Текст книги "Океан и атмосфера"
Автор книги: Автор Неизвестен
Жанр:
Биология
сообщить о нарушении
Текущая страница: 11 (всего у книги 11 страниц)
Динамическое взаимодействие
Строго говоря, трудно разделить термическое и динамическое взаимодействие океана и атмосферы, скажем, на примере реакции поверхностных вод океана на проходящий над ним тайфун. Более объективным, возможно, является, как считает советский океанолог А. Ф. Плахотник [1978], выделение двух групп вопросов: собственно взаимодействия (сюда относятся характер, механизм и масштабы взаимодействия) и изучения пограничных слоев (океан и прилегающая к нему атмосфера). Планетарно пограничными слоями считают примыкающие друг к другу слои толщиной порядка 1,5 км, в пределах которых непосредственно проявляется взаимодействие океана и атмосферы – турбулентный перенос энергии и ее рассеивание.
Важность исследования пограничных слоев отмечалась уже в 1959 г. на Первом Международном океанографическом конгрессе. Распределение гидрологических и метеорологических элементов в пограничных средах взаимосвязано и взаимообусловлено. Хотя на различных этапах изучения проблемы предпринимались попытки подвести некоторые итоги, полной картины еще нет.
Для дальнейшего развития знаний в этой области, по мнению Е. П. Борисенкова и А. Ф. Трешникова, необходимо создание крупных макрополигонов в районах наиболее резко выраженного энергообмена в системе «океан – атмосфера». Зоны и очаги интенсивного взаимодействия требуют всестороннего наблюдения. Как уже отмечалось, это – зоны зарождения и развития тропических ураганов из начальных вихрей, образующихся над тем или иным районом океана. Бедствия, причиняемые ураганами, неисчислимы. Неудивительно поэтому, что их изучение, поиски методов расчета их возможных траекторий и условий затухания чрезвычайно важны. Параллельно изыскивается возможность гасить тропические ураганы на начальных стадиях, пока они еще не развились в грозную силу.
Прежде всего исследования ураганов начались в странах, побережья которых испытывают на себе их разрушительное воздействие, а именно: в США, Японии, Индии и Австралии. Однако многие страны, хотя и не подвергаются непосредственной опасности на своих территориях, ведут транспортные операции и рыболовство на обширных просторах океанов, где действуют тайфуны. В 1978 г. В. В. Шулейкин опубликовал сводку исследований по расчету, развитию траекторий движения и затухания тропических ураганов. Рассчитать теоретически поле волн вокруг движущегося урагана еще не удалось никому. Шулейкин указывал, что основная проблема – найти аналитический метод решения задачи в достаточном приближении. Такой метод, постепенно совершенствуясь, вскроет физический смысл явлений.
Тропические ураганы возникают в определенных районах океана. Так, никто не видел урагана на всем протяжении Атлантики в южном полушарии, никогда не наблюдалось их прохождение через экватор ни в Атлантическом, ни в Тихом океанах. В направлении с востока на запад плотность траекторий ураганов увеличивается и резко возрастает вблизи путей теплых океанических течений.
Тропические ураганы порождаются резким нарушением устойчивости атмосферы, и их огромная мощность объясняется неустойчивостью влажности. В то же время неустойчивость атмосферы связана с повышенной температурой воды, в особенности над теплыми течениями – Гольфстримом, Куросио и др. В. В. Шулейкин считает главной причиной зарождения тропических ураганов именно температуру подстилающей поверхности вод океанов. Повышение температуры определяет количество пара, поступающего в атмосферу, где он, конденсируясь, выделяет достаточное количество скрытого тепла. Это общее положение имеет, однако, исключения. В Гвинейском заливе, намного южнее экватора, поверхностные температуры превышают 28 °C, тем не менее здесь никогда не было ни одного тропического урагана (нагревается лишь тонкий слой опресненной воды реки Конго). Гвинейский залив – исключительно спокойная область Мирового океана, в которой не бывает циклонов даже с умеренными скоростями ветра.
