355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Автор Неизвестен » Океан и атмосфера » Текст книги (страница 5)
Океан и атмосфера
  • Текст добавлен: 24 марта 2017, 14:00

Текст книги "Океан и атмосфера"


Автор книги: Автор Неизвестен


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 5 (всего у книги 11 страниц)

Течения

Движения морской воды, о которых мы говорили до сих пор, носят колебательный характер. Но в Мировом океане существуют движения, при которых частицы воды переносятся на огромные расстояния – на тысячи миль. Это – морские течения. Они разнообразны. Течения с общим направлением и средней скоростью называются постоянными. Они несут колоссальные объемы поверхностной воды, захватывающие более или менее мощный слой. Движение вод на глубине и у дна медленнее, но также имеет генеральное направление, часто обратное по отношению к поверхностному. Так возникает круговорот океанических вод на планете.

В морях и океанах наблюдаются также течения, которые вызывают временные причины, в первую очередь ветер, изменчивый по скорости и направлению. За 12–24 часа такие течения переносят воду на 5—10 миль. Существуют также периодические приливно-отливные течения. В узких заливах и проливах они движутся вперед и назад.

Морские течения были известны еще в древние времена. Аристотель писал о течениях в Керченском проливе, Босфоре, Дарданеллах. Знания о течениях накапливались из века в век, со все более серьезными обобщениями картированием.

Крупные открытия океанических течений были сделаны в конце 50-х годов и во второй половине нашего столетия. Речь идет о мощных глубинных течениях в Атлантическом, Тихом и Индийском океанах. Еще совсем недавно считалось, что течения в глубине вод имеют очень маленькие скорости. Современные методы наблюдений (с помощью заякоренных буев и поплавков нейтральной плавучести) позволили установить, что на глубинах в 1 тыс. м непериодические течения в некоторых местах достигают 30 см/с, а приливные – даже 50 см/с. Инструментальные наблюдения показали также, что на глубинах более 1 тыс. м скорости течения колеблются от 5 до 15 см/с. После тщательного изучения мощных океанических течений Гольфстрима и Куросио установлено, что они сохраняют направление и скорость до глубин 750—1500 м. Подтвердилась также гипотеза о том, что под крупнейшими течениями Мирового океана должны наблюдаться достаточно сильные течения, направленные в обратную сторону. И действительно, такие течения были открыты – прежде всего в Атлантическом океане под Гольфстримом, а потом в Тихом под Куросио.

До сих пор нет обобщенных сведений о придонных течениях, хотя косвенные данные указывают на то, что и там возможны довольно сильные течения. Об этом свидетельствуют глубоководные опускания батискафов, крупнозернистый материал на глубоководных участках дна. Пока известно, что в придонных глубоких частях океана потоки направлены в основном с юга на север – от Антарктики и до северных окраин океанов.

Более сложная система течений в промежуточных слоях океана – здесь наблюдается движение вод против часовой стрелки (в Атлантическом океане на глубине 1,5–2 тыс. м). В то же время в западной части Атлантического океана промежуточные воды, двигаясь с севера на юг, поворачивают по часовой стрелке, создавая замкнутый круговорот. В тропической зоне Тихого океана на глубине 100–300 м преобладает движение вод на восток.

Многие страны (СССР, США, Япония, Англия и др.) ведут в наши дни многочисленные наблюдения над течениями – и поверхностными, и глубинными. Это дало возможность открыть подповерхностные течения: Кромвелла в Тихом океане, Ломоносова – в Атлантическом. В Индийском океане во время 33-го рейса «Витязя» (1960–1961 гг.) было обнаружено сильное течение на глубине 1 тыс. м. Впоследствии оно было названо именем молодого советского ученого Б. А. Тареева.

В числе задач ближайшего времени, решение которых уже начато, находится изучение течений одновременно на больших пространствах (полей течений) и проведение непрерывных наблюдений в течение года – изучение их изменчивости во времени. Такие наблюдения необходимы при разработке методов прогнозов течений.

