355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Михаил Ивановский » Законы движения » Текст книги (страница 6)
Законы движения
  • Текст добавлен: 13 июня 2017, 09:30

Текст книги "Законы движения"


Автор книги: Михаил Ивановский


Жанры:

   

История

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 9 страниц)

Невидимый тормоз

Каждый велосипедист, мотоциклист, шофер, машинист, летчик или капитан корабля знает, что у его машины есть предельная скорость, превысить которую не удается никакими усилиями. Можно сколько угодно нажимать на педаль акселератора автомобильного двигателя, но «выжать» из машины лишний километр в час невозможно.

Автомобиль «Победа» имеет двигатель мощностью в пятьдесят лошадиных сил. Когда водитель нажимает акселератор до отказа, коленчатый вал двигателя начинает делать три тысячи шестьсот оборотов в минуту. Поршни как сумасшедшие мечутся вверх и вниз, подскакивают клапаны, вертятся шестеренки, а автомобиль движется хотя и очень быстро, но совершенно равномерно, и вся сила тяги двигателя уходит на преодоление различного трения.

Вот, например, как распределяется сила тяги двигателя между его «противниками» – разными видами трения при скорости автомобиля сто километров в час: на преодоление трения в подшипниках и между шестеренками расходуется около шестнадцати процентов силы тяги мотора, на преодоление трения качения колес по дороге – примерно двадцать четыре процента, а на преодоление сопротивления воздуха расходуется шестьдесят процентов силы тяги автомобиля.

Трение скольжения с увеличением скорости немного уменьшается, трение качения изменяется очень незначительно, а вот сопротивление воздуха, совершенно незаметное при медленном движении, становится грозной тормозящей силой, когда скорость возрастает. Воздух оказывается главным врагом быстрого движения. Поэтому кузовам автомобилей, тепловозам, палубным надстройкам пароходов придают округленную, обтекаемую форму, убирают все выступающие части, стараются сделать так, чтобы воздух мог их плавно обегать.

Когда строят гоночные машины и хотят добиться от них наивысшей скорости, то для кузова автомобиля заимствуют форму у рыбьего туловища, а на такую скоростную машину ставят двигатель мощностью несколько тысяч лошадиных сил.

Советский гоночный автомобиль «Звезда».

Но что бы ни делали изобретатели, как бы ни улучшали обтекаемость кузова, всегда за всяким движением, как тень, следуют силы трения и сопротивления среды. И если они даже не увеличиваются, остаются постоянными, все равно машина будет иметь предел скорости.

Объясняется это тем, что мощность машины – произведение силы тяги на ее скорость. Но раз движение равномерное – сила тяги целиком уходит на преодоление различных сил сопротивления.

Если добиться уменьшения этих сил, то при данной мощности машина сможет развить большую скорость.

А так как основным врагом движения при больших скоростях является сопротивление воздуха, то для борьбы с ним конструкторам и приходится так изощряться.

Форма авиационной бомбы.

Предметы, движущиеся в воде – рыбы, подводные лодки, самоходные мины – торпеды и проч., – встречают большое сопротивление своему движению со стороны воды.

С увеличением скорости силы сопротивления воды растут еще быстрее, чем в воздухе. Поэтому и значение обтекаемой формы возрастает. Достаточно взглянуть на форму тела щуки. Она должна гоняться за мелкими рыбешками, поэтому для нее важно, чтобы вода оказывала минимальное сопротивление ее движению.

Форму рыбы придают самоходным торпедам, которые должны быстро поражать неприятельские суда, не давая им возможности уклониться от удара.

Скорость падения

Дождевая капля, падая с высоты облаков под действием силы тяжести, сначала движется ускоренно, но сопротивление воздуха быстро уравновешивает силу тяжести, и весь остальной путь до земли капля совершает уже только по инерции с постоянной скоростью.

Эта скорость в зависимости от величины капли достигает только десяти-двадцати метров в секунду. И это очень хорошо! Если бы дождевые капли не встречали сопротивления воздуха, то их скорость падения достигала бы сотен метров в секунду. Такие капли убивали бы, как пули. Мелкие животные и птицы были бы истреблены, а людям пришлось бы вооружаться железными зонтиками и носить вместо плащей-дождевиков кольчуги и шлемы.