Анализ материалов наблюдений показал, что только 4 % всех тропических циклонов достигает силы урагана: если температура воды на глубине 60 м отличается от поверхностной больше, чем на 8,5°. Часто думают, что тропические циклоны, в том числе переходящие в ураганы, зарождаются над океанами. Это не совсем точно. Прежде всего должен зародиться начальный вихрь, и это может произойти над сушей – и чаще всего при условии резкой неоднородности поверхности, над которой проносится воздушный поток. Примером может служить озеро Чад в Африке. Температурные контрасты в атмосфере и над озером с окружающими его раскаленными песками пустыни создают начальные вихри. Дальнейшая их судьба может быть различной, и, если пассат понесет их в сторону океана, они могут уже над океаном развиться в циклон, а потом и в ураган.
Тропические ураганы, проносясь над поверхностью океана, часто попадают в пределы суши, а иногда вновь выходят на океан и уже там затухают. Так, в августе 1909 г. сверхмощный ураган Камилла вступил на материк Северной Америки близ Нового Орлеана. Он двигался над сушей 67 часов, принося страшные разрушения, затем снова вышел в океан, восстановил энергию, которую потратил над сушей, и двигался с постепенным затуханием, не находя в температурах поверхности воды новой поддержки.
В тех случаях, когда ураган проходит над метеорологической станцией, удается наиболее надежно зарегистрировать поле тропического урагана. Но он сметает с лица земли и станцию! В литературе описан лишь один случай, когда станция уцелела. Это было над Манилой. Ураган средней силы прошел непосредственно над обсерваторией, которая обычно сообщает мореплавателям прогнозы траекторий тайфунов. Максимальная скорость ветра составила 56 м/с, давление 45 мб. В центре «глаза» скорость ветра упала до 0, поле тайфуна было асимметрично относительно его оси. По обе стороны «глаза» возникли вихри с горизонтальными осями, совпадающими с путем движения урагана. В море начался подъем вод в океане приблизительно с глубины 100 м, а глубже – их опускание. В середине образовалось пятно воды с наибольшим похолоданием – до 3 °C (на 3° ниже нормы). Приближение урагана могут «предсказать» волны зыби, затем развивается новая система – ветровых волн. Так, создается сложнейшая, благодаря интерференции, толчея волн, делающая задачу анализа и предсказаний для всего поля волн вокруг движущегося урагана пока неразрешимой. Самые мощные волны зыби уходят в северном полушарии влево от пути движения центра урагана и вправо – в южном.
Дольше всего живут волны зыби, вызванные не ураганами, а сильными, продолжительными штормами. Ветровые волны высотой 11 м могут быть возбуждены штормами со скоростями ветра примерно 25 м/с в течение суток, длина волн может превысить 200 м. О том, как далеко распространяются волны зыби, можно судить по такому примеру. Экспедиционное судно «Седов» осенью 1967 г. около 30° с. ш. встретило зыбь высотой 8 м и длиной 200 м. Она пришла с 55° с. ш.
Исследования показали, что при урагане средней мощности, с наибольшей скоростью ветра 70 м/с и скорости поступательного движения 6 м/с, высота волн стремительно нарастает до 11,8 м, а длина – до 130 м.
Масштабы взаимодействия
Ранее упоминалось о различных масштабах взаимодействия океана и атмосферы. Сюда входят процессы как глобального порядка – продолжительностью в десятилетия, так и протекающие секунды. Уже один этот факт предопределяет подход (его масштабность) к исследованиям. Но и сами процессы взаимодействия связаны друг с другом. Так, мелкомасштабные процессы обмена энергией и веществом в системе «океан – атмосфера» в свою очередь влияют на среднемасштабные и крупномасштабные.
Начинать изучение, по-видимому, нужно с мелкомасштабных, а также среднемасштабных процессов. Немалая роль здесь принадлежит созданию специальной аппаратуры, дающей возможность уловить в природе изменчивость мелкого масштаба. Мелкомасштабные процессы взаимодействия океана и атмосферы лежат в пределах пограничных слоев, распространяющихся на высоту и глубину в интервале 10–20 м, в горизонтальной плоскости до 10—100 м2 и во времени на несколько минут. В этих рамках осуществляется обмен энергией и веществом через пограничные поверхности. Сюда входят поверхностные и внутренние волны в океане, их взаимодействие со слоем воздуха над океаном, локальный теплообмен с атмосферой, турбулентное перемешивание ветрового происхождения и другие процессы.