Накопленные данные о течениях позволяют свести их к определенной системе. Заметим, кстати, что по этому вопросу у ученых возникали разные мнения, и всего несколько десятилетий назад была введена унификация, единообразие понятий. Классификация может быть основана на различных признаках, и прежде всего на происхождении течений. К этой системе относятся: ветровые течения (или дрейфовые), создаваемые движением воздуха над поверхностью моря благодаря силе трения; сгонно-нагонного характера, возникающие при наклонах уровня моря (первопричина – также ветер); приливо-отливные, вызванные периодическими приливообразующими силами Луны и Солнца; плотностные, порождаемые неравномерным распределением плотности воды.

Течения могут быть классифицированы и по продолжительности, или устойчивости. Это – постоянные непериодические и периодические течения. К первым относятся такие течения, которые всегда наблюдаются в определенных районах и, хотя и имеют ту или иную изменчивость, в целом сохраняют генеральное направление (Гольфстрим, Куросио, пассатные течения). Естественно, что непериодические, временные течения возбуждаются внешними силами, прежде всего ветром. Периодические течения вызываются, в основном, приливами.

Есть и другие принципы классификаций – по глубине расположения (поверхностные, глубинные, придонные), по характеру движения (прямолинейные, криволинейные, в том числе циклонические и антициклонические); по физико-химическим свойствам (теплые и холодные, соленые и распресненные).

Таковы основные классификации течений, из которых главной является первая – по происхождению.

При всей очевидной ясности и необходимости для науки и практики классификации течений заметим, что редко течения вызываются какой-то единственной причиной из тех, что были рассмотрены выше. По большей части течения обусловлены комплексом причин. Характерным примером может служить опять-таки Гольфстрим, который вызывается и наклоном уровня, и ветром, и др.

Обычно, когда течение уже возникло, вступают в действие вторичные силы, видоизменяющие его: Кориолиса (сила вращения Земли), отклоняющая поток вправо в северном полушарии и влево в южном; трение, которое всякое движение замедляет; центробежная, проявляющаяся при криволинейных движениях малого радиуса.

Таким образом, наблюдения и теоретические методы привели к общему выводу, что основной силой, благодаря которой возникают непериодические поверхностные течения в океанах и морях, остается ветер, т. е. циркуляция воздуха. Когда ветер непродолжительный, появляется ветровое течение, когда длительный или господствующий, рождается течение, называемое дрейфовым, – пассатное, экваториальное.

Ветер, вызывающий дрейфовые течения, создает в то же время наклон уровня, так как большие массы воды переносятся с одного места в другое. Особенно заметны такие наклоны у берега. В результате появляется сгонно-нагонная циркуляция во всей толще моря от поверхности до дна. В мелководном море наибольший нагон возникает при ветре, дующем перпендикулярно к берегу, а сгон – при ветре, направленном от берега.

Накопления воды в том или ином районе порождают так называемые стоковые течения. Эти накопления образуются не только под действием ветра, но и от других причин: притока речных вод, обильного выпадения осадков и таяния льдов, неравномерного распределения плотности ВОДЫ.

Разница в атмосферном давлении над различными частями океанов вызывает течения небольшой силы. Так, изменение давления на 1 мб приводит к изменению уровня на 1 см, т. е. возбуждаемые при этом течения (они называются бароградиентными) не являются сколько-нибудь значительными. Когда над морем медленно проходит циклон, частицы воды начинают двигаться от центра к периферии; далее, под действием силы Кориолиса они отклоняются вправо – в море возникает циркуляция по часовой стрелке (антициклоническая). Эта циркуляция будет ослабляться ветровыми течениями с обратной циркуляцией. В то же время через проливы станет поступать вода из соседних морей. Циклон, который предположительно находился над центром моря, будет, естественно, смещаться к его окраине, и тогда в центре моря уровень начнет понижаться, течения в проливах станут откачивать воду из данного моря в соседние. Такая сложная система получается при довольно простой ситуации, рассмотренной здесь схематически. При всей сложности реальных условий взаимодействия океана и атмосферы, их постоянной изменчивости, наложении друг на друга различных причин трудно составить единую систему взаимодействий океана и океанических течений. Поэтому пока приходится прибегать к рассмотрению отдельных типичных ситуаций, в частности таких, как прохождение различных барических систем через определенные моря или участки океанов.

