Текст книги "Аккумуляторные батареи"
Автор книги: Автор Неизвестен
Жанр:
Руководства
сообщить о нарушении
Текущая страница: 2 (всего у книги 3 страниц)
4. РАЗРЯД АККУМУЛЯТОРА
Разряд аккумулятора – наиболее важный режим работы аккумулятора, при котором потребители обеспечиваются током. Процесс разряда аккумулятора описывается электрохимической реакцией:
Образуется сульфат свинца и вода, поэтому по мере разряда аккумулятора плотность электролита уменьшается.
Характер протекания разряда зависит от очень многих характеристик, описывающих состояние аккумулятора и внешних факторов. Все многообразие режимов разряда аккумулятора описывается сравнительно небольшим набором разрядных характеристик.
4.1. Разрядные характеристики аккумулятора.
Основными разрядными характеристиками являются изменяющиеся за время разряда при постоянном нормальном токе разряда следующие величины:
– ЭДС покоя – ЭДС, изменяющаяся линейно в процессе разряда от 2.11 В до 1.95 В;
– плотность электролита – изменяется от 1.28 до 1.11 г/см3;
– напряжение аккумулятора: начальное равно 2.11 В, конечное напряжение разряда – 1.7 В;
– разрядный ток;
– разрядная емкость аккумуляторной батареи.
Первые три характеристики не нуждаются в дополнительных пояснениях. Остановимся на последних двух.
Разрядная емкость – это количество электричества, отдаваемое аккумулятором при разряде.
Однако емкость аккумулятора зависит от условий разряда. Потому само понятие емкости связывают с условиями разряда. Такое понятие емкости является сопоставительной характеристикой.
Разрядной емкостью аккумулятора называют количество электричества, отдаваемое аккумулятором при разряде нормальным током.
Нормальным разрядным током является ток 10-часового режима разряда.
Наряду с этим используется величина разрядного тока 20-часового режима разряда. Большинство заводов-изготовителей указывают емкость батареи в 20-часовом режиме разряда.
На графиках зависимости напряжения от времени при разряде постоянным по величине током наблюдается снижающаяся практически прямая линия, а в конце разряда напряжение линейно и быстро уменьшается. Ниже 1.7 В аккумулятор разряжать не следует.
Степень разряженности аккумулятора можно характеризовать относительной остаточной емкостью.
Относительная остаточная емкость определяется как количество электричества, которое аккумулятор способен отдать при нормальном токе разряда, начиная с данного момента времени, деленное на емкость этого же исправного и полностью заряженного аккумулятора.
Qост.отн. достаточно полно характеризует энергетическое состояние аккумулятора в данный момент эксплуатации.
Например, если аккумулятор не изношен, имеет наибольшую емкость и полностью заряжен, то
Qост. = Qмакс.
и следовательно аккумулятор имеет остаточную относительную емкость, равную 100%.
Однако, например, если аккумулятор сильно засульфатирован, заряжается до 2.7 В при интенсивном газовыделении (полностью заряжен) и в состоянии отдать при нормальном токе разряда.
Разумеется, относительная разрядная емкость аккумулятора зависит от многих факторов, определяющих состояние аккумулятора в текущий момент времени эксплуатации. Это, в основном:
– степень заряженности аккумулятора;
– плотность электролита;
– температура электролита;
– режим заряда.
Необходимо строгое и правильное соответствие между этими зарядными и разрядными характеристиками. Поэтому Qост.отн. – важная диагностическая характеристика. Зная ее, можно избежать за критических, аварийных режимов эксплуатации аккумулятора.
Например, если Qост.отн. = 75%, а температура электролита -25 С, то стартерный режим работы аккумулятора уже является за критическим, т.е. плотность электролита должна быть строго определенной при данных температуре и степени заряженности аккумулятора. Степень заряженности аккумулятора должна быть полной без перезаряда и недозаряда.
Режим разряда выбирать в соответствии с состоянием аккумулятора (это условие часто нарушается, особенно в холодное время года, при длительном пользовании стартером в попытке запустить особенно неисправный двигатель). Если этим пренебречь, то можно разморозить аккумуляторную батарею или некоторые (наиболее разряженные) ее аккумуляторы.