В последние десятилетия сформулировано основное положение о том, что главными физическими характеристиками мелкомасштабного взаимодействия являются величина и направление горизонтального вектора напряжения турбулентного трения и турбулентные потоки тепла и влаги в приводном слое атмосферы.
Теоретические исследования взаимодействия основываются на теории подобия А. С. Монина и А. М. Обухова [1954]. В последующих работах ряду специалистов удалось получить данные, позволяющие рассчитать основные энергетические характеристики, необходимые для перехода к процессам более крупного масштаба.
В конце 60-х годов в ходе экспедиции на научно-исследовательских судах «Академик Вавилов», «Михаил Ломоносов» и др. непосредственно измерялось воздействие ветра на волны с целью определить закономерности микромасштабного обмена энергией.
К среднемасштабным (их еще называют мезомасштабными) относят процессы взаимодействия с пространственными масштабами от десятков метров до нескольких километров и временными – от часов до суток. Сюда относятся волновые процессы в пограничных слоях приливного и инерционного происхождения и суточные колебания температуры (бризовая циркуляция над морскими побережьями).
Теоретическое и лабораторное изучение процессов среднемасштабного взаимодействия очень сложно.
В океане среднемасштабная изменчивость отражается на формировании непериодических вихрей, подобных атмосферным циклонам и антициклонам. Полагают, что эти движения возникают благодаря тепловому воздействию и переменным ветрам. Движения синоптического масштаба – по-видимому, наиболее энергоносящая составляющая океанических движений. В средних широтах Земли 80 % кинетической энергии приходится на среднемасштабные процессы. Тайфуны (ураганы) при диаметре зоны распространения 700 км выделяют в 1 секунду энергию, равную энергии всех электростанций Финляндии, вырабатываемой в течение 41 года.
Влияние синоптических процессов носит глобальный характер. В атмосфере, как указывалось, главным элементом среднемасштабных процессов служат циркуляционные системы – циклоны и антициклоны. Колебания уровня в океане могут быть вызваны метеорологическими факторами. Вблизи берегов, в мелководной зоне наиболее значительные колебания уровня связаны со штормовыми нагонами. По мере увеличения глубины моря и крутизны склона повышается роль колебаний уровня, обусловленных изменением атмосферного давления. Рассматривая среднемасштабные связи атмосферной циркуляции с течениями в районе Северной Атлантики, к югу от острова Гренландия и на банке Роккол, С. С. Лаппо обнаружил синхронность колебаний скоростей и малые изменения температуры вплоть до горизонтов 1600 м. Амплитуды скоростей течений доходили до 25–30 см/с. Анализируя материалы по другим районам, в частности на материковом склоне Курильской гряды, автор указывает на широкую распространенность колебаний течений с периодами от 1 до 10 суток. Среднемасштабные барические системы подвижны (средняя скорость перемещения циклона 10 м/с), что порождает ряд характерных особенностей в возбуждаемых ими движениях. Существенно важна и криволинейность траекторий барических депрессий.
Во время исследования по программе эксперимента АТЭП в июне – сентябре 1974 г. в тропической зоне Атлантики были получены интересные результаты. Установлено, что в зависимости от среднемасштабной структуры поля динамическое и тепловое взаимодействие океана и атмосферы в пассатной зоне южнее экватора происходит с периодами около 3–4, 12 часов.
К крупномасштабному (или глобальному) взаимодействию океана и атмосферы относят явления, происходящие на пространстве в тысячи километров (это соизмеримо с размерами полушария и всей планеты) в течение сезона, года, ряда лет. Сюда относятся процессы всей системы «океан – атмосфера», связанные с расчетами теплового баланса, влагооборота и др. Что касается атмосферы, то это – прежде всего, эпохальный ход климатических явлений (и резкие отклонения от него), внутривековые и межгодовые изменения климата, длительные аномалии погоды.