В последнее время изучается также влияние на морские течения рельефа дна и очертания берегов. И хотя размеры проливов ничтожно малы по сравнению с морями и океанами, их роль в водообмене очень велика. Недаром поэтому в океанологии существует специальный раздел – учение о проливах, родоначальником которого был, как уже упоминалось, С. О. Макаров, а продолжателем – Н. Н. Зубов. Макаров оставил замечательную работу о водообмене между Средиземным и Черным морями через пролив Босфор. Его наблюдения, их анализ и оригинальные выводы не утратили своего значения до наших дней.

Исследования Макарова позволили сформулировать следующие общие правила движения вод в проливах северного полушария: течения вокруг больших островов и архипелагов движутся в направлении часовой стрелки; в широких проливах течения вдоль различных берегов противоположны по направлению. Различны также направления течений в вертикальном разрезе. Макаров наблюдал это в Сангарском проливе Японского моря. Такие же наблюдения известны в Корейском проливе и др.

В самом общем виде схема течений Мирового океана может быть представлена так. В северных частях трех океанов – Атлантического, Тихого и Индийского – отчетливо видны системы больших антициклонических круговоротов, а в южных частях – циклонических. Особенно нужно отметить проникновение в высокие широты Северо-Атлантического течения, являющегося ветвью Гольфстрима.

Гольфстрим оказывает большое влияние на климат нашей страны. В частности, в районе Баренцева моря ветвь теплого течения оттесняет границу постоянных льдов на север, до 81° с. ш. – самой высокой широты в мире. Как указывал В. В. Шулейкин, даже в Карское море теплое течение приносит в 9 раз больше тепла, чем воды Енисея и Оби. Изучено и более отдаленное воздействие Гольфстрима, например на средний уровень Каспийского моря.

Тепло Гольфстрима ощущает вся Западная Европа и восточные районы Северной Америки. При небольших скоростях Северо-Атлантического течения (0,1–0,2 см/с) тепло, приносимое им к северо-западным берегам Европы, так велико, что на западном берегу Норвегии, в Тромсе, расположенном на 70° с. ш., температура воздуха на 22° выше средней для данного широтного круга.

Начатое давно изучение Гольфстрима (обнаруженного Понсом де Леоном в 1513 г.) пережило качественно новый скачок лишь в 50-е годы нашего столетия. Поставленные в это время синхронные съемки несколькими судами (в том числе и советскими) дали интереснейшие результаты. Среди других проблем особенно внимательно рассмотрено меандрирование Гольфстрима и его многолетние колебания. Материалы исследований впервые обобщил американский ученый Г. Стоммел в книге «Гольфстрим».

Исследование течений считается проблемой номер один в современной физической океанологии. Это означает не только ее важность, но и то, что еще очень многое в ней предстоит сделать. Стоммел пишет: «Даже теперь, после многих лет усилий, наше представление о Гольфстриме является еще не полным»[2]2
  Стоммел Г. Гольфстрим. М.: ИЛ, 1963, с. 28.


[Закрыть]
. Наблюдения последних десятилетий показали, что положение Гольфстрима настолько изменчиво, что его путь даже приблизительно нельзя назвать прямым. Исследования течения Стоммел проводил одновременно с изучением условий атмосферной циркуляции над Атлантическим океаном, системой ветров.

С точки зрения практики морские течения имеют значение в первую очередь для навигации. Встречное течение задерживает движение судна, боковое – сбивает его с курса и может стать опасным, попутное – благоприятствует движению вперед. Каждый судоводитель снабжен таблицами о приливо-отливных течениях в прибрежных районах и картами течений в открытом океане, составленными по средним характеристикам.

Большое значение имеет изменчивость течений для рыболовного промысла. Рыба часто концентрируется во фронтальных зонах океана и зонах расхождения течений, где поднимаются глубинные воды, насыщенные питательными солями.