Таким образом, зная основные разрядные характеристики аккумулятора, их взаимозависимость и влияние на остаточную емкость аккумулятора, можно уберечь аккумулятор от преждевременного износа и выхода из строя.
Напомним еще раз главные негативные факторы разряда, резко снижающие срок службы аккумулятора:
– глубокий разряд;
– постоянный режим недозаряда;
– несоответствие норме плотности электролита;
– засульфатированность пластин;
– чрезмерные (за критические) токи разряда.
На величину разрядной емкости аккумулятора оказывает влияние плотность электролита. Однако концентрация серной кислоты в стартерных аккумуляторах обусловлена не соображениями получения максимальной емкости, а связана с другими факторами: срок службы, ток саморазряда, работоспособность при
низких температурах.
Поэтому следует придерживаться основных правил: аккумуляторная батарея должна быть полностью заряженной (лучше реверсивным током), а концентрация электролита соответствовала установленной норме.
Разрядная емкость батареи сильно зависит от тока разряда и температуры электролита. В большинстве случаев заводы-изготовители указывают емкость аккумуляторной батареи для 20-часового режима разряда при Т=25 С. Т.е. ток разряда, например, аккумуляторной батареи емкостью Q=60А.ч равен
Iр = 60/20 = 3А
Однако этот же аккумулятор имеет разрядную емкость при токе 200А (стартерный режим разряда) не более 20 А.ч. Т.е. в таком режиме аккумулятор разряжается ниже допустимых значений за время
Тр = 20/200 = 0.1 часа = 6 минут
При снижении температуры разрядная емкость аккумуляторной батареи также сильно уменьшается. Это в значительной мере зависит от конструкции аккумулятора, однако большинство аккумуляторов, например, при -10 С имеют емкость в 2 раза меньшую, чем при +25 С. Этим объясняется затрудненное проворачивание коленвала стратером в зимних условиях (помимо возросшей механической нагрузки из-за загустения смазки).
Разрядные зарактеристики позволяют определеить состояние аккумулятора и не допускать его эксплуатации за пределами допустимых значений характеристик.
Особенно недопустимы режимы глубокого (ниже практического при U=1.7В) разряда и систематического недозаряда. При этом стартерные токи разряда быстро разрушают пластины. Степень разряженности аккумуляторной батареи можно определить по плотности электролита.
При проверке аккумуляторной батареи нагрузочной вилкой можно определить степень разряженности каждого аккумулятора в зависимости от напряжения.
4.2. Саморазряд.
Саморазряд аккумуляторной батареи – это потеря электричества без включения внешних потребителей тока.
Саморазряд, в основном, обусловлен саморазрядом отрицательного электрода. Саморазряд положительного электрода значительно меньше, чем отрицательного.
Саморазряд отрицательного электрода происходит, в основном, в результате его медленного растворения в электролите. Эта реакция сопровождается образованием сульфата свинца и водорода:
Примесь солей железа и других кислот в электролите ускоряет процесс саморазряда. Поэтому нельзя использовать техническую серную кислоту, в которой обычно соединений железа больше, чем 0.01%. Разумеется, нельзя пользоваться стальной посудой при работе с электролитом.
Суряма, добавляемая в решетки аккумуляторов для повышения их прочности также увеличивает саморазряд.
Бессурьмянистые аккумуляторы (активированные кальцием) имеют очень малые токи саморазряд.
Саморазряд аккумуляторов считается нормальным, если он не превышает 1% в сутки, или 30% емкости батареи в месяц.
Процессы саморазряда протекают более интенсивно в разряженных, изношенных аккумуляторах.
Саморазряд приводит к ускоренной сульфатации пластин и снижению рабочих характеристик аккумулятора.
Для предотвращения вредных последствий саморазряда необходимо:
– применять качественный электролит;
– поддерживать нормальную плотность электролита;
– поддерживать батарею в заряженном состоянии;
– проводить десульфатацию пластин.
4.3. Контрольно-тренировочные циклы.
Контрольно-тренировочный цикл заряда-разряда проводится для предотвращения сульфатации и определения емкости аккумулятора.
