Текст книги "Океан и атмосфера"
Автор книги: Автор Неизвестен
Жанр:
Биология
сообщить о нарушении
Текущая страница: 2 (всего у книги 11 страниц)
Однако для последних по-прежнему остается обязательным производство специальных тематических экспедиций, ставящих конкретные цели. И иногда для них нужны будут не огромные корабли науки, а суда среднего и малого тоннажа, соответствующие их относительно узким, но важным задачам. Особое место здесь принадлежит подводным кораблям и аппаратам, предназначенным для длительного пребывания человека под водой. Для составления наиболее полной и детальной характеристики элементов морского режима и их изменений во времени организуются наблюдения на так называемых полигонах – выбирается участок в океане и в его пределах расставляются суда и буйковые станции, ведущие строго синхронно однотипные наблюдения. Вопрос о том, как расставить эти наблюдательные точки (расстояния и форма сетки), далеко не прост, и различные варианты вызывают споры, имеют своих сторонников и противников. С одной стороны, не должны пропасть возможные интересные детали, и в то же время лишние наблюдения бесполезны. Результаты наблюдений на полигонах дают наиболее полную картину и позволяют обнаружить прежде неизвестные явления.
В последние годы в ключевых районах океана, оказывающих огромное влияние на погоду и климат всей планеты, организуются под флагом международного сотрудничества специальные экспедиции-эксперименты. Это – ТРОПЭКС (тропический эксперимент), ПОЛЭКС (полярный эксперимент). Советский Союз принимает в них активное участие.
Проблема взаимодействия океана и атмосферы, по которой раньше материалы собирались лишь попутно, также нуждается теперь в более общем организационном решении. Под девизом этой проблемы века (завершающегося и, вероятно, будущего) начаты обширные наблюдения.
Все физико-химические свойства воды, физические явления и процессы, происходящие в Мировом океане, изучает океанология или океанография. Более точно отражает сущность пауки первый термин (от греческого слова «логос» – наука), но «океанография» долгое время был более употребительным, возможно потому, что изучение океана начиналось с его открытия и описания («графо» – по-гречески пишу, описываю).
В современных условиях одна из главных задач океанологии – прогнозирование будущего состояния вод океанов и морей. Таким образом выделилась самостоятельная дисциплина – морские гидрологические прогнозы. Будущее состояние моря можно определить, только обнаружив причины, вызывающие данный процесс или явление, и установив, какие при этом возникнут изменения в гидросфере. Это – очень сложная, кропотливая работа, связанная одновременно с учетом многих факторов.
Широкое развитие в последние годы получили исследования полей некоторых геофизических элементов: гравитационного, магнитного, электрического. Возникли и самостоятельные области знания, прежде входившие в общую океанографию: морская геология, морская метеорология, гидробиология и морская геофизика.
Океанология опирается прежде всего на физические науки, исследующие общие законы динамики жидкостей, и также широко использует математический аппарат. Невозможно обойти и географию, являющуюся наукой о Земле в целом. Неудивительно поэтому, что в океанологической науке работают ученые различных направлений – только так, комплексно, может быть изучен Мировой океан, тайны которого еще до конца не раскрыты. Пользуясь выводами смежных наук, океанология в то же время питает их, дает возможность применять полученные знания.
Современное естествознание в качестве одной из главных своих проблем ставит выяснение происхождения и взаимного расположения океанов и материков на протяжение всей истории Земли. Здесь достигнуты определенные результаты – удалось установить границы (во времени) различных геологических эр (их пять) и периодов, составить шкалу абсолютного геологического времени.
Некоторые ученые предполагают, что первичный океан покрывал Землю равномерным слоем 4,8 млрд. лет назад, а материки возникли уже позднее. Этот слой воды был относительно тонок и пополнялся постепенно за счет конденсации водяного пара, исходящего из недр планеты по вулканическим трещинам. Вначале материки представляли собой лишь узкие зоны накопления сравнительно легкого силикатного материала – гряды островов и подводных хребтов. Позже, видимо, образовались системы архипелагов и островов и, наконец, материковые платформы.
