355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Н. Федюкович » Анатомия и физиология человека: Учебное пособие. » Текст книги (страница 14)
Анатомия и физиология человека: Учебное пособие.
  • Текст добавлен: 7 октября 2016, 01:30

Текст книги "Анатомия и физиология человека: Учебное пособие."


Автор книги: Н. Федюкович


Жанр:

   

Медицина


сообщить о нарушении

Текущая страница: 14 (всего у книги 25 страниц)

.

Рис. 86. Расположение желез внутренней секреции человека (схема):

1 – полушарие большого мозга; 2 – ядра гипоталамуса; 3 – гипофиз; 4 – щитовидная железа; 5 – трахея; 6– легкое; 7– перикард; 8– мозговое вещество надпочечника; 9 – корковое вещество (кора) надпочечника; 10 – почка; 11 – аорта; 12– мочевой пузырь; 13– яичко; 14– нижняя полая вена; 15– аортальный параганглий; 16– поджелудочная железа; 17– надпочечник; 18 – печень; 19 – вилочковая железа (тимус); 20 – паращитовидная железа; 21– сонный гломус; 22– мозжечок; 23– шишковидное тело (эпифиз); 24—мозолистое тело

Передняя доля (аденогипофиз) более крупная и плотная, составляет 70—80 % всей массы гипофиза. В передней доле выделяют дистальную, промежуточную и бугорную части. Паренхима средней доли представлена несколькими типами железистых клеток, между которыми находятся кровеносные сосуды. Задняя доля (нейрогипофиз) находится в задней части гипофизарной ямки. Она состоит из воронки и нервной доли; образована нейроглиальными клетками (питу-ициты), нервными волокнами, которые идут от гипоталамуса в нейрогипофиз, и нейросекреторными тельцами.

При помощи нервных волокон и кровеносных сосудов гипофиз функционально связан с гипоталамусом промежуточного мозга, который регулирует деятельность гипофиза.

В гипофизе вырабатывается семь гормонов, четыре из них влияют на периферические эндокринные железы и называются тройными гормонами (фолликулостимулирующий, лютеинизирующий, тиреотропный, адренокортикотропный), три гормона – эффекторные, гормон роста (соматотропный), пролактин (лютеотропный гормон, меланоцитостимулирующий гормон) – непосредственно влияют на органы и ткани-мишени.

В передней доле гипофиза вырабатывается соматотропный гормон (СТГ) роста. Секреция гормона роста регулируется гипоталамическими гормонами: рилизин-гормоном и ингибирующим гормоном соматостатином. Он принимает активное участие в регуляции процессов роста и развитии молодого организма. После полового созревания происходит окостенение эпифизарных хрящей и СТГ перестает влиять на рост костей в длину. Если у взрослых происходит чрезмерная выработка этого гормона, то у них наблюдается разрастание мягких тканей, деформация и утолщение костей. Это заболевание называется акромегалией. А при излишней выработке гормона в молодом возрасте, когда кости способны расти в длину, развивается гигантизм, при недостаточности гормона роста – карликовость (нанизм). Для этой болезни характерны отставание в росте (в возрасте 20 лет– менее 120 см у женщин и 130 см у мужчин), пропорциональное уменьшение всех частей тела и внутренних органов. Имеется половое недоразвитие.

Другим гормоном этой доли является адренокортикотропный гормон (АКТГ). Он необходим для нормального развития и функции коры надпочечника, стимулирует выработку и секрецию глюкокортикоидов. Стимулируется образование АКТГ кортикотропин-рилизинг-гормоном гипоталамуса; гормоны коры надпочечника на основании механизма обратной связи также включаются в регуляцию секреции АКТГ.

Вырабатывается передней долей гипофиза и тиреотропный гормон (ТГ). Он регулируется тиреотропин-рилизинг-гормоном гипоталамуса, стимулирует рост и развитие щитовидной железы, выработку и выделение гормонов тироксина (Т4) и трииодтиронина (Т3).