Контрольно-тренировочные циклы проводятся не реже одного раза в год и выполняются следующим образом:
– заряжают аккумулятор нормальным током (любым из описанных способов) до полного заряда;
– выдерживают аккумулятор 3 часа после прекращения заряда;
– корректируют плотность электролита;
– включают зарядку на 20-30 минут для перемешивания электролита;
– приводят контрольную разрядку постоянным нормальным током 10-часового режима и контролируют время полного разряда до напряжения 1.7 В (10.2 В на батарее);
– емкость батареи определяют как произведение величины разрядного тока и времени разряда:
Q = Iразр.*tразр.
После контрольного разряда батарею сразу же ставят на зарядку и полностью заряжают любым из описанных методов.
Если оказалось, что емкость батареи меньше 50% ее номинальной, то она неисправна.
По нашему мнению в любительской практике, по-видимому, контрольно тренировочные циклы проводить не следует, особенно на аккумуляторных батареях новых конструкций, поскольку каждый такой цикл уменьшает ресурс батареи.
5. ИЗНОС АККУМУЛЯТОРА
5.1. Понятие надежности аккумулятора.
Важнейшие эксплуатационные характеристики– надежность, суммарное время хранения и эксплуатации, разрядные характеристики, особенно стартерных режимов, и другие в большой мере зависят от условий эксплуатации и хранения. Со временем эти характеристики меняются и меняются не в лучшую сторону. Это
связано с необратимыми процессами износа аккумулятора.
Надежность – это вероятность работы без отказов в течение длительного промежутка времени во всех рабочих режимах. При этом основные зарядноразрядные характеристики не выходят за предельно допустимые (критические) значения. Близкое понятию надежности – стабильность эксплуатационных характеристик.
Механизмов износа много, все они протекают непрерывно. Однако в определенных условиях одни механизмы износа протекают очень интенсивно и являются преобладающими, а в иных условиях их соотношение меняется.
Срок службы аккумулятора определяется его конструктивными и технологическими особенностями, а также условиями хранения и эксплуатации. Обычно срок службы аккумуляторной батареи определяется заводом-изготовителем и в условиях эксплуатации автолюбителем составляет 3-4 года. Этот срок можно увеличить (однако не в несколько раз, как иногда пишут некоторые авторы публикаций) и очень легко сократить (даже в несколько раз).
Так называемые не обслуживаемые аккумуляторы более надежны и имеют больший срок службы, но как и для любого аккумулятора их срок безотказной работы может быть либо увеличен, либо сокращен в зависимости от того, как его эксплуатировать. Эти батареи безусловно требуют ухода и в процессе эксплуатации поддержания в норме основных эксплуатационных характеристик.
5.2. Основные процессы износа аккумулятора.
5.2.1. Оползание активной массы положительных пластин.
Оползание активной массы связано с ее разрыхлением. При этом по мере износа меняется однородность и механическая прочность активной массы. Это необратимый процесс износа аккумулятора. Он активизируется при больших токах заряда и разряда, при интенсивном газовыделении и повышенных температурах. Является преобладающим механизмом износа при длительных стартерных режимах особенно глубокого разряда.
В аккумуляторах новых конструкций с этим явлением успешно борются, однако полностью процесс оползания активной массы положительных пластин предотвратить пока не удалось.
5.2.2. Коррозия электродов.
Коррозионный износ электродов обусловлен процессами электрохимической коррозии и растворения в электролите материалов пластин. Мы не будем описывать все многообразие процессов эрозии. Дадим лишь общие закономерности их проявления.
Для улучшения литейный и механических свойств свинца используется сплав свинца с добавками сурьмы (до 10%) и другими легирующими добавками. Сурьмянистые сплавы свинца при определенной технологии изготовления электродов аккумуляторов имеют крупнозернистую структуру. Такие сплавы быстро корродируют и частицы электродов высыпаются в виде шлама. Высокосурьмянистые сплавы свинца приводят также к интенсивному электролизу воды при малых напряжениях заряда. Т.е. при зарядке уже при напряжении 2.4 В кипят и достаточно активно идут процессы коррозионного разрушения электродов.
