355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Автор Неизвестен » Аккумуляторные батареи » Текст книги (страница 1)
Аккумуляторные батареи
  • Текст добавлен: 5 октября 2016, 03:34

Текст книги "Аккумуляторные батареи"


Автор книги: Автор Неизвестен


Жанр:

   

Руководства


сообщить о нарушении

Текущая страница: 1 (всего у книги 3 страниц)

Аккумуляторные батареи.

1. ВВЕДЕНИЕ

Аккумуляторная батарея – одно из самых сложных устройств современного автомобиля. В ней непрерывно протекают многие электрохимические и физические процессы, взаимосвязанные и в значительной мере обусловленные влиянием внешних факторов. И как любое сложное устройство, требует соответствующего ухода при соответствующей квалификации.

Автолюбителя, в большинстве своем, интересуют чисто практические вопросы. Такие, как например, почему батарея уже через два сезона не обеспечивает пуск совершенно исправного двигателя? Почему батарея прослужила всего два года, а не 5 или 8 лет, хотя и прошел автомобиль по 3 тысячи км в год из-за отсутствия бензина? Что надо делать для того, чтобы аккумуляторная батарея служила долго и не подводила в самый неподходящий момент? И сколько ей уделять времени, и не следует ли с ней возиться каждый день? И многие другие подобные вопросы.

Для ответов на эти вопросы необходимо пользоваться не только готовыми рекомендациями и инструкциями, но и иметь определенный уровень знаний об аккумуляторных батареях.

Аккумуляторы, как и иные химические источники тока, интенсивно изучаются и совершенствуются, однако зачастую многие публикации недоступны для автолюбителя и понимание ряда вопросов требует специальной профессиональной подготовки. Во многих журнальных статьях, пособиях, рекомендациях, инструкциях и т.п. наряду с безусловно правильной и полезной информацией много субъективизма, а в ряде случаев, к сожалению, просматривается непонимание, незнание и корпоративные интересы авторов (особенно в журнале "За рулем").

Настоящее пособие преследует очень простую цель – дать автолюбителю начальные знания по уходу за аккумуляторной батареей. Мы старались избежать сложных теоретических выкладок м формул. Тем не менее, полностью исключить теоретические сведения нельзя.

Без понимания основных процессов, протекающих в аккумуляторе в тех или иных условиях, невозможно построить оптимальную тактику ухода за аккумуляторной батареей в реальных условиях эксплуатации

(собственно аккумулятора), избежать досадных ошибок, даже пользуясь огромным количеством правильных рекомендаций.

Мы понимаем, что данное пособие тоже не лишено недостатков, однако постарались в логической последовательности изложить известные факты, различные методики и выполняемые работы по уходу за

аккумулятором. Надеемся, что материал, изложенный в пособии, поможет автолюбителю в уходе за аккумуляторной батареей.

2. ОСНОВНЫЕ ПРОЦЕССЫ В АККУМУЛЯТОРЕ
2.1. Понятия и определения

Аккумулятор является обратимым источником тока. Он способен отдавать в нагрузку во внешней цепи ранее запасенную энергию. На легковые автомобили устанавливаются аккумуляторные батареи, состоящие из шести последовательно включенных аккумуляторов. Они способны обеспечивать большие разрядные токи и относятся к классу стартерных аккумуляторных батарей. Это отражено в маркировке батарей. Например, батарея 6СТ-55 содержит 6 аккумуляторов, стартерная, номинальная энергоемкость составляет 55 ампер-часов.

Приведем некоторые основные понятия и определения, характеризующие аккумуляторную батарею в различных режимах работы.

Электродвижущая сила (ЭДС) – это разность электродных потенциалов при разомкнутой электрической цепи. ЭДС аккумулятора зависит от плотности температуры электролита и состава активной массы пластин. Выражается ЭДС в вольтах и обычно обозначается буквой Е. Измерить ЭДС можно вольтметром с большим внутренним сопротивлением, превышающим 20 кОм.

ЭДС покоя (Е0) – это ЭДС аккумулятора, находящегося длительное время (более 2-3 часов) без нагрузки.

ЭДС аккумулятора под нагрузкой отличается от ЭДС покоя. Это вызвано том, что при прохождении тока в цепи на электродах и в электролите происходят необратимые физические и химические процессы, связанные с потерей энергии. Один из них – это процесс поляризации.

ЭДС поляризации (Еп) – это ЭДС аккумулятора при наличии поляризации пластин.

Еп всегда направлена навстречу току.