История формирования поверхности Земли – цепь непрерывных изменений. На этот процесс влияли вулканические явления, ледники и др. Сначала в океане не было никакой жизни. Однако 2 млрд. лет назад на его поверхности появились простейшие организмы – водоросли. Осуществляя фотосинтез, древнейшие представители растительного мира полностью очистили атмосферу от углекислоты и обогатили ее кислородом. Так были подготовлены условия для обитания более сложных биологических организмов.
Очертания океанов, их размеры и глубины не были постоянны на протяжении истории планеты, и даже самый древний океан – Тихий – имел обширные участки суши в центре. До последнего времени менялись очертания Балтийского, Черного, Азовского и Каспийского морей. Уже на глазах современного поколения, в 30-е годы, в связи с падением уровня исчезли заливы Кайдак и Комсомолец на востоке северного Каспия.
Ложе океанов и морей
Долго не было известно, каков размер дна океана, на чем покоятся его воды. Древние мореплаватели оставили лишь сведения о промерах глубин вблизи берегов, которые производились для безопасности подхода к ним. Как мы уже знаем, первая попытка Магеллана измерить глубину в центре Тихого океана успеха не принесла. Опыты по измерению глубин возобновились лишь через 300 лет, но на первых порах они тоже были неудачны. Это объяснялось тем, что большие глубины нельзя было измерить тем простым способом, который использовался в мелких прибрежных водах. Англичанин Дж. Росс в экспедиции 1839–1841 гг. нашел способ усовершенствовать эти наблюдения, а в 1854 г. мичман американского флота Р. Брук предложил новый лот с лотлинем и трубкой, берущей образец грунта. Это изобретение (за ним закрепилось на долгие годы название «лот Брука») позволило сделать первые систематические измерения глубин, проложить телеграфные кабели по океанскому дну. На их основе лейтенант М. Мори составил карту рельефа дна северной части Атлантического океана. Заметим, кстати, что Мори, который был начальником Брука, считал, что последний использовал для конструкции своего лота идею Петра I. Тросовым лотлинем в последний раз работали на «Челленджере».
В то же время был предложен новый глубомер, тросовый лотлинь заменили проволочным (для этой цели сначала использовались фортепьянные струны, а потом начали изготовлять цинковую проволоку) – и техническая идея измерения глубин стала иной. Это изобретение, значительно облегчившее и уточнившее измерение глубин, принадлежало английскому физику У. Томсону (впоследствии барону Кельвину). Далее исследователи разных стран ввели в глубомеры много усовершенствований. В XX в. изобретен эхолот – глубина определяется с помощью звукового сигнала, отправляемого на дно и возвращающегося на судно. Скорость прохождения звука позволяет судить о глубине. Этот метод дал возможность сделать наблюдения массовыми и постоянными. Особенно быстрое развитие он получил в 50-е годы, после второй мировой войны.
Одновременно с уточнением и детализацией данных о рельефе океана удалось провести и совершенно новые наблюдения. Так, советской экспедицией Главсевморпути в 1948 г. был открыт хребет Ломоносова, пересекающий Северный Ледовитый океан от Новосибирских островов до Канады. «Витязь» в Тихом и Индийском океанах, а «Михаил Ломоносов» в Атлантическом обнаружили плосковершинные горы, многие глубоководные впадины, огромные подводные хребты. Именно «Витязю» принадлежит треть открытий всех глубоководных впадин Тихого океана. При составлении карты рельефа Тихого океана было использовало 300 тыс. промеров глубин, в то время как карта глубин всего Мирового океана в начале века основывалась менее чем на 18 тыс. промеров. В Советском Союзе на основе единой методики составлена и издана серия карт по самым современным и надежным данным.
Однако несмотря на большие достижения в изучении океана мы еще не можем сказать, что ложе его хорошо известно. В некоторых районах промерные галсы лежат далеко друг от друга, а что находится между ними, никто не знает. В первую очередь это относится к южной части Тихого океана. Изученность рельефа дна океана все еще сильно отстает от изученности рельефа суши, на которой пока не охвачены инструментальной съемкой только высокогорные области Азии и Америки, внутренние части материка Антарктиды.