Снижение содержания сурьмы, например, до 2.5% приводит к тому, что интенсивное газовыделение начинается только при напряжении заряда большем, чем 2.45 В. Срок службы такого аккумулятора возрастает на 30-40% при прочих равных условиях. Ряд зарубежных фирм выпускают аккумуляторы на основе свинцовых сплавов, не содержащих сурьмы и изготовленных на основе особо чистых технологий. В такие аккумуляторы воду доливают 1 раз в 3-4 года и автомобиль проодит более 300 тыс. км без замены аккумулятора.
Интенсивность коррозионного износа электродов резко возрастает при повышении температуры электролита. Например, рпи 45 С срок службы аккумулятора из-за коррозии уменьшается более чем в 2 раза, а при более высоких температурах идет недопустимо быстрое разрушение пластин. При этом другие механизмы износа несущественны. Сильно корродируют пластины при больших токах заряда, разряда, при перезаряде, при повышенной плотности электролита.
5.2.3. Сульфатация.
Одна из причин выхода из строя аккумулятора – повышенная сульфатация пластин. Она заключается в образовании крупных кристаллов сульфата свинца, которые являются диэлектриком и практически не участвуют в основных токообразующих процессах.
Сульфатация пластин, как правило, вызывается нарушением правил эксплуатации аккумулятора.
Наиболее характерные электрохимические признаки засульфатированности пластин аккумулятора следующие:
– повышенное внутреннее сопротивление;
– повышенное напряжение в начале заряда (если U2.4B при нормальном токе разряда, то степень засульфатированности уже значительна);
– преждевременное обильное газовыделение;
– пониженная емкость аккумулятора;
– концентрация электролита ниже, чем у исправного аккумулятора;
– пониженное напряжение при разряде.
Можно выделить основные причины, приводящие к сульфатации:
– систематические недозаряды аккумулятора;
– глубокие разряды (U1.75B);
– длительное пребывание аккумулятора в разряженном состоянии;
– снижение уровня электролита ниже верхних краев пластин;
– повышенный саморазряд;
– повышенная концентрация электролита;
– хранение аккумулятора при повышенных температурах, особенно переменных.
Чтобы избежать сульфатации, необходимо своевременно устранять основные причины, приведенные выше.Однако, если сульфатация допущена, ее можно устранить слудеющими способами:
1. Десульфатация малым реверсивным током.
Устанавливают величину зарядного реверсивного тока равной 0.5-2А. Десульфатация продолжается иногда 20-50 часов и более. При этом плотность электролита будет возрастать. Неизменность напряжения и плотности электролита в течение 2 часов является признаком окончания десульфатации.
2. При очень тяжелой форме сульфатации применяют заряд малым током, наиболее эффективно – реверсивным. Для этого разряжают аккумулятор до 1.8 В, удаляют электролит, заливают дистиллированную воду. Ток устанавливают настолько малым, чтобы напряжение было не более 2.3 В. По мере увеличения плотности электролита возрастает. После тока, как плотность электролита достигнет величины 1,11 г/см3 – слить электролит и залить дистиллированную воду. Опять ведут десульфатацию малым реверсивным током при напряжении до 2.3 В. При плотности электролита 1.12 г/см3 устанавливают величину реверсивного тока в 1 А. Когда плотность раствора перестанет возрастать и начнется равномерное газовыделение. заряд прекращают. Затем в течение 2 часов аккумулятор заряжают током, составляющим 20% от 10-часового разрядного тока, после чего заряжают в том же режиме до получения постоянства напряжения и плотности электролита. Такой разряд-заряд повторяют 2-5 раз, пока не достигнут постоянства напряжения и плотности электролита. После этого добавляют кислоту до плотности 1.21-1.22 г/см3 и полностью заряжают аккумулятор. После зарядки выдерживают 3 часа и корректируют плотность электролита. Если же систематический подзаряд аккумулятора производится реверсивным током, то сульфатации практически не наблюдается. Вопрос сульфатации пластин аккумулятора и десульфатации широко освещен в литературе. Однако в ряде сулчаев выводы и рекомендации некорректны. Иногда в одних работах утверждается, что сульфатация – единственный механизм старения и выхода из строя аккумулятора, в других – полностью противоположное утверждение: во всех обследованных аккумуляторах, вышедших из строя, признаков сульфатации пластин не обнаружено, а значит – в "современных аккумуляторах проблемы сульфатации не существует".
