя составляла 40,5 кВт при 3600 об/мин, что обеспечивало при собственной массе автомобиля 2,053 т и грузе 0,5 т удельную мощность 15,86 кВт/т.
Тоннель для трехлопастного гребного винта диаметром 0,525 м в нижней своей зоне имел профилированную полунасадку для улучшения тяговых характеристик винта, которая одновременно защищала гребной винт снизу при движении по суше и мелководью. Максимальная тяга на швартовах составляла 4,81 кН, что давало при отнесении ее к площади диска гребного винта 22,26 кН/м² . При этом мощность двигателя, отнесенная к площади диска гребного винта, составляла 187,5 кВт/м² . Максимальная скорость движения автомобиля по спокойной глубокой воде достигала 10,6 км/ч, что соответствовало относительной скорости (числу Фруда) 0,8. Максимальная скорость движения по шоссе составляла 95 км/ч.
Управление автомобилем на воде обеспечивалось одновременным поворотом передних управляемых колес и водяного руля. Диаметр циркуляции на максимальной скорости достигал 12 м.
Для удаления из корпуса попавшей в него забортной воды в средней его части устанавливался один насос ротационного типа с приводом от коробки отбора мощности.
Повышению проходимости автомобиля в различных дорожных условиях и особенно при выходе из воды способствовала установка в передней части корпуса кабестана с приводом от носка коленчатого вала двигателя. Тяговое усилие кабестана при работе с блоком было не менее 20 кН.
Большой плавающий автомобиль ЗИЛ-485 (рис.З) разрабатывался вначале в г. Днепропетровске, а затем в Москве на автомобильном заводе имени И.Лихачева. Автомобиль создавался в основном на базе автомобиля высокой проходимости ЗИС-151 с сохранением основных его агрегатов и систем, но с введением металлического водоизмещающего корпуса, гребного винта с приводом от раздаточной коробки , водяным рулем, расположенным непосредственно за гребным винтом, водооткачивающих насосов и другого дополнительного оборудования. Экипаж плавающего автомобиля – два человека. Схема общей компоновки автомобиля приведена на рис.4, из которой следует, что размещение карбюраторного двигателя мощностью 80,96 кВт и его систем в передней части водоизмещающего корпуса потребовало образования моторного отсека и изменения воздушных потоков системы охлаждения и других менее существенных изменений.
На общую компоновку БАВа оказали определенное влияние конструкция американского плавающего автомобиля GMC-353 и опыт его боевой эксплуатации нашими войсками в последние годы Второй мировой войны, в процессе которой был выявлен серьезный недостаток – трудности погрузки и разгрузки через борта. Это занимало много времени и сил и требовало использования кранов или специальных временных эстакад.
Этот недостаток был устранен введением на ЗИЛ-485 заднего откидного борта и придания машине двух металлических узких сходней, по которым на грузовую платформу могли затаскиваться артиллерийские системы с помощью троса лебедки машины, установленной за кабиной управления. Лебедка имела рабочее тяговое усилие 44 кН и предельное усилие 49 кН при рабочей длине троса 60 м.
Введение заднего откидного борта позволило также увеличить общую площадь грузовой платформы до 11 м2 , что является важным для самоходных переправочных десантных средств. Вместе с тем это привело к некоторому уменьшению угла выхода автомобиля из воды по условиям заливаемости корпуса через задний борт.
Рис. 4 Схема общей компоновки ЗИЛ-485
Рис. 5 Плавающий гусеничный транспортер К-61
Рис. 6 Схема общей компоновки К-61
Из-за использования в конструкции узлов и агрегатов базовой машины обычных нелегированных сталей (в те годы автомобильной промышленности постановлением правительства запрещалось использование легированных сталей из-за дефицита их компонентов) собственная масса плавающего автомобиля была больше такой же массы американского плавающего автомобиля при примерно равной грузоподъемности. Собственная масса автомобиля составляла 7250 кг при грузоподъемности на суше 2500 кг и на воде – 3500 кг. Поэтому коэффициент использования массы автомобиля (отношение грузоподъемности к собственной массе автомобиля) на суше составлял 0,345, а на воде 0,423, т.е. они были небольшими и обусловленными в некоторой степени несовершенством конструкции части узлов и агрегатов автомобиля.