При заряде ЭДС аккумулятора равна сумме ЭДС покоя и ЭДС поляризации:

Е = Е0 + Еп,

а при заряде

Е = Е0 – Еп.

Величину Е называют динамической ЭДС, или просто ЭДС аккумулятора.

В замкнутой электрической цепи постоянного тока, когда к аккумулятору подключены потребители, связи между ЭДС, проходящим по цепи током и сопротивлением цепи определяется по закону Ома:

Е = I (R + r), (1)

где Е – ЭДС, В;

I – сила тока в цепи, А;

R – активное сопротивление внешней цепи, Ом;

r – полное сопротивление участка электрической цепи внутри самого источника тока, Ом.

Выражение (1) можем переписать в виде:

Е = IR + Ir, (2)

т.е. ЭДС аккумулятора компенсирует падение напряжения на внешней цепи U=IR и падение напряжения внутри самого источника тока на его полном внутреннем сопротивлении Ur=I*r.

Величина U=I*R – это напряжение аккумулятора. Это напряжение на зажимах аккумулятора, которое используется для работы потребителей тока.

Из уравнения (2) видно, что при работе аккумулятора его напряжение U всегда меньше чем ЭДС, так как

U = E – Ur.

По мере износа аккумулятора его внутреннее сопротивление возрастает. Это одна из причин пониженного напряжения на зажимах аккумулятора под нагрузкой. поскольку увеличивается Ur. У разряженного аккумулятора ситуация подобная.

Различают зарядное напряжение, равное

Uэ = E + Iз*r,

и разрядное напряжение:

Uр – E – Iр*r,

где – зарядный ток, А;

– разрядный ток, А;

r – внутреннее сопротивление аккумулятора, Ом.

Нормальный зарядный ток – величина зарядного тока (А).

численно равная 0.1 емкости аккумуляторной батареи, выраженная в ампер-часах.

Внутреннее сопротивление аккумулятора складывается из сопротивления электродов, электролита и сопротивления, обусловленного сепараторами (прокладками между пластинами). Внутреннее сопротивление – величина непостоянная. Оно зависит от конструкции электродов, состояния активной массы, плотности электролита, температуры. В полностью заряженном аккумуляторе внутреннее сопротивление значительно меньше, чем у разряженного. Объясняется это тем, что электропроводность активной массы заряженного аккумулятора выше, чем у разряженного.

Емкость аккумулятора – это количество электричества, которое может запасти или отдать аккумулятор.

Емкость зависит от величины тока разряда. Емкость аккумулятора определяется как величина, равная произведению постоянного тока на время при 20-часовом режиме разряда до напряжения 1.7 В:

Q20 = Ip*tp = Ip*20 (А*ч),

где – величина разрядного тока,

tр – время разряда.

Емкость по току разрядная – номинальная емкость аккумулятора при разряде:

Qp = Ip*tp,

где Ip – величина разрядного тока, А;

tp – время разряда.

Зарядная емкость аккумулятора – характеризует количество электричества, полученное аккумулятором в процессе заряда:

Qз = Iз * tз,

где Qз – зарядная емкость, А*ч;

– зарядный ток, А;

– время заряда, ч.

У современных аккумуляторов КПД по емкости равно 0.85.

Емкость по энергии – характеризует способность аккумулятора выполнить электрическую работу за определенное время.

Измеряется в ватт-часах.

Емкость по энергии при разряде:

Ap = Up * Ip * tp,

где Up – разрядное напряжение (среднее), В;

Ip – ток разряда, А;

tp – время разряда, ч.

Емкость по энергии при заряде:

Аз = Uз * Iз * tз,

где – среднее зарядное напряжение, В;

– ток заряда, А;

– время заряда, ч.

КПД аккумулятора по энергии (отдача аккумулятора) определяется как отношение емкости по энергии при разряде к емкости при разряде:

Современный аккумулятор имеет КПД по энергии, равный 0.68* По мере износа аккумулятора эта величина уменьшается.

Емкость аккумулятора сильно зависит от режима разряда. При больших токах разряда она падает в несколько раз по сравнению с разрядом током 20-часового режима разряда. Например, в стартерных режимах, когда ток достигает 150-200 А емкость батареи падает в 2-3 раза. При снижении температуры емкость аккумулятора также уменьшается.

С повышением температуры емкость аккумулятора увеличивается, однако при температурах выше 45 С аккумуляторы необратимо теряют емкость и сокращается их срок службы.

Саморазряд аккумулятора – потеря заряда заряженным аккумулятором.