Гонадотропные гормоны – фолликулостимулирующий (ФСГ) лютеинизирующий (ЛГ) и пролактин (ПРЛ) – влияют на половое созревание организма, регулируют и стимулируют развитие фолликулов в яичниках, овуляцию, рост молочных желез и выработку молока, процесс сперматогенеза у мужчин. Стимулируют выделение этих гормонов рилизинг-факторы гипоталамуса.

В промежуточной доле образуется меланоцитстимулиру-ющий гормон (МСГ). Основная его функция заключается в стимуляции биосинтеза кожного пигмента меланина, а также в увеличении размеров и количества пигментных клеток. Регуляция клеток промежуточной доли гипофиза осуществляется гипоталамическими и рилизинг-факторами, а также ингибирующими гормонами. Гормоны вазопрессин и окситоцин вырабатываются нейросекреторными клетками гипоталамуса и по аксонам гипоталамо-гипофизарного тракта переходят в заднюю долю гипофиза. А из задней доли гипофиза эти вещества поступают в кровь.

Гормон вазопрессин оказывает антидиуретическое и сосудосуживающее действие, за что и получил название антидиуретического гормона (АДГ). Недостаточная секреция этого гормона приводит к возникновению несахарного диабета. Характерным для этого заболевания является выделение большого количества мочи (от 4 до 20 л/сут и более) при ее низкой относительной плотности. Потеря почками воды и повышение осмотического давления плазмы крови сопровождаются неутолимой жаждой, вследствие которой больные в большом количестве пьют воду.

Окситоцин оказывает стимулирующее действие на сократительную функцию мускулатуры матки, усиливает выделение молока молочной железой, влияет на изменение тонуса гладких мышц желудочно-кишечного тракта, вызывает торможение функции желтого тела.

Шишковидное тело (corpus pineale), или эпифиз. Это небольшое овальное железистое образование, которое относится к промежуточному мозгу и располагается в неглубокой борозде между верхними холмиками среднего мозга.

Масса железы у взрослого человека около 0,2 г, длина 8– 15 мм, ширина 6—10 мм, толщина 4—6 мм.

Снаружи шишковидное тело покрыто мягкой соединительнотканной оболочкой мозга, которая содержит множество анастомозируюших кровеносных сосудов. Клеточными элементами паренхимы являются специализированные железистые клетки – пинеоциты и глиальные клетки – глиоциты.

Эндокринная роль шишковидного тела заключается в том, что его клетки выделяют вещества (серотонин, мелатонин) и другие гормоны, а также полипептиды. Мелатонин является антагонистом меланоцитостимулирующего гормона, обладает антигонадотропным действием и тормозит развитие гонад. Шишковидное тело участвует в регуляции обмена электролитов, влияет в раннем возрасте на комплекс эндокринных органов (гипофиз, щитовидную железу, кору надпочечника), участвующих в процессах роста и полового развития организма.

Щитовидная и паращитовидная железы.

Вилочковая железа

Щитовидная железа (glandula thyroidea). Это непарный орган, располагающийся в передней области шеи на уровне гортани и верхнего отдела трахеи. Состоит из Правой и левой доли и перешейка. Масса щитовидной железы у взрослых составляет в среднем около 20 г, поперечный размер 50—60 мм, продольный каждой доли – 50—80 мм, вертикальный размер перешейка от 2 до 2,5 см, а толщина его равна 2—6 мм. Масса и объем железы у женщин больше, чем у мужчин. Железа имеет фиброзную капсулу, от которой в глубину ткани отходят соединительнотканные перегородки – трабекулы, разделяющие железу на дольки, состоящие из фолликулов.