Трехлопастный гребной винт диаметром 635 мм при максимальной частоте вращения 900-920 об/мин обеспечивал тягу на швартовах 9,17 кН.При этом удельная тяга на швартовах составляла 29,0 кН/м² , а удельная мощность, отнесенная также к площади диска гребного винта, была равна 256,2 кВт/м².
На глубокой спокойной воде автомобиль с полной нагрузкой показывал скорость 10,0 км/ч, при этом число Фруда по водоизмещению было равно 0,598. Минимальный диаметр циркуляции (поворота) при движении с максимальной скоростью и при совместном использовании передних управляемых колес автомобиля и водяного руля составлял 15,0 м.
Для удаления из корпуса воды автомобиль оснащался системой водоотлива, состоящей из двух центробежных насосов (трюмного и насоса отсеков) и коллектора водоотлива. Суммарная подача (производительность) всех водоотливных средств автомобиля при максимальной частоте двигателя достигала 450 л/мин. Оба насоса работали после включения привода на гребной винт, при этом насос отсеков с максимальной подачей 150 л/мин позволял откачивать воду из левого и правого кормовых отсеков и центрального отсека при соединении их водоприемников с насосом с помощью коллектора водоотлива. Трюмный насос с подачей 300 л/мин размещался в центральном отсеке и откачивал воду только из него. На автомобиле имелся также ручной водооткачивающий насос с небольшой подачей.
Максимальная скорость автомобиля на суше – 65 км/ч. Расходы топлива по шоссе на 100 км – 47 л, на воде при скорости 10 км/ч -30 л/ч. Запас хода по топливу: по суше – 450 км, на воде – 6,5 ч.
При подготовке к серийному выпуску этот плавающий автомобиль в целом, а также отдельные его узлы и агрегаты были подвергнуты различным стендовым и пробеговым испытаниям. Например, осенью 1950 г. два опытных образца автомобиля совершили большой испытательный пробег через Крым на Кавказ с преодолением Керченского пролива в условиях достаточно серьезного волнения, прошли большие расстояния по воде реки Кубани. Весной 1951 г. автомобили испытывались в Карелии, где много озер, рек и сочетания различных типов грунтов. Длительным пробеговым испытаниям подвергались и серийные автомобили : осенью 1953 г. группа машин совершила пробег по маршруту Москва-Сталинград-Астрахань-Баку-Батуми-Крым– Одесса-Минск-Москва общей протяженностью более 10 тысяч километров и с большими проплывами по Волге, Кубани, Днестру и другим рекам. По результатам этих и других испытаний в конструкцию автомобилей вносились необходимые изменения с целью повышения их эффективности и надежности.
В июле 1951 г. группе инженеров во главе с В.А.Грачевым за создание плавающего автомомбиля ЗИЛ-485 была присуждена Государственная премия.
Плавающий автомобиль ЗИЛ-485 выпускался серийно с 1952 г. по 1963 г. и поступал на вооружение инженерных войск Советской Армии и ряда других стран. В течение этих лет некоторые узлы и агрегаты автомобиля подвергались модернизации с целью повышения их надежности и работоспособности. Всего было изготовлено около 2100 машин.
Кроме эксплуатации в армии, некоторое количество этих плавающих автомобилей в то время эксплуатировалось различными отраслями народного хозяйства страны. Например, около трехсот плавающих автомобилей этого типа были переданы в Министерство рыбного хозяйства страны для использования в прудовых и озерных рыбных хозяйствах для механизации процессов выращивания и отлова рыбы, содержания рыбных водоемов и механизации других трудоемких ручных операций.
Плавающий гусеничный транспортер К-61 (рис.5) был разработан в 1948 г. на базе артиллерийского тягача М-2 в ОКБ инженерных войск под руководством А.Ф.Кравцева. Промышленная разработка и изготовление производились на Крюковском вагоностроительном заводе Минтяжмаша под руководством Р.И.Медведика.