К крупномасштабным явлениям в океане относятся длиннопериодные колебания температуры поверхностного слоя, главный термоклин, максимум солености (в средних широтах) и минимум солености (в субантарктических водах), глобальные перемещения главных океанических течений.
Крупномасштабные процессы взаимодействия непосредственно связаны с проблемой долгосрочных явлений в атмосфере и океане, в том числе и с их предсказанием. Представляет большой интерес изучение связей между температурными аномалиями поверхности океана и отклонением от нормы значений атмосферного давления.
Задача построения физической теории климата и долгосрочных прогнозов погоды выдвигает сегодня на первое место необходимость математического моделирования крупномасштабного взаимодействия. Одна из сложностей этой проблемы состоит в том, что океан обладает значительно большей тепловой и динамической инерцией, чем атмосфера. Чтобы преодолеть эту сложность, предпринимались различные попытки. Так, атмосферный год условно принимался равным 100 годам океана. Был предложен и другой путь – считать поля плотности и скорости ниже верхнего слоя океана заданными. Это позволило сократить время установления равновесного режима всей системы. Но при этом остался нерешенным вопрос о согласовании глубинных полей температуры и солености с получающимися в расчетах полями вертикальной скорости и потоками тепла и солей на верхней границе нижнего слоя.
В целом можно сказать, что механизм теплового и динамического взаимодействия крупного масштаба состоит в том, что неодинаковое поступление тепла от Солнца создает различный тепловой баланс на поверхности Мирового океана. Следствием этого является неодинаковый нагрев атмосферы и формирование определенного поля атмосферного давления. В результате возникает атмосферная циркуляция, приводящая в движение верхние слои океана, а затем, благодаря течениям, проникающая и на глубину. В то же время течения изменяют исходное состояние теплового баланса, что опять-таки влияет на циркуляцию атмосферы.
Как говорилось, крупномасштабные процессы по времени разделяются на сезонные, межгодовые и внутривековые. Для характеристики каждого из них можно привести большое число примеров. Отметим лишь, что в отношении внутривековой изменчивости, изучение которой лишь начинается, было обнаружено, что потепление климата в первой половине 20-х годов повлияло и на тепловое состояние океана в целом. Так, в высоких широтах температура воды повысилась на несколько градусов, а в низких – несколько понизилась.
В одном из последних обобщений исследований циркуляции Мирового океана, сделанном В. А. Бурковым [1980], делается попытка построить и физически интерпретировать трехмерное крупномасштабное поле движения Мирового океана. Количество наблюдений в последние годы возросло в несколько раз, но по-прежнему крайне неравномерно. В работе Буркова использованы косвенные данные для построения стационарной циркуляции Мирового океана с обобщением всех наблюдений в форме средних многолетних годовых значений.
Энергетические источники Мирового океана лежат на его поверхности. В среднем многолетнем плане для всего Мирового океана тепловой и водный баланс равен нулю, гидрофизические и гидрохимические параметры не меняются. Общая циркуляция Мирового океана возбуждается механическими (ветровое напряжение на поверхности океана) и термохалинными (неравномерное распределение нагревания и охлаждения и др.) факторами. Физическая природа циркуляции верхней части – ветровая и термохалинная. Чем глубже в океан, тем меньше роль первой и больше второй.
Последующие задачи в исследовании данной проблемы сводятся к уточнению вклада ветра в океаническую циркуляцию, к определению влияния синоптических вихрей на среднюю циркуляцию, к оценке продукции глубинных и придонных вод. Конечной целью является изучение изменчивости океанических течений в различных масштабах и прогноз, основанный на исследовании взаимодействия океана и атмосферы. Год является тем минимальным промежутком времени, в течение которого океан запасает тепло, а затем отдает его в атмосферу. Оценка взаимного влияния в рассматриваемой работе была произведена методом линейной коррекции. Оценивалась связь температурных полей над Северной Атлантикой и европейской территорией нашей страны для каждого месяца и со сдвигом от одного до 12 месяцев. В процессе теплообмена в системе океан выступает как аккумулятор солнечного тепла, но «память» океана имеет некоторый годовой ход, и это вносит свои сложности в проблему.