Океан из космоса

Начиная с первого полета в космос стали очевидными перспективы, которые открывают наблюдения над поверхностью океанов с пилотируемых аппаратов. На космических снимках отчетливо видны струи океанических течений, фронтальные зоны, пятна и полосы. В 1978 г. орбитальная станция «Салют-6» имела уже совершенно определенное научное задание по изучению природной среды и биологической продуктивности океанов нашей планеты. Одновременно в эту работу были включены и суда, находящиеся в океанах. Таким образом, данные, получаемые с борта судна, непосредственно проверялись, сопоставлялись, постоянно происходил обмен результатами наблюдений. Удалось найти признаки для определения ряда динамических образований в море: фронтальных зон, разделяющих воды с различными физическими свойствами; зоны поднятия к поверхности вод из глубины; вихрей и мест с высокой биологической продуктивностью. Наблюдения с судов показали, что высокая биологическая продуктивность соответствует динамически активным зонам. Космические исследования внесли некоторые уточнения: высокая биологическая активность, которая обычно считается характерной для прибрежных районов, присуща также и районам открытого океана, где были замечены большие скопления морских организмов. Изучение вихрей на морской поверхности показало, что они не случайны, повторяются часто и, видимо, представляют собой элемент общей циркуляции.

Наземная информация недостаточна для большинства районов Мирового океана. Огромные пространства, лежащие вне путей транспортных и рыболовных судов, остаются неосвещенными, сеть кораблей погоды слишком редкая. В океанографической оперативной и научной практике наиболее успешно применяются телевизионные снимки поверхности Земли (в том числе океанов) и облачности. Два основных аспекта использования этой информации – о ледовом покрове и зонах штормового волнения по весьма обширному району одновременно. Существующие уже много лет наблюдения над ледовым покровом с береговых станций, постов, самолетов и судов ограничены как во времени, так и в пространстве. Наиболее совершенное из этих наблюдений – ледовая авиаразведка – не охватывает всей акватории, производится с большими промежутками. Таким образом, часто трудно бывает проследить за изменением положения кромки льдов и другими важными характеристиками.

Большая работа ведется по дешифрированию получаемых снимков. Яркость дает возможность определить различные формы льда, воду среди льда – полыньи, каналы, разводья, запринайные полыньи. Самый яркий тон означает, что на снимке зафиксирован неподвижный или малоподвижный лед. Менее яркий – разреженный, серобелый и серый и т. д. Яркость снимка зависит от многих причин, в том числе от сезона года. Особенные трудности вызывает дешифрирование снимков, когда над льдами лежит плотная облачность. Здесь на помощь пришло сопоставление снимков последовательно в течение нескольких дней.

Облачная система значительно менее инертна, чем ледовая, и изменения кромки припая удается представить себе достаточно точно. При этом уточнение делается с помощью географических ориентиров – таких, как мысы, полуострова и острова, береговая линия, которые в большинстве случаев на спутниковых снимках видны достаточно отчетливо.

Естественно, что анализ снимков неразрывно связан со знанием климатических условий: льда, ветра, течений, температуры воды и воздуха, т. е. это может делать только специалист-гидрометеоролог. Надо знать также условия в океане и атмосфере за предшествующее время. Это важно прежде всего при резких изменениях – например, когда сильные ветры заметно меняют положение кромки льда, его сплоченность и т. д.

По спутниковым данным составляются ледовые карты. Такая карта соответствующим образом обрабатывается, наносятся границы различных форм льда, в принятых условных обозначениях даются виды льда, сплоченность, участки чистой воды и т. д. Если есть карта последней ледовой разведки, делают сравнения с ней, анализируют и объясняют возникающие при этом в ряде случаев расхождения.

Спутниковая информация может оказать неоценимую услугу, если других данных нет. В декабре 1967 г. научно-исследовательское судно «Профессор Визе» совершало плавание в антарктических водах (это судно не приспособлено для плавания во льдах). Обслуживание велось по данным метеорологического спутника Земли «Космос-184». По ним удалось установить границу берегового припая и зоны льдов различной сплоченности, предполагаемое место распространения айсбергов. Судну был рекомендован оптимальный маршрут. Операция оказалась успешной.