Саморазряд внутренний – обусловлен химическими реакциями в аккумуляторе. У исправных аккумуляторов при t=+1...+20 С за 1 сутки составляет 1% от номинальной емкости, или 30% за месяц. При

снижении температуры ток саморазряда уменьшается.

Очевидно, что неработающий аккумулятор необходимо заряжать 1-2 раза в месяц. По мере старения аккумулятора саморазряд протекает более интенсивно.

Саморазряд внешний – обусловлен электропроводностью загрязненной поверхности между клеммами аккумулятора. Может достигать величин 0.5 А и более.

Очевидно, что батарею необходимо очищать от загрязнений.

Срок службы аккумулятора – время безотказной работы, в течение которого обеспечивается и стартерный режим.

Срок службы аккумулятора зависит от очень многих внутренних и внешних факторов. Гарантийный срок (который может быть уменьшен при неправильном уходе) указывается в паспорте и зависит от конструкции и технологии изготовления.

Обычно это 200-300 циклов заряда-разряда для намазных пластин и 1500-2000 для панцирных пластин.

Понятно, что следует избегать длительных стартерных режимов разряда, глубоких разрядов.

2.2. ЗАРЯД АККУМУЛЯТОРА
2.2.1. Электрохимические процессы при заряде.

При заряде сульфат свинца обеих пластин под действием электрического тока при электролизе переходит на положительной пластине в перекись свинца, а на отрицательной – в губчатый свинец.

Как видно из уравнения, в процессе заряда плотность электролита повышается из-за образования серной кислоты.

В конце цикла заряда количество уменьшается и более активно происходит электролиз воды с выделением на положительном электроде кислорода, а на отрицательном – водорода. Этим обусловлено интенсивное газовыделение в конце заряда. Часть воды из электролита удаляется.

Поэтому после прекращения заряда аккумулятора в течение 2-3 часов идет выравнивание плотности электролита в порах активной массы и в межэлектродном пространстве. Через 3 часа после зарядки аккумулятора необходимо проверить и откорректировать плотность электролита, добавив или дистиллированной воды или кислоты по мере необходимости.

Плотность полностью заряженного аккумулятора должна быть

dз = 1.28+0.005 г/см3

Во время заряда плотность электролита в аккумуляторах повышается постепенно и только к концу заряда принимает постоянное значение. Напряжение на аккумулятора медленного возрастает с 2.2 до 2.4 В, начинается газовыделение.

Напряжение в конце заряда составляет 2.6-2.65 В, при этом происходит обильное газовыделение.

Это объясняется тем, что практически закончено преобразование сульфата свинца и вся энергия тока зарядного устройства расходуется на электролитическое разложение воды.


2.2.2. Зарядные характеристики аккумулятора.

Процесс заряда аккумулятора описывается определенным набором зарядных характеристик.

Зарядными характеристиками аккумулятора называются изменяющиеся во времени в процессе заряда следующие величины:

– напряжение аккумулятора;

– ЭДС покоя;

– динамическая ЭДС;

– плотность электролита;

– температура электролита;

– интенсивность газовыделения.

Все эти характеристики взаимозаменяемы и зависят от многих факторов, определяющих состояние аккумулятора, и величины зарядного тока.

При температуре +20 С и постоянной нормальной величине зарядного тока для исправного аккумулятора эти характеристики меняются следующим образом.

Напряжение аккумулятора – для разряженного аккумулятора в начале заряда 2.18 В. Затем оно в течение 1-2 часов возрастает до 2.25-2.3 В и очень медленно увеличивается (6-8 часов), после чего начинает быстро возрастать при достижении напряжения 2.4 В. При напряжение U2.7 В начинается перезаряд аккумулятора.

ЭДС покоя зависит от температуры и концентрации электролита. Для разряженного аккумулятора ЭДС покоя = 1.95 В, а для заряженного – 2.18 В. По мере заряда аккумулятора эта характеристика меняется линейно между указанными граничными значениями. По ЭДС можно судить о степени заряженности аккумулятора, однако весьма приближенно, поскольку изменяется ЭДС покоя на небольшую величину и зависит от нескольких факторов.

Динамическая ЭДС имеет почти такой же характер зависимости от времени, как и напряжение. Она немного меньше напряжения, В начале заряда динамическая ЭДС равна 1.95 В, а в конце – примерно 2.7 В.

Плотность электролита между пластинами аккумулятора при заряде линейно изменяется от 1.11 г/см3 для разряженного аккумулятора до 1.28 г/см3 – для заряженного. Это одна из основных диагностических характеристик аккумулятора. Зная температуру электролита и его плотность можно с приемлемой степенью точности определить степень заряженности аккумулятора.