Внутри стенка фолликулов выстлана эпителиальными клетками кубической формы. Внутри полости фолликула находится густое вещество – коллоид, которое содержит тиреоидные гормоны. Железистый фолликулярный эпителий обладает избирательной способностью к накоплению йода. В щитовидной железе под влиянием тиреотропного гормона вырабатываются тироксин (Т4) и трииодтиронин

(Т3). Кроме того, в щитовидной железе вырабатывается тиреокальцитонин, который снижает уровень кальция в парафолликулярной ткани. Трииодтиронин синтезируется в меньшем количестве, чем тироксин, но имеет большую активность.

Тиреоидные гормоны – это гормоны широкого спектра действия. Их основные эффекты связаны с влиянием на различные обменные процессы, рост и развитие организма, они участвуют в адаптативных реакциях. Особенно выражено влияние Т3 и Т4 на энергетический обмен. Гормоны действуют путем индукции и активации ферментов, что увеличивает синтез белка, распад жиров и углеводов. Таким образом, тиреоидные гормоны влияют на разные виды обмена веществ.

Тиреоидные гормоны играют значительную роль в регуляции жизненно важных функций организма; изменение их уровня в крови вызывает тяжелые заболевания. Известно, что воздействие в течение длительного времени стимулятора щитовидной железы, который обладает свойствами тиреотропного гормона, ведет к неограниченному образованию тиреоидных гормонов и развитию токсического зоба. При этом нарушаются углеводный, жировой, водный и минеральный обмены, изменяются процессы окислительного фосфорилирования. Заболевание сопровождается похудением, тахикардией, повышенной нервной возбудимостью, экзофтальмом.

Изменение продукции тиреоидных гормонов чаще связано с недостатком в пище йода, что ведет к разрастанию ткани щитовидной железы и появлению эндокринного зоба. Развитие этой формы зоба наблюдается во многих странах, в том числе и в Беларуси.

Паращитовидные железы (glandulae parathyroideae superior et inferior). Это округлые или овальные тельца, расположенные на задней поверхности долей щитовидной железы. Количество этих телец непостоянное и колеблется от 2 до 7—8, в среднем 4, по две железы на каждую долю щитовидной железы. Длина телец равна 4—8 мм, ширина 3—4 мм, толщина 2—3 мм. От щитовидной железы паращитовидные железы отличаются более светлой окраской (у детей они бледно-розовые, у взрослых – желтовато-коричневые). Часто железы располагаются в месте входа в ткань щитовидной железы нижней щитовидной артерии или ее ветвей. Паращитовидные железы имеют собственную фиброзную капсулу, от которой внутрь желез идут соединительнотканные прослойки. Последние имеют много кровеносных сосудов и делят ткань желез на группы эпителиальных клеток. Эндокринная функция паращитовидных желез заключается в выделении гормона паратиреокрина, или паратгормона, который участвует в регуляции фосфорно-кальциевого обмена. Удаление паращитовидных желез или снижение их функции – гипопаратиреоз – ведет к снижению уровня кальция в крови и повышению содержания фосфора, при этом повышается возбуждение нервно-мышечной системы, возникают приступы тонических судорог. Повышенная продукция паратгормона – гиперпаратире-оз – возникает при развитии опухолей паращитовидных желез, сопровождается нарушением структуры костей и их деминерализацией, увеличением содержания в крови кальция и усилением выделения фосфатов с мочой.

Вилочковая железа (thymus). Располагается в передней части верхнего средостения. Передняя поверхность вилочковой железы прилегает к задней поверхности грудины, а задняя поверхность – к верхней части перикарда, начальным отделам аорты и легочного ствола, левой плечеголовной и верхней полой вене.

Вилочковая железа состоит их двух асимметричных долей: правой и левой. Нижняя часть каждой доли расширена, а верхняя сужена. Левая доля железы в половине случаев длиннее правой. В средней части доли тесно соприкасаются или срастаются между собою. Снаружи железа покрыта тонкой соединительнотканной капсулой, от которой внутрь органа отходят перегородки, разделяющие паренхиму на дольки. Паренхима долек представлена периферической частью – темным корковым веществом и центральной светлой частью – мозговым веществом. Клетки вилочковой железы представлены лимфоцитами (тимоциты), макрофагами, гранулоцитами и плазматическими клетками.