Схема общей компоновки транспортера К-61 приведена на рис.6, из которой следует, что двигатель с его системами располагается в средней части водоизмещающего корпуса. Размещение тяжелого двигателя с его системами, главного фрикциона и коробки передач примерно в середине длины транспортера позволяло обеспечить приемлемые дифференты машины при движении на воде с грузом и без груза. Упрощалась также раздача мощности через раздаточную коробку на ведущие колеса гусеничного движителя, водоходные движители – гребные винты, расположенные в туннелях кормы корпуса, а также на лебедку, установленную в носовой части корпуса. Задний борт корпуса был выполнен откидным с аппарелями для погрузки и разгрузки перевозимых грузов (артиллерийских систем, автомобилей и т.д.). Максимальное тяговое усилие лебедки, которая использовалась для затаскивания на грузовую платформу несамоходных грузов и повышения проходимости транспортера в тяжелых грунтовых условиях, составляло 49 кН. Длина троса лебедки – 50 м.
Габаритные размеры грузовой платформы – 5,4 х 2,6 м, что обеспечивало общую площадь грузовой платформы в 14 м2 .
Рис. 7. Плавающий транспортер ПТС-2 с плавающим прицепом
Собственная снаряженная масса транспортера 9550 кг, грузоподъемность по суше – 3000 кг, на воде 5000 кг. Экипаж – два человека. Мощность двухтактного дизельного двигателя ЯМЗ-М– 204ВКр, равная 99,4 кВт, обеспечивала удельную мощность транспортера с грузом на воде 6,83 кВт/т, на суше – 7,92 кВт/т, и при этом достигалась максимальная скорость движения 36 км/ч.
Движение на воде обеспечивалось двумя трехлопастными стальными гребными винтами правого вращения, расположенными в туннелях. Диаметр гребных винтов 600 мм. Винты имели шаговое отношение 0,65 и дисковое отношение 0,5 . Максимальная тяга на швартовах составляла 11,77 кН, а максимальная скорость движения на спокойной глубокой воде -10 км/ч.
Относительная скорость транспортера на воде (число Фруда) составляла 0,568, удельная мощность, отнесенная к суммарной площади дисков гребных винтов, была равна 175,87 кВт/м 2 , а удельная тяга на швартовах, также приведенная к суммарной площади дисков гребных винтов, достигала 21,67 кН/м 2 . Управление транспортером на воде обеспечивалось двумя водяными рулями, размещенными непосредственно за гребными винтами и связанными механическим приводом со штурвалом, расположенным перед местом механика-водителя в кабине управления. Диаметр циркуляции транспортера на воде при повороте водяных рулей на максимально возможный угол составлял около 30 м, а при работе гребных винтов «враздрай», т.е. при работе одного винта на передний ход, а другого на задний транспортер практически поворачивался на месте без совершения поступательного движения.
Для удаления забортной воды, проникшей в корпус через неплотности или повреждения, транспортер оборудован системой водоотлива, состоящей из двух лопастных водооткачивающих насосов с механическими приводами от распределительной коробки и ручного водооткачивающего насоса с малой подачей для удаления воды из корпуса при неработающем двигателе. Подача каждого лопастного насоса составляет 400 л/мин, причем водозаборник одного насоса расположен в задней части корпуса, а водозаборник другого в средней части корпуса.
Расход топлива на суше был равен на 100 км пути 85… 145 л, а на воде – 25 л/ч. Запас хода по суше – 260 км, на воде – 10 часов.
Во втором периоде (с 1954 г. по 80– е годы ) были разработаны плавающие гусеничные транспортеры (ПТС – в 1961 г., ПТС-М – в 1965 г., ПТС-2 – в 1973 г. и ПТС-3 – в 1988 г.) с более высокими грузоподъемностями, скоростями движения по суше и на воде, с улучшенной проходимостью при входах в воду и выходах из нее и с большими размерами грузовых платформ.
У всех перечисленных транспортеров погрузка и выгрузка переправляемых грузов и техники осуществляется на суше через откинутый задний борт по специальным аппарелям. При этом самоходная техника грузится или разгружается своим ходом, а несамоходная – с помощью лебедок транспортеров, но в обоих случаях необходимо это выполнять на берегу перед входом в воду и после выхода машин из воды. Если береговые условия не позволяют транспортерам выходить на берег, разгрузка значительно усложняется и существенно увеличивается время разгрузки, так как транспортеры у берега должны разворачиваться и подходить к нему кормой для опускания аппарелей на участок берега. Но такой способ выгрузки возможен только при небольших скоростях течения, малой глубине воды и допустимого профиля берегового склона.