Сравнивая рельеф суши и океана, установили, что средняя высота суши – 875 м, а глубина океана – 3795 м. На суше высоты до 1 тыс. м составляют 71 % ее поверхности, что равно 21 % от всего Земного шара. В океане же преобладают большие глубины 3–6 тыс. м – это 76 % площади океанов, или 54 % поверхности планеты. Высокие горы (более 4 тыс. м) и глубоководные океанические впадины (свыше 6 тыс. м), в общем, очень невелики по площади: горы занимают 0,5 %, а впадины около 1 % поверхности всей Земли. При изменениях уровня океана существенные перемены претерпит суша и малозаметные – сам океан. Подсчитано, что, если уровень океана повысится на 200 м, он зальет 32 % суши, а при понижении уровня на те же 200 м поверхность океана уменьшится только на 12 %.
Сравнение неровностей Земли с ее радиусом показывает, что первые относительно невелики. Так, расстояние по вертикали между высочайшим пиком – горой Джомолунгма (8848 м) и наибольшей глубиной океана (11 022 м) составляет 1:320 среднего радиуса Земли. Если бы Земля была гладкой, как бильярдный шар, ее поверхность полностью покрыл бы океан слоем в 2685 м. Уровень такого океана был бы на 245 м выше теперешнего.
Еще не так давно существовало неправильное убеждение, что морское дно – это более или менее ровная поверхность, во всяком случае более простая, чем поверхность суши. Теперь мы знаем, что дно океана изрезано, там есть протяженные горные цепи и отдельные горы, обширные равнины и узкие ущелья. Имеются районы со сравнительно стабильным рельефом и с сильно меняющимся. Последнее особенно заметно в районах активной вулканической деятельности, где глубины могут значительно изменяться, буквально мгновенно.
Дно Мирового океана подразделяют на следующие зоны: материковая отмель (шельф), материковый склон и ложе океана. Зоны отличаются друг от друга происхождением, закономерностями развития, глубинами и другими характеристиками, свойственными всем океанам. Шельф – прибрежная часть океана, как бы продолжение суши, она почти горизонтальна и простирается в среднем до глубин 200 м. Расстояние от внешнего края материковой отмели до ложа океана занимает наклонная поверхность – материковый склон. Он имеет довольно большие уклоны – до 20°—40°. Нижней границей материкового склона принято считать 2,5 км. Далее идет ложе океана.
Рельеф дна Атлантического океана был изучен раньше и лучше других. Исследования последних десятилетий резко продвинули наши знания о рельефе Северного Ледовитого, Индийского и Тихого океанов. Сложность и расчлененность их дна оказалась весьма значительной.
Если посмотреть на обычную географическую карту, легко заметить, что Атлантический океан напоминает по форме букву S. Любопытно, что эту же форму повторяет и рельеф дна, где с севера на юг, от Исландии до 42° ю. ш., простирается Срединный хребет, разделенный глубоководной впадиной на две части. По обе стороны от хребта лежат зоны террас и предгорных холмов, а затем глубокие (до 4–5 тыс. м) котловины. На дне Атлантического океана имеются и обширные плато.
Дно Северного Ледовитого океана замечательно протяженными хребтами, разделяющими его на отдельные котловины. В центральной его части расположены два хребта, носящие имена русских ученых Ломоносова и Менделеева. На материковом склоне есть подводные долины, а мелководье обнаруживает многие следы, говорящие о том, что суша здесь когда-то затоплялась морем.
Индийский океан разделяется Центральным Индийским хребтом на западную и восточную части. Ряд поперечных хребтов и поднятий дна расчленяет эти части на относительно более мелкие (котловины). У юго-западной оконечности Австралии – самые большие в мире уклоны дна материкового склона. В северо-западной части океана множество островов и коралловых рифов.
Рельеф дна Тихого океана характеризуется наиболее значительными глубинами, обилием плосковершинных гор, коралловых построек – погруженных в воды и возвышающихся над ними. К последним относятся атоллы, поражающие мореплавателей своей красотой. В южном полушарии с юго-запада на северо-восток, от Антарктиды до экватора, тянутся два хребта, разделяющие ложе Тихого океана на несколько обширных котловин. Более сложен рельеф дна северной части океана, с тремя большими котлованами. В одной из них, Северо-Восточной, находится ряд разломов – дно здесь сильно расчленено. В зоне разломов встречаются многочисленные подводные вулканы.