Перспективы исследований
Основа для исследований по динамике атмосферы в нашей стране заложена трудами А. А. Фридмана и Н. Е. Кочина. Важный этап начался с работы И. А. Кибеля, сформулировавшего первую гидродинамическую модель краткосрочных прогнозов погоды.
Несмотря на расширяющиеся возможности решения сложных теоретических термогидродинамических задач с использованием все более совершенных электронно-вычислительных машин, задача долгосрочного прогноза погоды остается нерешенной. Причина этого, по мнению В. В. Шулейкина, кроется в отсутствии непрерывных наблюдений на преобладающей части планеты, занятой океанами. Проблему века – долгосрочный прогноз – можно решать только при учете взаимодействия между атмосферой, океаном и материком. В потоке тепловой адвекции возникают не просто температурные, а самовозбуждающиеся термобарические незатухающие колебания. Через все звенья природной системы термобарических сейш проходит поток энергии, идущий от океана на материк через атмосферу.
В области изучения океана, особенно в последние 10–20 лет, теоретические исследования вскрыли основные механизмы ветровой и термохалинной циркуляции. Получено представление об общей трехмерной циркуляции Тихого океана, геострофической циркуляции Атлантического и Индийского океанов. В нашей стране проводятся расчеты стационарных течений в различных районах Мирового океана с учетом конфигурации и рельефа дна.
Научно-исследовательская работа в области морских прогнозов обрела ныне новые формы – в них значительно шире, чем раньше, стали рассматриваться проблемы взаимодействия океана и атмосферы. В долгосрочных и сверхдолгосрочных морских прогнозах значительное внимание уделяется роли инерции океана, изучаются процессы, происходящие в атмосфере в предшествующие периоды времени.
Несмотря на то что первые попытки предсказания относятся к давним временам, а в 1923 г. В. Ю. Визе опубликовал первый морской прогноз (ледовитости Баренцева моря), проблема эта остается неизменно острой – и в теоретическом, и в практическом плане. Еще предшественники Визе полагали, что основным является влияние на море метеорологических условий. Современные методы наблюдений дают новые возможности в развитии методов морских прогнозов. Повышается роль методов морских прогнозов, основанных на уравнениях теплового и водного баланса. В сверхдолгосрочных морских прогнозах главная роль отводится учету циклических колебаний солнечной активности, их связей с общей циркуляцией атмосферы и многолетними колебаниями уровня моря, температуры воды и ледовитости.
Принципиальная особенность современных исследований – переход к изучению океана и атмосферы в их единстве – находит свое прямое отражение в работе над морскими прогнозами.
Литература
Багров Н. А., Оганесян В. В. К вопросу о тепловом балансе, взаимодействии океана и атмосферы. – В кн.: Применение статистических методов к анализу и прогнозу погоды. Л.: Гидрометеоиздат, 1978, с. 57–62.
Борисенков Е. П., Трешников А. Ф. О роли полярных районов в проблеме глобальных исследований циркуляции атмосферы и океана. – Тр. ААНИИ, 1970, т. 296, с. 5–21.
Бурков В. А. Общая циркуляция Мирового океана. Л.: Гидрометеоиздат, 1980, с. 250.
Васильев К. П. Использование наблюдений метеорологических спутников Земли для обслуживания мореплавания. – В кн.: Тр. Гидрометцентра, 1968, вып. 36, с. 47–58.
Гуральник И. И., Дубинский Г. П. Мамиканова С. В. Метеорология. Л.: Гидрометеоиздат, 1972. 413 с.
Гусев А. М. Взаимодействие океана с атмосферой. – В кн.: Проблемы Мирового океана. М.: Изд-во МГУ, 1970, с. 33–44.
Истошин Ю. В. Океанология. Л.: Гидрометеоиздат, 1969. 468 с.