Второй, исключительно важной стороной использования спутников являются снимки облачных вихрей для определения зон штормового волнения в океане. Состояние погоды, несмотря на современное мощное развитие мореплавания, весьма важно для успешного движения судов в океане. Нередки случаи, когда приходится менять курс судна, снижать его скорость, прекращать лов рыбы или морского зверя, ложиться в дрейф и т. д. Все это, естественно, увеличивает непроизводительные затраты, наносит определенный ущерб. Анализ спутниковых наблюдений и карт морского волнения показал отчетливую связь между вихревой структурой облачности и морским ветровым волнением. Прежде всего было изучено отличие вихревой структуры облачности циклонов от барических образований вихревой же структуры, не влияющих на погодные условия. Это было сделано, так как известно, что показываемые спутником вихревые возмущения над океаном в 80 % имели вихревую структуру облачности, развитые и окклюдированные циклоны, в 20 % – не связанные с циклогенезом. След циклона виден на снимке как остатки отчетливо выраженной облачной спирали с округлым просветом в середине. Эти снимки потребовали тщательного анализа, так как возможны различного вида осложнения, вызывающие непредвиденные ошибки. Когда на снимке спутника обнаруживается вихревая структура облачности над определенным районом океана, на его поверхности наблюдаются ветровые волны. Высота их может достигать 3–4 м, а зона распространения простирается в среднем на 300 X 200 миль. Постепенно волнение нарастает, волны увеличиваются до 5–7 м, а площадь – до 500 X 350 миль. Далее начинается жестокий шторм с волнами до 10–12 м, общая площадь волнения, вытянутая в направлении ветра в форме эллипса, расширяется до 1000 миль. При заполнении циклона шторм начинает утихать.

Таким образом, по данным вихревой структуры облачности можно составить достаточно точное представление о морском штормовом волнении – высотах волн и зонах распространения.

Особенно опасны для плавания в приэкваториальных и тропических зонах океанов тропические циклоны. Спутник позволяет обнаружить место их возникновения, и полученная Землей информация своевременно поступает на суда.

Атмосфера

Происхождение, распространение, состав

Весь земной шар окутывает невидимым слоем атмосфера – его воздушная оболочка. Ответить со всей определенностью на вопрос, как она появилась, пока не представляется возможным. Имеются лишь гипотезы, но дело будущего установить, какая из них верна, а может быть, найдется новое, отличное от них решение. Время существования атмосферы и точных наблюдений над ней совершенно несопоставимы. Возраст воздушной оболочки составляет несколько миллиардов лет, период ее изучения – около 200 лет.

Исследуя состав земной атмосферы, ученые определили, что ее состав отличается от вероятного состава атмосферы, окружающей другие планеты Солнечной системы. Работа в этой области еще только начинается. Так, сведения об атмосфере Венеры получены с помощью советских и американских автоматических станций. Проводятся наблюдения над атмосферой Сатурна. Эти исследования позволили установить, что атмосферы планет земной группы типично окислительные, в них мало (или вовсе отсутствует) водорода и много углекислого газа (в атмосфере Венеры углекислого газа 93–97 %).

Химический состав земной атмосферы с течением времени меняется под влиянием поверхности земной коры, биологических факторов и ультрафиолетовой солнечной радиации. В соответствии с теорией образования Земли академика О. Ю. Шмидта, частицы гигантского облака космической пыли, из которого образовалась Земля, выделили постепенно основные газы – атмосферу. Позднее легкие газы улетучились. Считают, что в современную эпоху газы попадают в атмосферу главным образом при извержении вулканов. А затем вновь возвращаются на земную поверхность. Как в прошлом, так и теперь продолжается сложный процесс формирования атмосферы планеты. А влияние деятельности людей на состав атмосферы с каждым годом увеличивается.

Человек всегда стремился понять явления природы, оградить себя от опасных, определить полезные. Не случайно земляне обожествляли солнце, луну, гром и молнию, ветры и моря. С незапамятных времен сохранились сведения о погоде, смене ветров, радуге, муссонах, о пыльных бурях. Но уже в глубокой древности ученым приходилось несколько ограничивать власть божественной силы. Так, Пифагор говорил, что «бог поступает всегда по правилам геометрии». В первых записях древних по метеорологии был отмечен годовой цикл погоды. Более четырех веков до нашей эры в греческих городах на всеобщее обозрение выставлялись календари погоды (их называли паранегамами, от греческого слова прикреплять) с описаниями наблюдений предшествующих лет. В них говорилось о ветрах, бурях, дождях, грозах и туманах. Сохранились сведения, дающие возможность составить представление о погоде того времени. По отдельным данным (прилет и отлет домашней ласточки или цветение персика) можно установить, что климат был теплее настоящего.