В мозговом веществе находятся специфические тельца тимуса (тельца Гассаля), которые состоят из уплощенных эпителиальных клеток. Вилочковая железа является центральным органом иммуногенеза, в ней происходят превращения стволовых клеток в Т-лимфоциты, ответственные за реакции клеточного иммунитета. Тимус секретирует и выделяет в кровь специфические вещества под названием «тимический (гуморальный) фактор». Последние оказывают влияние на функции Т-лимфоцитов.

Надпочечник

Надпочечник (glandula suprarenalis) – парный орган, располагается в забрюшинном пространстве непосредственно над верхним концом соответствующей почки. Масса его составляет 12—13 г, длина 40—60 мм, ширина 2—8 мм.

Надпочечник имеет форму сжатого спереди назад конуса, в котором различают переднюю, заднюю и нижнюю (почечную) поверхности. Располагаются надпочечники на уровне XI—XII грудных позвонков. Правый надпочечник лежит несколько ниже левого. Задней поверхностью правый надпочечник прилегает к поясничной части диафрагмы, передней – соприкасается с висцеральной поверхностью печени и двенадцатиперстной кишкой, а нижней вогнутой – с верхним концом правой почки. Левый надпочечник передней поверхностью прилегает к хвосту поджелудочной железы, кардиальной части желудка, задняя его поверхность соприкасается с диафрагмой, а нижняя – с верхним концом левой почки.

Поверхность надпочечника бугристая. На переднемедиальной поверхности видна глубокая борозда – ворота органа, через которые выходят центральная вена и лимфатические сосуды. Снаружи надпочечник покрыт фиброзной капсулой, которая плотно срастается с паренхимой и отдает в глубь железы многочисленные соединительнотканные капсулы. Под фиброзной капсулой находится корковое вещество (кора), состоящее из трех зон. Снаружи, ближе к капсуле, находится клубочковая зона, далее – средняя, наиболее широкая пучковая зона, а затем внутренняя сетчатая зона, прилегающая к мозговому веществу.

В коре надпочечника вырабатываются гормоны под общим названием кортикостероиды. Они делятся на две основные группы: 1) глюкокортикоиды (кортикостерон, кортизол, гидрокортизол и кортизон), которые образуются в пучковой зоне; 2) минералокортикоиды (альдостерон), выделяемые клетками клубочковой зоны коры. Кроме того, в коре надпочечника, главным образом в сетчатой зоне, сек-ретируется небольшое количество мужских половых веществ, близких по строению и функции к гормонам-анд-рогенам, а также эстрогены и прогестерон.

В центральной части надпочечника располагается мозговое вещество, образованное крупными клетками, которые окрашиваются солями хрома в желто-бурый цвет. Различают два вида этих клеток: эпинефроциты – составляют основную массу и выделяют адреналин и норэпинефроциты – вырабатывают норадреналин.

Глюкокортикоиды оказывают разное воздействие на обмен веществ. Они стимулируют синтез гликогена из глюкозы и белков и отложение гликогена в мышцах, одновременно повышая уровень глюкозы в крови; в значительной степени влияют на клеточный и гуморальный иммунитет, обладают сильным противовоспалительным действием. Особенно отчетливо наблюдаются изменения концентрации глюкокортикоидов при стрессе. Согласно теории стресса, Г. Селье выделяет три его фазы: тревоги, резистентности и опустошения. Стресс-реакция может пройти бесследно, если влияние не очень сильное; при его повторении возможна адаптация к этому стимулу. Если же стресс очень интенсивный, тогда возможно опустошение всех запасов глюкокортикостероидов в коре надпочечников и разрушение ее.