Для повышения эффективности транспортеров некоторые из них, например ПТС-2, могут преодолевать водные преграды с буксировкой колесных плавающих прицепов грузоподъемностью до 5 т для одновременной переправы артиллерийского тягача (на транспортере) и артиллерийской системы (на прицепе) (рис.7). Но при этом скорость движения на воде уменьшается на 25… 28 %.
Создание транспортеров сопровождалось разнообразными научно-исследовательскими и экспериментальными работами, проводимыми в различных научно-исследовательских организациях и на заводах. Эти работы включали поиск и отработку наиболее рациональных и эффективных технических решений по размерам и формам водоизмещающих корпусов, водоходным движителям различного типа, системам управления транспортерами на воде, водоотливным насосам и др. Много внимания уделялось повышению проходимости машин на суше и на воде, особенно во время входа их в воду и выходе из нее на берег.
Гусеничный плавающий транспортер ПТС (рис.8) разрабатывался на Крюковском вагоностроительном заводе (КВЗ) под руководством главного конструктора Е.Е.Ленциуса в 1961 г. на базе агрегатов и узлов артиллерийского тягача АТС-59 и танка Т-54.
Схема общей компоновки транспортера была аналогична схеме общей компоновки транспортера К-61, эксплуатация которого в течение почти 10 лет в войсковых условиях подтвердила ее целесообразность и эффективность.
Дизельный двигатель мощностью 257,6 кВт размещался в средней части водоизмещающего металлического корпуса. Собственная масса снаряженного транспортера была равна 17000 кг при грузоподъемности на воде 10000 кг и 5000 кг на суше. Поэтому коэффициент использования массы транспортера достигал при движении по суше 0,294, а при движении на воде 0,588. При полной массе транспортера 27000 кг его удельная мощность на воде составляла 9,54 кВт/т, на суше с грузом 5 т – 11,71 кВт/т.
Габаритная длина транспортера была равна 11,4 м, ширина – 3,3 м, а высота – 2,65 м. При этом площадь грузовой платформы достигала 18,5 м² (7,1 х 2,6м), т.е. она занимала половину всей габаритной площади транспортера. Максимальная скорость движения по суше достигала 42 км/ч. Расход топлива на 100 км пути – 150 л. Запас хода по топливу 380 км.
Рис. 8а. Гусеничный плавающий транспортер ПТС
Рис. 86. Гусеничный плавающий транспортер ПТС с опущенными задним бортом i аппарелями
Рис. 9. Плавающий транспортер ПТС-М с комплектом морского оборудования
Движение по воде обеспечивалось двумя трехлопастными гребными винтами диаметром 0,65 м в туннелях. Шаговое и дисковое отношения гребных винтов соответственно – 0,8 и 0,55. При этом мощность двигателя, приходящаяся на м² площади диска гребного винта, составляла 388,4 кВт/м² .
Тяга на швартовах достигала 19,13 кН, а при отнесении ее к площади дисков винтов была равна 28,84 кН/м² . При таких значениях удельной тяги максимальная скорость транспортера на глубокой спокойной воде составляла 10,6 км/ч, что обеспечивало относительную скорость (число Фруда по водоизмещению) 0,542 .
Управление транспортером на воде достигалось поворотом двух водяных рулей, расположенных непосредственно за гребными винтами, или работой гребных винтов «враздрай». При использовании водяных рулей диаметр циркуляции составлял около 90 м.
Для обеспечения погрузки и выгрузки несамоходных грузов, а также для самовытаскивания при застреваниях в тяжелых дорожных условиях в передней части грузовой платформы устанавливалась лебедка с приводом от двигателя через распределительную коробку. Тяговое усилие лебедки лежало в пределах 48-49 кН. Длина троса лебедки – 70 м.
Для удаления воды из корпуса в нем размещались два насоса: малый центробежный насос с подачей 400 л/мин и большой центробежный насос с двухсторонним всасыванием с подачей 4000 л/мин. При этом суммарная максимальная подача насосов достигала 4,4 м³ /мин, что существенно повышало надежность транспортера на воде с позиций непотопляемости.