Первой книгой об атмосферных явлениях была «Метеорология» Аристотеля. Труд великого ученого состоял из четырех частей: в первой описывались явления, происходящие в верхних слоях атмосферы, во второй – моря, в третьей – бури и вихри, а четвертая посвящалась «Теории четырех стихий». Следовательно, уже тогда были известны многие метеорологические явления и делались попытки установить взаимосвязь океанов и атмосферы. Впервые «Метеорология» была переведена на итальянский язык в 1474 г. До 1600 г. вышло 135 ее изданий с различными комментариями. Средние века оставили нам летописи, также упоминавшие о явлениях погоды.

В период Великих географических открытий было доказано, что наша планета имеет форму шара и климат на ней весьма разнообразен. Мореплавание потребовало развития астрономии, оптики, навигации. В XVII в. были изобретены термометр, барометр и многие другие приборы. История создания термометра до сих пор еще во многом неясна. Высказывается предположение, что над изобретением термометра работали одновременно несколько ученых. Однако пальма первенства принадлежит Г. Галилею. Два с половиной столетия ушло на унификацию наблюдений температуры воздуха, да и сейчас эта работа еще не закончена.

Аристотель ввел ошибочное представление об абсолютной легкости воздуха, которое укрепилось необыкновенно прочно. Галилей же изучал давление воздуха. Он вычислил высоту медного столба, уравновешивающего давление воздуха, хотя сам еще пользовался термином «сила пустоты». Так приблизилось время появления барометра. Его изобрели ученики Галилея – Торичелли и Вивиани. Примерно в середине XVII столетия появились барометры с надписями: «дождь», «сильный дождь», «буря» (со стороны низкого давления), «ясно», «очень ясно», «очень сухо» (со стороны высокого). Эти надписи существуют на барометрах и в наши дни.

В XIX в. возникла одна из ветвей метеорологии – синоптическая. В 1816–1820 гг. Брандео в Германии составил первые синоптические карты для Европы. В 1842 г. Лумис сделал их в США. Для первых карт были использованы наблюдения 36 станций, из которых три находились в России (сейчас в нашей стране 10 тыс. метеорологических станций).

Постепенное совершенствование и анализ синоптических карт позволили сделать многие фундаментальные выводы о движении и свойствах воздушных масс. Пришло время оформления их в самостоятельную дисциплину с конкретной практической задачей – предсказание погоды. Этому способствовало изобретение телеграфа, который стал использоваться для быстрейшей связи отдаленных: районов с центральными учреждениями в случае приближения бурь, а также организации всей метеорологической службы.

14 ноября 1854 г. на Черном море произошла жесточайшая буря. Стоявший в это время в Балаклавской бухте англо-французский флот был уничтожен. Это трагическое событие привело к организации во Франции регулярной службы, которую возглавил известный астроном У. Леверье. Через три месяца после балаклавской бури вышла первая опытная карта, для которой были использованы наблюдения 13 метеорологических станций Франции. В последующие годы стали поступать наблюдения и из других стран, составляться и публиковаться карты, организовалась служба штормовых предупреждений.

В 1872 г. возникла служба погоды и в России. В Главную физическую обсерваторию в Петербурге по телеграфу передавались сведения с 60 русских и зарубежных станций, штормовые предупреждения ограничивались лишь акваторией Балтийского моря и озер.

В течение нескольких десятилетий синоптический прогноз был, в сущности, прогнозом изменений поля давления атмосферы. Считалось, что горизонтальное распределение давления это и есть условия погоды. Но температура воздуха, осадки, облачность связаны не только с давлением. В атмосфере все значительно сложней. Необходима была перестройка самого метода синоптической метеорологии, его научных основ и прогностических возможностей. В 1915 г. в России возникло Военно-метеорологическое управление и Главная авиаметеорологическая станция. Да и сама метеорологическая наука уже была подготовлена к перестройке.

Развитие аэрологических наблюдений в конце XIX в., т. е. исследование верхних слоев атмосферы, привело к тому, что произошел поворот к изучению процессов в трех измерениях. Существенную роль в этом сыграли и успехи динамической метеорологии, в особенности учение о циркуляции атмосферы и об энергии атмосферных движений (В. Бьеркнес и М. Маргулес). Благодаря радиосвязи был установлен международный обмен метеорологическими сводками. Синоптические карты начали составляться для всего северного полушария, а затем и для Земного шара. Если во время первой мировой войны было несколько десятков станций, то к 40-м годам их насчитывалось уже тысячи. Сами передаваемые наблюдения стали подробнее, охватили большое число элементов. Радио стало основным средством информации о будущей погоде. Таким образом, крупнейший технический переворот в средствах связи привел к перевороту в синоптической метеорологии. Метеорологическая наука за 20 лет (1920–1940 гг.) сделала больше, чем за всю свою предшествующую историю.