Температура электролита линейно возрастает в процессе заряда, и значительно быстрее растет в области перезаряда.

Интенсивность газовыделения незначительно до напряжения 2.4 В. После этого значения до 2.7 В – обильное газовыделение, которое сохраняется и в области перезаряда.

Обильное газовыделение свидетельствует о завершении процесса полезного заряда аккумулятора.

3. ЗАРЯДКА АККАМУЛЯТОРНЫХ БАТАРЕЙ.

В зависимости от возможностей, задач и условий эксплуатации аккумуляторов применяются различные методы заряда аккумуляторов.

3.1. Заряд постоянным током.

Этот метод реализуется с помощью стабилизированного источника тока. Величина зарядного тока поддерживается постоянной во всей области полезного заряда. Область полезного заряда занимает время

до обильного газовыделения.

Величина (нормальная) зарядного тока устанавливается численно равной 0.1 емкости аккумулятора, выраженной в ампер-часах. Как правило, это максимальный зарядный ток.

J10 = Q/10.

Например, для батареи емкостью 54 А.ч

J10 = 54/10 = 5.4 А.

Аналогично определяется ток 20-часового режима.

Например:

J20 = 54/20 = 2.7 А.

Разумеется, если время не очень лимитировано, то целесообразно заряжать током в 2 раза меньшим. Это увеличивает сохранность аккумулятора, поскольку реализуются менее интенсивные электрохимические процессы и механические напряжения в активных элементах аккумулятора.

При заряде контролируют ток, напряжение, температуру и плотность электролита. Характер их изменения описан в п. 2.2.2.

Напряжение на аккумуляторе 2.7 В (16.2 В на батарее 6СТ) при плотности 1.28 В свидетельствует о конце заряда аккумулятора при сильном газовыделении.

С целью полного использования активной массы пластин заряд аккумулятора продолжают 1-2 часа при сильном газовыделении, уменьшив ток в 2-3 раза. Эта область перезаряда необходима для полной уверенности, что аккумуляторная батарея полностью заряжена. Зарядный КПД батарей равен 0.85.

Например, можно определить время заряда стартерной аккумуляторной батареи емкостью 54 А.ч током 5.5 А:

54/(0.85*5.5) = 11.6 часов.

Количество электричества, полученное аккумулятором:

Iз*tз = 5.5*11.6 = 64 А.ч,

где – ток заряда, – время заряда.

Разумеется, не более 85% этого электричества запасено в батарее, а остальное израсходовано на тепло и газовыделение в процессе электролиза.

После прекращения заряда и выключения тока напряжение на зажимах аккумулятора резко падает и затем снижается медленно по мере выравнивания плотности электролита в порах пластин и между пластинами.

Недостатки этого метода заряда.

– сравнительно большое время заряда;

– сложное зарядное устройство.

Преимущества метода заряда постоянным током:

– хорошо контролируются все стадии процесса заряда аккумулятора;

– легко реализуются "щадящие" режимы зарядки малыми токами, продлевающие срок службы аккумулятора.


3.2. Ступенчатый заряд.

Этот метод применяется при ускоренном заряде аккумуляторных батарей. Поясним этот метод на примере трехступенчатого заряда.

На первой ступени заряда, когда нет обильного газовыделения, величина зарядного тока Jз1 устанавливается численно равной 0.15 емкости аккумулятора, выраженной в ампер-часах. Больше ток не следует устанавливать, поскольку чрезмерный зарядный ток вызывает разрыхление активной массы, разрушение и коробление пластин. Первая ступень заряда продолжается в течение времени , пока на каждом аккумуляторе батареи напряжение достигнет 2.4-2.5 В и начнется обильное газовыделение. После этого зарядный ток уменьшают в 2-3 раза и заряд продолжается, пока напряжение опять возрастет до 2.4-2.5 В.

Далее так Iз3 уменьшают до 1А и продолжают заряд до напряжения 2.7 В. Количество электричества при таком заряде:

Q = Iз1 * tз1 + Iз2 * tз2 + Iз3 * tз3

Ступенчатый заряд отличается тем, что экономится время заряда аккумуляторной батареи.


3.3. Заряд током при постоянном напряжении.

Этот метод применяется при наличии источника тока со стабилизированным напряжением. Такими источниками тока являются, в частности, генераторы постоянного тока на автомобилях, напряжение которых поддерживается автоматически с помощью реле-регулятора. Напряжение бортовой сети при этом должно быть 2.4 В на аккумулятор (или 14.4 В на батарею 6СТ). В начале заряда ток имеет наибольшее значение вследствие значительной разности между напряжением источника и ЭДС батареи. При этом чем больше мощность зарядного источника тока и чем сильнее разряжена батарея, тем больше зарядный ток. По мере заряда ЭДС батареи возрастает и величина зарядного тока падает до нуля.