Знание рельефа дна нужно прежде всего судоводителям. На морских картах обычно подробно указываются отдельные скалы, мели, подводные каньоны и др. Для рыбного флота важны также характеристики морского дна: наличие камней, кораллов, скопления водорослей и др. Этими данными пользуются подводники, строители гидротехнических сооружений, горняки. Велико и научное значение сведений о рельефе дна, дающих возможность выяснить особенности движения морских вод, формирования их основных характеристик.
Чем выложено дно Мирового океана? На почти всей огромной площади дна океана из века в век происходит накопление морских отложений. Лишь на больших уклонах частицы грунта не задерживаются, их сносит водой. Частицы грунта разнообразны по размерам: от каменных глыб весом в несколько топи до мельчайших – в тысячные и даже миллионные доли миллиграмма. По форме они окатанные, например галька, или остроугольные. Происхождение грунтов различно – разрушение горных пород суши, органическое и др. Крупные частицы накапливаются вблизи берегов, мелкие – в удалении. Попадая в море с суши, частицы постепенно претерпевают изменения в минералогическом и химическом составе. В удаленных от берегов районах некоторых морей происходит на дне значительное накопление скелетов морских организмов – оно может даже превышать по количеству твердые частицы, принесенные с земли. В центральных частях океанов, а также в районах активной вулканической деятельности преобладают осадки из вулканических частиц.
Морские грунты имеют окраску от белой до почти черной и, как правило, без чистых тонов. Иногда цвета ярко выражены, и грунт тогда называют красной глиной, черным илом и т. д. Однако чаще всего приходится пользоваться такими определениями, как коричнево-серый или темно-серый. Грунты вулканического происхождения – темного цвета.
Грунты, состоящие преимущественно из обломочных пород, принесенных с суши, покрывают дно материковой отмели. В понижениях дна скапливаются более мелкие, на возвышенностях – более крупные породы. Замечена довольно отчетливая зависимость между рельефом дна и составом грунтов. Основная часть дна в Атлантическом океане на глубинах до 4 тыс. м покрыта илом и глинистым илом. В Индийском океане аналогичная картина – илы состоят из остатков глобигерин и мельчайших обломочных частиц. В Тихом океане на глубинах свыше 4 тыс. преобладает глубоководный глинистый ил, который за его буровато-коричневый цвет называют красной океанической глиной. Она образуется чрезвычайно медленно – около 0,1 см за 1 тыс. лет. Вдоль Антарктиды лежит полоса ледниково-морских отложений. Основная часть донных отложений в море занесена с суши. В морях донные отложения образуются значительно быстрее, чем в океане, – в 10, а иногда и в 100 раз.
Возможности для эксплуатации богатств со дна океана появились сравнительно недавно, в связи с мощным развитием техники. Теперь со дна добываются алмазы в Южной Африке (ЮАР), уголь – у берегов Южной Англии и Японии. Главным источником богатств морского дна можно считать нефть, так как уже сейчас установлено, что две трети известных на суше газонефтеносных районов лежит у морских побережий. Значит, можно ожидать, что нефть есть и в открытом море. Поиски ее ведутся в западной части Карибского моря, у берегов Панамы, Гватемалы, Никарагуа, у острова Ява, в Северном море, в Восточно-Китайском и Южно-Китайском морях, на дне Персидского залива. В последнем обнаружены крупнейшие в мире залежи.
Глубоководное драгирование и фотографирование морского дна позволило в последние десятилетия обнаружить на поверхности дна огромные скопления круглых, овальных (иногда неправильной формы) образований величиной с грецкий орех или картофель – это так называемые железомарганцевые конкреции. Они содержат также никель, кобальт, медь и др. Конкреции лежат прямо на поверхности дна, его не нужно бурить, как при добыче нефти (иногда очень глубоко!). Залежи конкреций огромны, они широко распространены на больших участках дна Атлантического и Индийского океанов и, в особенности, в Тихом. Предполагается, что в Атлантическом океане находится 50 млн. т конкреций, в Индийском – вдвое больше, а в Тихом – 100 млрд. т.
Стали известны также фосфоритовые конкреции, лежащие вдоль внешнего края континентального склона на возвышенностях в океане. Их добыча уже начата на склоне Южной Калифорнии. Обнаружены и другие минеральные богатства: соляные купола, оловянные и железные руды, пески, содержащие железо, хром, золото, титан. Перспективы в этой области пока трудно определить – очень многое здесь еще неизвестно или нуждается в дополнительной проверке.