Но крупные тяжелые градины все же падают с большой скоростью. Они выбивают стекла в окнах, уничтожают посевы, вредят фруктовым садам.

При затяжном прыжке парашютист, выбросившись из самолета, первые восемь – десять секунд падает ускоренно. Примерно на десятой секунде падения возросшее сопротивление воздуха полностью уравновешивает силу тяжести.

Если парашютист не раскроет парашюта, то он будет падать с постоянной скоростью, примерно равной шестидесяти метрам в секунду. И, конечно, упав с такой огромной скоростью на землю, он неминуемо должен разбиться.

Раскрывшийся парашют благодаря своей форме зонтика встречает еще большее сопротивление воздуха и резко тормозит падение. Парашютист приземляется уже с безопасной скоростью.

Парашютист в воздухе.

Непростая задача

Помехи, которые встречает каждый движущийся предмет, ученые называют силами трения и силами сопротивления воздуха, воды – словом, той среды, в которой движется предмет. Но что такое эти силы? Откуда они берутся? Есть, например, сопротивление воздуха. Удивительное дело – воздух легок и подвижен, он никому и ничему не мешает, пока скорость движения мала, но стоит лишь ускорить движение, и сопротивление воздуха становится огромным и в высшей степени вредным врагом движения.

Почему это так?

Сопротивлением воздуха прежде всего заинтересовались артиллеристы. Они старались понять, почему пушечные снаряды не так далеко летят, как им хотелось бы. Расчеты показали, что, если бы на Земле не было воздуха, снаряд семидесятишестимиллиметровой пушки пролетел бы не менее двадцати трех с половиной километров[2]2
  При начальной скорости 600 метров в секунду и при выстреле под углом в 20 градусов к плоскости горизонта.


[Закрыть]
, а в действительности он падает всего лишь в семи километрах от пушки. Из-за сопротивления воздуха теряется шестнадцать с половиной километров дальности. Обидно, но ничего не поделаешь!

Артиллеристы улучшали пушки и снаряды, руководствуясь главным образом догадкой и смекалкой. Что происходит со снарядом в воздухе, сначала было неизвестно. Хотелось бы посмотреть на летящий снаряд и увидеть, как он рассекает воздух, но снаряд летит очень быстро, глаз не может уловить его движения, а воздух и подавно невидим. Желание казалось несбыточным, но выручила фотография.

При свете электрической искры удалось заснять летящую пулю. Искра сверкнула и на мгновение осветила пулю, пролетавшую перед объективом фотоаппарата. Ее блеска оказалось достаточно, чтобы получить моментальный снимок не только пули, но и воздуха, рассекаемого ею. На фотографии видны темные полосы, расходящиеся от пули в стороны. Благодаря фотоснимкам стало ясно, что происходит, когда снаряд летит в воздухе.

Пуля в полете.

При медленном движении предмета частицы воздуха спокойно расступаются перед ним и почти не мешают ему, но при быстром – картина меняется, частицы воздуха уже не успевают разлетаться в стороны. Снаряд летит и, как поршень насоса, гонит впереди себя воздух и уплотняет его. Чем выше скорость, тем сильнее сжатие и уплотнение.

Для того чтобы снаряд двигался быстрее, лучше пробивал уплотненный воздух, его головную часть делают заостренной.

На фотоснимке летящей пули видно, что у нее позади возникает полоса завихренного воздуха. На образование вихрей тоже тратится часть энергии пули или снаряда. Поэтому у снарядов и пуль стали делать донную часть скошенной, это уменьшило противодействие воздуха. Благодаря скошенному дну дальность полета снаряда семидесятишестимиллиметровой пушки достигла одиннадцати-двенадцати километров.

При полете в воздухе на скорости движения сказывается также трение частиц воздуха о стенки летящего предмета. Это трение невелико, но оно все же существует и нагревает поверхность. Поэтому приходится красить самолеты глянцевитой краской и покрывать их особым авиационным лаком.

Таким образом, противодействие воздуха всем движущимся предметам происходит вследствие трех различных явлений: уплотнения воздуха впереди, образования завихрений позади и небольшого трения воздуха о боковую поверхность предмета.