Изменение концентрации глюкокортикоидов как в сторону повышения (гиперфункция), так и в сторону снижения (гипофункция) приводит к серьезным нарушениям в организме. В результате повышенной секреции кортизола наблюдаются ожирение, усиленный распад белков (катаболический эффект), задержка воды, гипертензия и т. д. При недостаточности функции коры надпочечников, снижении выработки кортикостероидов возникает тяжелая патология – болезнь Аддисона. Она характеризуется бронзовой окраской тела, повышенной усталостью, гипотонией, слабостью сердечной мышцы и др.

Минералокортикоиды (алъдостерон) регулируют обмен Na+ и К4, действуя главным образом на почки. При избытке гормона повышается концентрация Na4’ и снижается IC в крови, возрастает ее осмотическое давление, задерживается вода в организме, повышается артериальное давление. Дефицит гормона ведет к снижению уровня Na+ в крови и тканях и к повышению уровня К^. Потеря Na+ сопровождается выведением из тканей жидкости – обезвоживанием организма.

Адреналин влияет на сердечно-сосудистую систему: повышает артериальное давление, частоту и силу сердечных сокращений, расширяет сосуды скелетных мышц, гладкую мускулатуру бронхов. Кроме того, он увеличивает содержание глюкозы в крови, усиливает окислительные процессы в клетках. Выход адреналина в кровь происходит под действием симпатической нервной системы.

Норадреналин способствует поддержанию тонуса кровеносных сосудов, участвует в передаче возбуждения из симпатических нервных волокон на иннервируемые органы.

Эндокринная часть поджелудочной железы

Поджелудочная железа состоит из экзокринной и эндокринной частей. Эндокринная часть представлена группами эпителиальных клеток (островки Лангерганса), отделенных от экзокринной части железы тонкими соединительнотканными прослойками. Больше всего островков сконцентрировано в области хвоста поджелудочной железы. Размеры панкреатических островков колеблются в пределах 0,1– 0,3 мм, а общая масса их не превышает 1/100 массы поджелудочной железы.

Панкреатические островки имеют два основных типа железистых клеток. Клетки, синтезирующие инсулин, называют бета (или )-клетками; клетки, вырабатывающие глюкагон – альфа (или )-клетками.

Инсулин представляет собой белковый гормон с молекулярной массой около 6000 Да. Он образуется из проинсулина под влиянием протеаз. Превращение проинсулина в активный гормон инсулин происходит в бета-клетках. Регуляция секреции инсулина осуществляется симпатической и парасимпатической нервной системой, а также под влиянием ряда полипептидов, которые вырабатываются в желудочно-кишечном тракте.

Глюкагон – полипептид, состоит из одной цепи с молекулярной массой около 3500 Да. Он может вырабатываться и в кишечнике в виде энтероглюкагона.

Регуляция секреции глюкагона осуществляется при помощи рецепторов глюкозы в гипоталамусе, которые определяют снижение уровня глюкозы в крови. В эту цепь взаимодействий включаются гормон роста, соматостатин, энтероглюкагон, симпатическая нервная система.

Гормоны островковых клеток оказывают значительное влияние на метаболические процессы. Инсулин является анаболическим гормоном с широким спектром действия. Его роль заключается в повышении синтеза углеводов, жиров и белков. Он стимулирует метаболизм глюкозы, увеличивает проникновение для глюкозы клеток миокарда, скелетных мышц, что способствует большему току глюкозы внутрь клетки. Инсулин снижает уровень глюкозы в крови, стимулирует синтез гликогена в печени, влияет на обмен жиров.

Основной эффект глюкагона связан с усилением метаболических процессов в печени, расщеплением гликогена до глюкозы и выделением ее в ток крови. Глюкагон является синергистом адреналина. При отклонении уровня глюкозы в крови от нормы наблюдается гипо-или гипергликемия. При недостатке инсулина или изменении его активности содержание глюкозы в крови резко возрастает, что может привести к появлению сахарного диабета с соответствующими клиническими симптомами. Высокий уровень глюкагона в крови вызывает развитие гипогликемических состояний.