Морская вода
В природе нет химически чистой воды. Даже самые чистые природные воды – дождь и снег – содержат примеси, поглощаемые на пути к земле из воздуха. Текущая вода растворяет горные породы, по которым она протекает или сквозь которые просачивается. Воды много и в самой твердой коре планеты в свободном и в связанном состоянии. Водяные пары, выделяющиеся при извержении вулканов, позволяют думать, что вода есть и на значительной глубине в толще Земли, хотя пока трудно сказать, в какой форме и в каких объемах.
Вода – главная составная часть гидросферы – представляет собой окись водорода (Н2O); она состоит из 11,2 % водорода и 88,8 % кислорода. Морская вода содержит в своем растворе многие соли (об этом подробнее будет рассказано ниже) и газы – кислород, азот, углекислый газ. Вода способна при колебаниях температур принимать различные состояния: жидкое, твердое и газообразное. При переходе из одного состояния в другое поглощается или освобождается большое количество тепла.
Вода как физическое тело имеет ряд аномалий, объясняемых строением ее молекул и очень сложной структурой. Так, при нагревании пресной воды от 0 до 4 °C плотность воды растет, а затем при увеличении температуры уменьшается. Вторая аномалия – увеличение объема при замерзании примерно на 10 %. Лишь немногие вещества в твердой фазе легче, чем в жидкой, – это висмут, галлий, германий и др. Для воды характерны и такие аномалии, как очень большая теплота плавления и парообразования, высокая теплоемкость и др. Есть еще ряд любопытных аномалий. Так, аномальна привычная для всех температура кипения, равная 100°: ведь водород кипит при 253°, а кислород при 180 °C.
Количество солей в морской воде невелико по сравнению с ее массой, но соли весьма существенно изменяют физические и химические свойства воды. Ее состав определяется с помощью химического анализа взятых проб (эти опыты стали проводить в 60-х годах прошлого столетия) вначале на поверхности, а затем и на различных глубинах, вплоть до придонных участков. Уже первые исследования показали (а последующие их подтвердили), что вдали от берегов состав морской воды везде одинаков – как на поверхности, так и на глубине. Это постоянство сохраняется весьма длительное время, измеряемое геологическими эпохами.
Количество растворенных твердых минеральных веществ (солей), выраженное в граммах на килограмм морской воды, называется ее соленостью. Тысячные доли целого называются промилле и обозначаются значком ‰. В открытых частях океанов соленость равна в среднем 0,035 кг, т. е. средняя соленость Мирового океана 35‰. Морская вода имеет горько-соленый вкус, обладает большим удельным весом, чем пресная, не растворяет мыло, образует накипь в паровых котлах. Все это происходит оттого, что в морской воде растворены твердые минеральные вещества, причем в разных количествах – некоторые в граммах на килограмм воды, а иные – только в тысячных долях грамма на тонну воды. Но именно последняя группа микроэлементов наиболее многочисленна. В то же время соленость морской воды определяется преобладающими по весу элементами. Химический состав морской воды, полученный из анализов проб, взятых в трех океанах еще во время плавания на «Челленджере», следующий (табл. 2);
Таблица 2
NaCl | 27,2 | 77,8 | K2SO4 | 0,9 | 2,5 |
MgCl2 | 3,8 | 10,9 | CaCO3 | 0,1 | 0,3 |
MgSO4 | 1,7 | 4,7 | MgBr2 | 0,1 | 0,2 |
CaSO4 | 1,2 | 3,6 |
Эта таблица, составленная английским химиком Дитмаром в 1878–1882 гг., не утратила в целом своего значения и сейчас.
Установлено, что соли, растворенные в морской воде, распадаются (диссоциируют) на ионы: катионы, заряженные положительно (атомы водорода и металлов), и анионы, заряженные отрицательно (кислотные и водные остатки). Поэтому в настоящее время солевой состав морской воды иногда представляют не в виде солей, а в виде ионов. Возвращаясь к последней таблице, обратим внимание на то, что относительное содержание солей остается одинаковым (в %) как при повышении, так и при понижении солености. Это – очень важное для практики свойство: зная содержание лишь одной составляющей, например хлористых соединений, можно легко рассчитать остальные. Любопытно, что состав человеческой крови имеет точно такое же процентное соотношение входящих в нее элементов, как и морская вода.