Преимущества этого метода:

– короткое время заряда;

– автоматически уменьшается ток заряда по мере роста степени заряженности батареи.

Недостатки метода:

– требуется точная установка напряжения источника зарядного тока во избежание систематического недозаряда или перезаряда;

– иногда требуются ограничители тока на начальном этапе заряда;

– нельзя исправлять сульфатированные пластины.


3.4. Заряд реверсивным током.

Улучшение эксплуатационных характеристик аккумуляторов осуществляется , в основном, путем совершенствования их конструкции, а также структуры и состава применяемых активных масс.

Улучшаются эксплуатационные характеристики аккумуляторов и при их заряде реверсивным током, т.е. переменным током с различными амплитудами и длительностями импульсов обоих направлений за каждый период их следования. При этом в каждом периоде аккумулятор заряжается и частично разряжается.

При определенном соотношении амплитуд и длительности импульсов прямого и обратного тока снижается газовыделение и температура электролита.

В соответствии с теорией и практикой электролиза заряд аккумулятора реверсивным током дает возможность управлять восстановительными реакциями и структурными изменениями активного материала пластин, получая, в зависимости от соотношения и абсолютных значений анодного и катодного периодов, кристаллы различных размеров и форм. Это позволяет увеличить суммарную пористость и площадь действующей поверхности пластин, т.е. увеличить поверхность соприкосновения электролита с активным материалом электрода, облегчить условия диффузии и выравнивания концентрации электролита в при электродном слое.

Увеличение пористости способствует повышению величины максимального тока заряда (и разряда).

При заряде аккумуляторных батарей реверсивным током за счет улучшения условий перемешивания электролита в при электродном слое положительного электрода создается более кислая среда, благоприятствующая получению тетрагональной формы ( -модификации) диоксида свинца. При катодном периоде (разрядном периоде реверсивного тока) из этой модификации получается более рыхлый сульфат свинца, который в анодный период (зарядный период реверсивного тока) дает большее количество PbO2. За счет превращения сульфата свинца в диоксид свинца и металлический свинец в анодный период происходит разработка пор активного материала и улучшение условий доступа электролита к глубинным слоям активного материала.

В анодном периоде на положительном электроде аккумулятора адсорбируется атомарный кислород, количество которого во времени увеличивается, что затрудняет доступ электролита к глубинным слоям активного материала. В катодный период происходит очищение поверхности пластин от кислорода. Электролит получает возможность глубже проникать в поры, что дает возможность большему количеству PbSO4 вступить в реакцию и превратиться в PbO2 с увеличением емкости аккумулятора.

При заряде реверсивным током в конце разряда выделяется меньше тепла и интенсивность газовыделения начинается позже, создаются условия регулирования восстановительных реакций, уменьшаются скорости роста кристаллов сульфата свинца.

Порядок зарядки реверсивным током аналогичен заряду постоянным током.

Недостатки метода:

– сложный источник калиброванного реверсивного тока.

Преимущества:

– отпадает необходимость в периодических контрольно-тренировочных циклах батареи;

– почти полностью исключается необратимая сульфатация пластин, как одна из причин старения и выхода из строя аккумулятора;

– при необходимость ускоренного заряда можно увеличивать зарядный ток в 2-3 раза выше нормального без повреждения аккумулятора;

– при заряде малым реверсивным током (1-2 А) эффективно идет процесс десульфатации пластин и восстановления емкости аккумуляторной батареи, даже сильно заасфальтированной. Потому такой режим зарядки аккумулятора иногда называют "десульфатацией".


3.5. Непрерывный подзаряд.

В любительской практике применяется, в основном, при хранении аккумуляторов.

Устанавливается ток заряда примерно равный току саморазряда аккумулятора из расчета, что батарея теряет около 1% емкости в сутки. Целесообразно при этом использовать реверсивный ток во избежание сульфатации пластин.


3.6. Импульсный заряд.

По своей сущности эквивалентен ступенчатому заряду. Применяется только на заведомо исправных аккумуляторах при ускоренном заряде. На первой ступени заряда ток устанавливается равным нескольким десяткам ампер. Контролируются температура электролита, не допуская чрезмерного перегрева (не более 45 С) и газовыделение.


    Ваша оценка произведения:

Популярные книги за неделю