Кан С. И. Впередсмотрящие. Л.: Гидрометеоиздат, 1967. 140 с.
Карачев В. И. Изменчивость составляющих теплового баланса в тропической зоне северо-западной части Тихого океана в июне – сентябре 1978 г. – В кн.: Тайфун – 78. Л.: Гидрометеоиздат, 1980, с. 67–74.
Кудрявая К. И., Серяков Е. И., Скриптунова Л. И. Морские гидрологические прогнозы. Л.: Гидрометеоиздат, 1974. 309 с.
Лаппо С. С. Среднемасштабные динамические процессы океана, возбуждаемые атмосферой. М.: Наука, 1979. 180 с.
Линейкин П. С., Мадерич В. С. Крупномасштабное взаимодействие атмосферы и океана. – В кн.: Динамика океанической циркуляции. М.: ВИНИТИ, 1977, т. 4, с. 72–75.
Марчук Г. И. Гидродинамические модели в динамике атмосферы и океана. – В кн.: Проблемы современной гидрометеорологии. Л.: Гидрометеоиздат, 1977, с. 8—45.
Минина Л. С. Практика неф-анализа. Л.: Гидрометеоиздат, 1970. 334 с.
Минина Л. С., Пудов В. Д. Изменение поля температуры (определяемой по измерениям со спутника) и циркуляции поверхностных вод океана, вызванное тайфунами. – В кн.: Тайфун—78. Л.: Гидрометеоиздат, 1980, с. 106–111.
Монин А. С., Обухов А. М. Основные закономерности турбулентного перемешивания в приземном слое атмосферы. – Тр. Геодез. ин-та АН СССР, 1954, т. 24 (15), с. 163.
Монин А. С., Каменкович В. М., Корт В. Г. Изменчивость Мирового океана. Л.: Гидрометеоиздат, 1974 262 с.
Мори М. Физическая география моря: Пер. с англ. СПб., 1861. 274 с.
Плахотник А. Ф. Взаимодействие океана и атмосферы. М.: Наука, 1978. 208 с.
Пудов В. Д., Беззаботников В. С. Температурная аномалия верхнего слоя океана и ее связь с полем облачности. – В кн.: Тайфун—78. Л.: Гидрометеоиздат, 1980, с. 118–121.
Рыков Н. А. Некоторые вопросы структуры следа тайфуна Вирджиния. – Там же, с. 102–105.
Самойленко В. С. Единство атмосферы и океана. – Вести. МГУ. Сер. 5, География, 1967, № 6, с. 20.
Сизов А. А., Науменко М. Ф. Некоторые результаты исследования взаимодействия атмосферы и океана в пассатной области Атлантики. – В кн.: ТРОПЭКС—74. Л.: Гидрометеоиздат, 1976, т. 2, с. 5—12.
Стоммел Г. Гольфстрим. М.: ИЛ, 1963. 226 с.
Стюарт Р. В. Атмосфера и океан. – В кн.: Океан. М.: Мир, 1971, с. 44–61.
Физические основы теории климата и его моделирование: Пер. с англ. / Под ред. А. С. Монина. Л.: Гидрометеоиздат, 1977. 271 с.
Хргиан А. X. Физика атмосферы. Л.: Гидрометеоиздат, 1978. Т. 1. 246 с.
Хргиан А. X. Очерки развития метеорологии. М.: Гидрометеоиздат, 1959. Т. 1. 427 с.
Хромов С. П. Синоптическая метеорология. М.: Гидрометеоиздат, 1940. 496 с.
Шокальский Ю. М. Океанография. Л.: Гидрометеоиздат, 1959. 536 с.
Шулейкин В. В. Крупномасштабное взаимодействие между океаном, атмосферой и материком. – В кн.: Проблемы современной гидрометеорологии. Л.: Гидрометеоиздат, 1977, с. 82–122.
Шулейкин В. В. Расчет развития, движения и затухания тропических ураганов и главных волн, создаваемых ураганами. Л.: Гидрометеоиздат. 1978. 96 с.