Уже первые исследования показали, что из числа известных химических элементов 32 встречается в воде океанов и морей. Несмотря на незначительное содержание микроэлементов в 1 т воды сумма (учитывая гигантский общий объем океанических вод) получается весьма внушительной. Так, содержание золота в 1 т воды меньше 0,005 мг, а в Мировом океане в целом его несколько миллиардов тонн! Специально нужно выделить соединения азота, фосфора и кремния – они играют решающую роль в жизнедеятельности морских организмов. Невелико по количеству содержание в морской воде растворимых в ней газов. Некоторые вещества в морской воде находят лишь косвенным путем: йод – в водорослях, медь и серебро – в коралловых известняках, и т. д.
Воды океанов постоянно пополняются пресной водой, стекающей в него с суши береговыми потоками и реками, – примерно 30–40 тыс. км3 в год. Эти воды тоже содержат некоторое количество веществ в растворе. Но соотношение солей в океанах и реках различно. Так, хлоридов в речной воде 5,2 %, сульфатов 9,9, карбонатов 60,1 и прочих веществ 24,8 %. Казалось бы, при таком преобладании карбонатов в речной воде, оно должно было увеличиваться и в морской. Но этого не происходит, так как они легко выпадают в осадок, активно поглощаются морскими организмами для построения раковин, панцирей, скелетов, коралловых рифов и целых островов. Считают, что для того, чтобы увеличить количество хлоридных ионов в океане всего на 0,02‰ понадобилось бы 200 тыс. лет.
Сравнивая состав морской и речной воды, легко увидеть, что хлористые соединения, преобладающие в морской воде, в очень малом количестве представлены в речной. В то же время в речной воде больше половины карбонатов. Значит, соли океана внесены в него не реками, они другого происхождения, окончательно еще не установленного. По этому вопросу существует несколько предположений. Сохраняя общее процентное соотношение солей, соленость вод океанов изменяется в значительных пределах как в океане в целом, так и в каждом его районе и даже точке. Эти изменения зависят от испарения с поверхности, осадков, вертикального перемешивания и горизонтальных переносов воды, таяния льдов и выноса пресных речных вод. Когда происходит испарение, то в пар превращается только пресная вода, а оставшаяся в океане становится еще более соленой. Унесенные ветром водяные пары потом вновь попадают на поверхность океана (и суши), теперь уже распресняя его. Одновременно с испарением наблюдается и другой физический процесс – ветер уносит не только «пресный» пар, но и морские брызги на материк. При этом убыль солей равна примерно 300–400 млн. т (при объеме осадков на материках 100 тыс. км3).
Морской лед также в основном пресный – рассол постепенно стекает из него вниз, осолоняя поверхностный слой воды. Весной происходит обратный процесс, если лед тает на месте и не выносится. Небольшие реки распресняют воду лишь у устья, крупные – далеко в море.
Системы крупных океанических течений – таких, как Гольфстрим и Куросио, – нарушают распределение солености, принося в высокие широты соленые воды пассатных областей.
Изменение солености происходит в вертикальном направлении – ветер постоянно перемешивает поверхностные воды (примерно до 100 м), конвекция, являющаяся результатом осолонения или охлаждения поверхностных под, ведет к изменениям солености до глубин в 1 тыс. м.
Если же взглянуть на изменения солености с исторических позиций, то выясняется, что большое значение имели ледниковые периоды – во время оледенений соленость Мирового океана постепенно возрастала, максимум наступал в конце этих периодов. В послеледниковые периоды из-за таяния льдов соленость уменьшалась. Очень медленные изменения солености океанических вод связаны с поступлением и потерей солей, приходящих в океан из рек, недр Земли, атмосферы. Это все пополнение. Убыль же солей происходит от выпадения в осадок на дно (например, в районах Кара-Богаз-Гол или Сиваш), испарения, выноса на сушу ветром, пропитывания грунтов и др. Следует заметить, что в океан из атмосферы солей поступает всего в 2,5–3 раза меньше, чем приносят воды суши.