Эндокринная часть половых желез

Яичко (семенник) у мужчин и яичники у женщин, кроме половых клеток, вырабатывают и выделяют в кровь половые гормоны, под влиянием которых происходит формирование вторичных половых признаков.

Эндокринной функцией в яичке обладает интерстиций, который представлен железистыми клетками – интерстициальными эндокриноцитами яичка, или клетками Лейдига, которые располагаются в рыхлой соединительной ткани между извитыми семенными канальцами, рядом с кровеносными и лимфатическими сосудами. Интерстициальные эндокриноциты яичка выделяют мужской половой гормон – тестостерон.

В яичнике вырабатываются такие половые гормоны, как эстроген, гонадотропин и прогестерон. Местом образования эстрогена (фолликулина) и гонадотропина является зернистый слой созревающих фолликулов, а также интер-стициальные клетки яичника. Эстроген стимулирует, а гонадотропин угнетает рост и развитие половых клеток. Под влиянием фолликулостимулирующего и лютеинизирующего гормонов гипофиза происходит рост фолликулов и активизация интерстициальных клеток. Лютеинизирующий гормон вызывает овуляцию и образование желтого тела, клетки которого вырабатывают гормон яичника прогестерон. Этот гормон подготавливает слизистую оболочку матки для имплантации оплодотворенной яйцеклетки, а также задерживает рост новых фолликулов.

Регуляция желез внутренней секреции

Эндокринные железы и выделяемые ими гормоны тесно связаны с нервной системой, образуют общий интеграционный механизм регуляции. Регулирующее влияние центральной нервной системы на физиологическую активность желез внутренней секреции осуществляется через гипоталамус. В свою очередь гипоталамус связан через афферентные пути с другими отделами центральной нервной системы (со спинным, продолговатым и средним мозгом, таламусом, базальными ганглиями, полями коры больших полушарий и др.). Благодаря этим связям в гипоталамус поступает информация со всех отделов организма: сигналы от экстеро-и интерорецепторов идут в центральную нервную систему через гипоталамус и передаются эндокринным органам.

Таким образом, нейросекреторные клетки гипоталамуса превращают афферентные стимулы в гуморальные факторы с физиологической активностью (рилизинг-гормоны, или либерины), которые стимулируют синтез и высвобождение гормонов гипофиза. А гормоны, тормозящие эти процессы, называются ингибирующими гормонами (или факторами) или статинами.

Гипоталамические рилизинг-гормоны влияют на функцию клеток гипофиза, которые вырабатывают ряд гормонов. Последние в свою очередь влияют на синтез и секрецию гормонов периферических эндокринных желез, а те уже на органы или ткани-мишени. Все уровни этой системы взаимодействий тесно связаны между собой системой обратной связи. Кроме того, известно, что разные гормоны оказывают воздействие и на функции отделов ЦНС.

Важную роль в регуляции функции эндокринных желез играют медиаторы симпатических и парасимпатических нервных волокон.

Однако имеются железы внутренней секреции (паращитовидная, поджелудочная и др.), которые регулируются иным путем за счет влияния уровня гормонов-антагонистов, а также в результате изменения концентрации тех метаболитов (веществ), уровень которых регулируется этими гормонами. Существует часть гормонов, выработанных в гипоталамусе (антидиуретический гормон, окситацин), гормоны гипофиза, которые непосредственно влияют на органы и ткани-мишени.

Таким образом, регуляция желез внутренней секреции в организме человека представляет собой сложную, со многими неизвестными процессами систему.

Вопросы для самоконтроля

1. Расскажите о роли желез внутренней секреции в организме человека.

2. Объясните строение гипофиза и его связь с другими эндокринными железами.

3. Что вы знаете о гормонах передней доли гипофиза?

4. Назовите функциональные особенности задней доли гипофиза.

5. Строение и функциональные особенности щитовидной железы.