Значительное развитие получила служба погоды в нашей стране. В 1930 г. был организован Центральный институт погоды, республиканские и областные центры службы погоды, синоптическая служба в аэропортах гражданской и военной авиации.

Изобретение радиозонда сделало возможным появление высотных карт погоды и вертикальных разрезов. В нашей стране они систематически составляются с 1937 г. С помощью этих карт были открыты и исследованы струйные течения – узкие, но исключительно сильные потоки в верхней атмосфере и тропосфере. В 1945 г. первые полеты самолетов в тропических циклонах положили начало их подробному исследованию.

Одновременно с синоптическим разрабатывался гидродинамический метод прогноза погоды – в первую очередь прогноза поля давления. В 1939–1940 гг. были предложены новые приемы для предсказания поля давления и температуры, в частности перенос изобар и изотерм вдоль некоторых предвычисленных траекторий, позднее развитый и усовершенствованный. Теоретически изучена система волн, возникающих в общем западном воздушном потоке. Большой вклад в гидродинамический метод прогнозов внес советский ученый И. А. Кибель.

Еще в 1925 г. советский ученый А. А. Фридман предложил уравнение переноса вихря. Оно было широко использовано во многих странах – США, Германии, Англии и др. Когда спустя два с лишним десятилетия началось широкое применение электронно-вычислительной техники, стало возможным быстро решать сложные системы уравнений динамики атмосферы, учитывать в прогнозах многие добавочные физические факторы, например влияние орографии.

До сих пор мы говорили лишь о краткосрочных прогнозах погоды. Ведется также большая работа по созданию и применению методов долгосрочных прогнозов средствами гидродинамики. В последние годы как в нашей стране, так и за рубежом развиваются идеи о влиянии солнечной активности на макропроцессы погоды. Общая тенденция исследований сейчас такова, что надо искать глубокие взаимозависимости между всеми геофизическими явлениями. Надо также учитывать и роль космических факторов.

Атмосфера испытывает постоянное воздействие сверху – космического пространства, снизу – земной поверхности, почвы, снежного покрова и, конечно, океанов, морей и других водоемов. Основной источник энергии атмосферы – солнечное излучение, постоянно идущее к Земле.

Физическое состояние атмосферы характеризуется величинами, называемыми метеорологическими элементами, – это температура, влажность, давление воздуха, ветер (его направление и скорость), осадки, дальность видимости, оптические, электрические явления. Сочетание нескольких метеорологических элементов порождает грозу, метель, туман, смерч, полярные сияния и др. Изучать атмосферные явления, находить их взаимосвязи призвана метеорология. В наш век дифференциации наук и метеорология разделилась на ряд отдельных отраслей, Одна из них – физика атмосферы, в которой основное внимание уделено физическому механизму атмосферных процессов и явлений. Конкретно физика атмосферы изучает термодинамические процессы, состав, строение, образование облаков, туманов и др.

Разработкой методов предсказания погоды занимается синоптическая метеорология. Динамическая (теоретическая) метеорология, широко используя математический аппарат, применяет теоретический метод исследования. Наука о климате – климатология. Физика свободной атмосферы – аэрология – изучает верхние слои атмосферы (до высот в несколько десятков километров). В последние годы возникает новая наука – аэрономия. Она обязана своим происхождением тем наблюдениям, которые производятся с помощью геофизических и метеорологических ракет, искусственных спутников Земли, пилотируемых и автоматических кораблей и межпланетных станций. Здесь речь идет уже о высотах в несколько сотен и тысяч километров. Эта наука рождается на наших глазах вместе с развитием космических исследований, и путь ее еще только начинается, хотя можно предположить, что он будет стремительным, захватывающе интересным и принесет новые открытия.


    Ваша оценка произведения:

Популярные книги за неделю