Соленость океана различна на глубине и на поверхности и может сильно отклоняться от средней величины, особенно в морях (в Красном – от 8 до 42‰). В открытых же частях океана пределы колебания невелики – от 32 до 37‰. Можно заметить общие черты в распределении солености на поверхности Мирового океана, связанные с географической широтой, т. е. с общим распределением испарения и осадков. Минимум солености приходится на высокие широты (малое испарение, обильные осадки, таяние приносных льдов). Чем ближе к пассатным зонам, тем соленость выше, и у тропиков (25° с. ш. и 20° ю. ш.) она максимальна (большое испарение из-за постоянных ветров, ясная погода). В направлении к экватору соленость несколько уменьшается.
Из океанов самый соленый Атлантический, его соленость достигает 37,5‰ – абсолютный максимум на поверхности открытого океана. Немного ниже соленость Тихого океана, предельно она равна 36,5‰. Это общее зональное распределение солености нарушают мощные океанические течения.
Распределение солености в глубинах океана отличается от поверхностного по ряду причин, одна из которых состоит в том, что распределение солености на глубине определяется ее плотностью. Например, распресненные, менее плотные поверхностные воды в высоких широтах создают устойчивость, а это значит, что на глубинах может и не быть малой соленость. Различная соленость на поверхности и на глубине связана также с глубинными течениями. Известно, что на горизонте 75—150 м в экваториальной зоне Тихого и Атлантического океанов поверхностные воды подстилаются слоем очень соленой воды (более 36‰), принесенной с запада глубинными экваториальными противотечениями Кромвелла и Ломоносова, открытыми сравнительно недавно. Следовательно, по современным представлениям, соленость на глубинах открытого океана изменяется по-разному. Однако удалось установить некоторые общие черты. Так, заметные колебания обнаруживаются лишь в верхнем слое – до глубин 1500 м. А ниже, в слое «стратосферы» океана, колебания солености чрезвычайно малы. Часто нижний предел находится значительно выше, например в полярных областях он равен всего 200 м. При всем разнообразии вертикального распределения солености ученым удалось выделить несколько характерных типов.
Колебания солености в открытых частях океанов во времени невелики – годовые не превышают 1‰. В глубине соленость почти постоянна и лежит в пределах точности измерений.
Таким образом, соленость – одна из консервативных характеристик режима всех океанов, и наблюдения ее позволяют распознавать природу различных процессов. В частности, благодаря измерениям солености в Тихом океане сделан вывод о движении вод течения Кромвелла. Подобные же исследования были проведены в 1963 г. при изучении движения средиземноморских вод в Атлантическом океане от Гибралтара до Британских островов. Обнаружилось, что соленые средиземноморские воды создают слой от 800 до 1500 м, простирающийся до юга Англии.
Существенную роль играют также газы и взвешенные вещества, растворенные в морской воде, хотя содержание их незначительно. Это кислород, азот, углекислота, иногда водород. Значение их велико для организмов, населяющих толщу вод. Кислород, захваченный из воздуха поверхностным слоем воды, проникая на глубину, указывает на интенсивную вертикальную циркуляцию. Кислород появляется в морской воде и в результате фотосинтеза морских растений, главным образом фитопланктона. Кислород расходуется на дыхание морских организмов, окисляется и частично возвращается в атмосферу при пересыщении. Известен случай, когда вода Азовского моря была пересыщена кислородом до 350 %. В целом кислород, несколько уменьшаясь с глубиной, распространен в океане довольно равномерно, и лишь в некоторых областях на глубинах 400–500 м его почти нет.
Азот в поверхностных слоях океана состоит в почти полном равновесии с азотом атмосферы. На глубине количество азота определяется образованием и распадом органического вещества.
Сероводород возникает на дне моря в результате распада органического вещества и деятельности некоторых бактерий. Сероводород, заражая глубинные слои воды, делает ее непригодной для существования животных и растений. В частности, этим отличается Черное море, в котором лишь 13 % вод не заражено сероводородом.
В морской воде содержится относительно малое количество углекислоты, но значение ее очень велико и не уступает кислороду. Углекислота необходима для построения органического вещества, с ней связана коррозия металлов и разрушение бетона.