6. Строение и роль в организме паращитовидных желез и их положение.

7. Расскажите о роли вилочковой железы для организма человека.

8. Особенности строения и функции надпочечников.

9. Какую роль играют в организме гормоны надпочечников?

10. Расскажите об эндокринной функции поджелудочной железы.

11. Какие эндокринные функции выполняют половые железы?

12. Объясните, как происходит регуляция желез внутренней секреции.

Практические занятия

Цель занятий – изучить анатомическое и гистологическое строение желез внутренней секреции.

Оснащение – набор гистологических препаратов, электронные микрофотографии, схемы, таблицы, слайды, микроскоп, диапроектор.

Содержание работы. Учащийся должен знать: 1) общее строение эндокринной системы; 2) изучить по гистологическим препаратам и микрофотографиям: а) гипофиз; б) щитовидную железу; в) надпочечник; г) поджелудочную железу; 3) функции желез внутренней секреции; 4) принципы регуляции желез внутренней секреции.

Оформление протокола. Зарисовать схему строения инсулоцитов поджелудочной железы; схему гландулоцита и дать обозначения. Записать основные гормоны, вырабатываемые железами эндокринной системы.

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА

Выполняя одну из главных функций – транспортную – сердечно-сосудистая система обеспечивает ритмичное течение физиологических и биохимических процессов в организме человека. К тканям и органам по кровеносным сосудам доставляются все необходимые вещества (белки, углеводы, кислород, витамины, минеральные соли) и отводятся продукты обмена веществ и углекислый газ. Кроме того, с током крови по сосудам разносятся в органы и ткани выработанные эндокринными железами гормональные вещества, которые являются специфическими регуляторами обменных процессов, антитела, необходимые для защитных реакций организма против инфекционных заболеваний. Таким образом, сосудистая система выполняет еще и регуляторную, и защитную функции. В содружестве с нервной и гуморальной системами сосудистая система играет важную роль в обеспечении целостности организма.

Сосудистая система делится на кровеносную и лимфатическую. Эти системы анатомически и функционально тесно связаны, дополняют одна другую, но между ними есть определенные различия. Кровь в организме движется по кровеносной системе. Кровеносная система состоит из центрального органЙ кровообращения – сердца, ритмические сокращения которого дают движение крови по сосудам.

Строение артерий, вен и капилляров. Сосуды, которые несут кровь от сердца к органам и тканям, называются артериями, а сосуды, несущие кровь от периферии к сердцу, – венами.

Артериальная и венозная части сосудистой системы соединяются между собой капиллярами, через стенки которых происходит обмен веществ между кровью и тканями.

Артерии, питающие стенки тела, называются париетальными (пристеночными), артерии внутренних органов – висцеральными (внутренностными).

По топографическому принципу артерии делятся на внеорганные и внутриорганные. Строение внутриорганных артерий зависит от развития, строения и функции органа. В органах, которые в период развития закладываются общей массой (легкие, печень, почки, селезенка, лимфатические узлы), артерии входят в центральную часть органа и дальше разветвляются соответственно долям, сегментам и долькам. В органах, которые закладываются в виде трубки (пищеводный тракт, выводные протоки мочеполовой системы, головной и спинной мозг), ветви артерий имеют кольцевидное и продольное направление в ее стенке.

Различают магистральный и рассыпной тип ветвления артерий. При магистральном типе ветвления имеются основной ствол и отходящие от артерии боковые ветви с постепенно уменьшающимся диаметром. Рассыпной тип ветвления артерии характеризуется тем, что основной ствол делится на большое количество конечных ветвей.

Артерии, обеспечивающие окольный ток крови, в обход основного пути, называются коллатеральными. Выделяют межсистемные и внутрисистемные анастомозы. Первые образуют соединения между ветвями разных артерий, вторые – между ветвями одной артерии.