Средние расходы топлива и запасы хода составляли: на воде с грузом 10т – 50 л/ч и запасом хода 12 часов.
Постепенная модернизация транспортера ПТС привела к созданию в 1965 г. модели транспортера – ПТС– М. Эта модель также создавалась на КВЗ под руководством главного конструктора Е.Е.Ленциуса. Транспортер сохранил прежнюю схему общей компоновки, грузоподъемность, мощность двигателя, скоростные параметры по суше и на воде и проходимость. Но на нем было смонтировано дополнительное оборудование: фильтровентиляционная установка в кабине с подогревом воздуха, комплект морского оборудования (рис.9) в виде трубчатого каркаса с тентом для работы на волнении до 3 баллов, комплект санитарного оборудования на 12 носилок, новая радиостанция, прожектор, приборы ночного видения и др. Все это вместе взятое привело к увеличению собственной массы транспортера до 17800 кг и к небольшому уменьшению удельной мощности на воде до 9,26 кВт/т.
Вместе с тем изменились в лучшую сторону некоторые параметры машины, в частности площадь грузовой платформы была увеличена до 20,54 м2 (7900 х 2600 мм).
Подача водоотливных средств транспортера не изменилась, а другие удельные показатели изменились мало.
При максимальной скорости движения по воде 10,6 км/ч число Фруда было равно 0,539. Максимальная тяга на швартовах достигала 19,2-19,5 кН, а удельная тяга на швартовах, отнесенная к площади дисков двух гребных винтов, составляла в среднем 28,84 кН/м² при удельной мощности, отнесенной также к суммарной площади дисков гребных винтов, в 388,4 кВт/м² .
Управление транспортером на воде обеспечивалось поворотом водяных рулей, расположенных за гребными винтами. С помощью поворота водяных рулей обеспечивалась курсовая устойчивость и движение по криволинейным траекториям. Для поворотов с небольшими радиусами циркуляции до 20 м один их гребных винтов переключался на режим заднего хода, т.е. использовался режим работы винтов «враздрай». На рис.10 показаны фотографии циркуляционного следа, выполненные с вертолета. На рис. 10а при движении ПТС-М по криволинейной траектории за счет поворота водяных рулей, а на рис. 106 – при работе гребных винтов «враздрай».
Рис. 10а. ПТС на циркуляции с помощью водяных рулей
Рис. 106. ПТС на циркуляции при работе винтов "враздрай "
Рис. 11. Три вида на ПТС-2
Среднее давление гусениц транспортера на грунт составляло 54 кПа, а углы входа и выхода из воды не превышали 15 град.
Максимальная скорость движения транспортера по суше составляла 42 км/ч, средний расход топлива при движении по грунтовым дорогам с грузом 5 т был равен 150 л на 100 км пути, а при движении по воде с грузом 10т– 50 л/ч.
Плавающий гусеничный транспортер ПТС-2 (рис.11), который является дальнейшей существенно улучшенной моделью транспортеров ПТС, создавался уже в г.Луганске последовательно под руководством главных конструкторов С.П.Филонова и В.П.Колдоба в 1973 г.
При сохранении схемы общей компоновки, подобной своим предшественникам, транспортер был оснащен более мощным дизельным двигателем в 522,5 кВт, а его грузоподъемность по суше и на воде была увеличена до 12 т при собственной массе 24,2 т. Удельная мощность транспортера стала равной 14,43 кВт/т, а коэффициент использования массы – 0,496.
Транспортер был оборудован бронированной кабиной с фильтровентиляционной установкой, устройством для самоокапывания для отрывки защитных капониров и оснащен специальным оборудованием для эксплуатации в морских условиях.
Для погрузки и выгрузки самоходных и несамоходных грузов на грузовую платформу площадью 23,6 м² (8225 х 2870 мм ) транспортер имеет задний откидной борт с двумя аппарелями и однобарабанную реверсивную лебедку с максимальным тяговым усилием в 98,1 кН и длиной троса 60 м. Лебедка может также использоваться для самовытаскивания транспортера при его застревании на труднопроходимой местности и для повышения проходимости в других тяжелых эксплуатационных условиях (снег, болота, вход в воду и выход из нее и др.).