Очевидно, такие крайние утверждения нельзя считать верными. Сульфатация пластин, повторяем, является одним из механизмов старения и износа аккумулятора. В зависимости от условий эксплуатации
аккумулятора и выполняемых работ по обслуживанию износ аккумулятора обусловливается преобладанием одного – двух основных механизмов износа.
Приведем несколько простых (но часто встречающихся на практике ) примеров.
1. Повышенная плотность электролита – основной механизм износа: эррозия.
2. Неправильная регулировка реле-регулятора – повышенное напряжение бортовой сети. При этом аккумулятор работает в условиях перезаряда и интенсивного кипения электролита. Ускоренный износ обусловлен коррозионным разрушением электродов и разрыхлением активной массы.
3. Эксплуатация батареи в условиях систематического недозаряда, глубокого разряда. В этих условиях активно идет процесс сульфатации.
4. Работа батареи при повышенных температурах – эрозия пластин. Летом на солнцепеке под капотом температура аккумулятора может достигать 60 С и более. При этом можно вывести из строя аккумулятор за 1 сезон без признаков сульфатации.
Подобных примеров можно привести множество, когда наблюдается ускоренный износ с преобладанием тех или иных механизмов износа.
Сульфатация, как процесс износа аккумулятора, идентифицируется однозначно. Степень засульфатированности пластин можно определить с приемлемой степенью точности на фоне иных механизмов износа аккумулятора.
5.РАБОТОСПОСОБНОСТЬ АККАМУЛЯТОРА ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ.
С понижением температуры работоспособность аккумуляторов значительно ухудшается, в основном, по следующим причинам:
– возрастает внутреннее сопротивление;
– уменьшается емкость;
– замедляются процессы диффузии электролита в активной массе.
В зимних условиях существует также опасность замерзания электролита в аккумуляторной батарее.
Очевидно, что в зимних условиях необходимо более тщательно контролировать состояние ккумуляторной батареи и поддерживать ее в рабочем состоянии.
Нельзя допускать глубокого разряда. Глубокий разряд происходит вследствие уменьшения емкости батареи при низких температурах, пуск холодного двигателя всегда затруднен и требует большей энергии. При этом плотность электролита падает и электролит может замерзнуть. Оно может вывести аккумулятор из строя из-за деформации пластин и разрушения сосудов вследствие объемных изменений при образовании кристаллов льда.
Не следует эксплуатировать аккумулятор в режиме постоянного недозаряда. необходимо поддерживать батарею в полностью заряженном состоянии с нормальной плотностью электролита.
6. ПРИГОТОВЛЕНИЕ ЭЛЕКТРОЛИТА
В аккумуляторах используется только аккумуляторная серная кислота. Ее плотность 1.83-1.84 г/см3 при концентрации 92-94%. Для приготовления электролита кислоту смешивают с дистиллированной водой.
Готовят электролит в чистой ёхимически инертной посуде. В любительской практике применяют стеклянную посуду. Это следует делать с особой осторожностью, поскольку при смешивании кислоты с водой раствор очень сильно разогревается и посуда может лопнуть. Можно вливать только кислоту небольшими порциями в воду, слегка помешивая раствор.
Вливать воду в кислоту нельзя!
Для предохранения глаз целесообразно работать в защитных очках. Всегда необходимо иметь под рукой достаточное количество воды и раствора питьевой соды (или мела) для удаления случайно попавших капель кислоты с одежды или тела.
Оптимальная плотность электролита 1.28 г/см3. Ее измеряют после остывания электролита ареометром. Его показания зависят от температуры.
Электролит плотностью 1.26-1.30 г/см3 имеет очень низкую температуру замерзания (-54...-70 С). Однако если батарея разряжена, например на 75 %,то электролит замерзнет при -10 С, если на 50% – то при -18 С.
Поэтому зимой нельзя разряжать аккумулятор более чем на 25%. При замерзании электролит может разрушить аккумуляторную батарею.