Внутриорганные сосуды последовательно делятся на артерии 1—5-го порядка, образуя микроскопическую систему сосудов – микроциркуляторное русло. Оно формируется из артериолы, прекапиллярной артериолы, или прека-пилляров, капилляров, посткапиллярных венул или посткапилляров и венул. Из внутриорганных сосудов кровь поступает в артериолы, которые образуют в тканях органов богатые кровеносные сети. Затем артериолы переходят в более тонкие сосуды – прекапилляры, диаметр которых составляет 40—50 мкм, а последние – в более мелкие – капилляры с диаметром от 6 до 30—40 мкм и толщиной стенки 1 мкм. В легких, головном мозге, гладких мышцах расположены наиболее узкие капилляры, а в железах – широкие. Наиболее широкие капилляры (синусы) наблюдаются в печени, селезенке, костном мозге и лакунах пещеристых тел долевых органов.

В капиллярах кровь течет с небольшой скоростью (0,5– 1,0 мм/с), имеет низкое давление (до 10—15 мм рт. ст.). Это связано с тем, что в стенках капилляров происходит наиболее интенсивный обмен веществ между кровью и тканями. Капилляры находятся во всех органах, кроме эпителия кожи и серозных оболочек, эмали зубов и дентина, роговицы, клапанов сердца и др. Соединяясь между собой, капилляры образуют капиллярные сети, особенности которых зависят от строения и функции органа.

Пройдя через капилляры, кровь поступает в посткапиллярные венулы, а затем в венулы, диаметр которых равен 30—40 мкм. Из венул начинается формирование внутриорганных вен 1—5-го порядка, которые затем впадают во внеорганные вены. В кровеносной системе встречается и прямой переход крови из артериол в венулы – артериоло-венулярные анастомозы. Общая вместимость венозных сосудов в 3—4 раза больше, чем артерий. Это связано с давлением и небольшой скоростью крови в венах, компенсируемых объемом венозного русла.

Вены являются депо для венозной крови. В венозной системе находится около 2/3 всей крови организма. Внеорганные венозные сосуды, соединяясь между собой, образуют самые крупные венозные сосуды тела человека – верхнюю и нижнюю полые вены, которые входят в правое предсердие.

Артерии по строению и функциональному назначению отличаются от вен. Так, стенки артерий оказывают сопротивление давлению крови, более эластичны и растяжимы. Благодаря этим качествам ритмичный ток крови становится непрерывным. В зависимости от диаметра артерии делятся на крупные, средние и мелкие.

Стенка артерий состоит из внутренней, средней и наружной оболочек. Внутренняя оболочка образована эндотелием, базальной мембраной и подэндотелиальным слоем. Средняя оболочка состоит главным образом из гладких мышечных клеток кругового (спирального) направления, а также из коллагеновых и эластических волокон. Наружная оболочка построена из рыхлой соединительной ткани, которая содержит коллагеновые и эластические волокна и выполняет защитную, изолирующую и фиксирующую функции, имеет сосуды и нервы. Во внутренней оболочке отсутствуют собственные сосуды, она получает питательные вещества непосредственно из крови.

В зависимости от соотношения тканевых элементов в стенке артерии делятся на эластический, мышечный и смешанный типы. К эластическому типу относятся аорта и легочный ствол. Эти сосуды могут сильно растягиваться во время сокращения сердца. Артерии мышечного типа находятся в органах, изменяющих свой объем (кишечник, мочевой пузырь, матка, артерии конечностей). К смешанному типу (мышечно-эластическому) относятся сонная, подключичная, бедренная и другие артерии. По мере отдаления от сердца в артериях уменьшается количество эластических элементов и повышается число мышечных, возрастает способность к изменению просвета. Поэтому мелкие артерии и артериолы являются главными регуляторами кровотока в органах.

Стенка капилляров тонкая, состоит из одного слоя эндотелиальных клеток, расположенных на базальной мембране, обусловливая ее обменные функции.


    Ваша оценка произведения:

Популярные книги за неделю