Воздушная броня

Метеорные частицы – мелкие камешки и кусочки железа, движущиеся около Солнца в межпланетном пространстве, часто сталкиваются с земным шаром. Измерили скорость, с которой эти камешки влетают в атмосферу: оказалось, что она составляет обычно многие десятки километров в секунду. Заметьте: в секунду, а не в минуту! Метеориты движутся в сотни раз быстрее пассажирского самолета, в сто – сто пятьдесят раз быстрее звука и в десятки раз быстрее артиллерийского снаряда. Путешествие вокруг Земли по экватору с такой «метеоритной» скоростью заняло бы меньше получаса времени.

Скорость огромная, и, казалось бы, такой метеоритик, падая, может наделать много бед.

Падение метеорита.

Но известен случай, когда «небесный камешек» упал в корыто, в котором прачка стирала белье. Единственное, что наделал этот космический пришелец, – он обрызгал женщину, стоявшую возле корыта.

Другой такой же метеоритик, падая, запутался в складках широкого кимоно японской девушки. Случалось, что метеориты оказывались на льду озер и прудов. Они лежали как самые обыкновенные камни, брошенные человеческой рукой. Эти метеориты не смогли пробить даже тонкий осенний лед.

Современная наука установила, что самые быстрые пришельцы из межпланетного пространства имеют скорость за пределами атмосферы порядка ста-ста сорока километров в секунду, но даже такую космическую скорость почти полностью поглощает сопротивление воздуха. Только очень крупные метеориты, весом в несколько тысяч тонн, достигают земной поверхности, сохранив некоторую долю космической скорости. Впрочем, такие гигантские метеориты падают очень редко.

Наш воздух, затрудняя движение автомобилей и велосипедов, в то же время служит нам надежной броней. Атмосфера прекрасно защищает поверхность Земли от космической бомбардировки, и небесные камешки, сгорая в кислороде, сверкают в вышине, давая нам возможность любоваться безобидным зрелищем «падающих звезд».

Дождь «падающих звезд».

Сопротивление воды

Когда моторная лодка мчится по водной глади или торпедные катера идут в атаку, видно, как острый нос корабля или лодки режет волны, обращая их в белоснежную пену, а за кормой кипит бурун и остается полоса вспененной воды.

Сопротивление воды напоминает сопротивление воздуха – вправо и влево от корабля бегут волны, а позади образуются завихрения – пенистые буруны; сказывается также и трение между водой и погруженной частью корабля. Разница между движением в воздухе и движением в воде состоит только в том, что вода – жидкость несжимаемая и перед кораблем не возникает уплотненной «подушки», которую приходится пробивать. Зато плотность воды почти в тысячу раз больше плотности воздуха. Вязкость воды тоже значительна. Вода не так-то уж охотно и легко расступается перед кораблем, поэтому сопротивление, которое она оказывает предметам, весьма велико. Попробуйте, например, нырнув под воду, похлопать там в ладоши. Это не удастся – вода не позволит.

Скорости морских кораблей значительно уступают скоростям воздушных кораблей. Наиболее быстроходные из морских судов – торпедные катера развивают скорость в пятьдесят узлов, а глиссеры, скользящие по поверхности воды, – до ста двадцати узлов[3]3
  Узел – морская мера скорости; один узел составляет 1852 метра в час.


[Закрыть]
.

Первое предположение

Почему вода и воздух оказывают сопротивление движущимся предметам, более или менее понятно – их приходится расталкивать, чтобы проложить дорогу. Но почему так трудно тянуть гужевые сани или катить тележку? Ведь спереди им ничего не мешает, спереди у них ничего, кроме воздуха, нет, воздух для медленно движущихся предметов не помеха, а двигать все-таки трудно – снизу что-то мешает. Это «что-то» называют силами трения.

Разгадка сущности трения пришла не сразу. Ученым пришлось потрудиться, чтобы понять, в чем тут дело, и они едва не встали на ложный путь.

Раньше, когда спрашивали, что такое трение, отвечали так:

– Посмотрите на свои подметки! Давно ли они были новые и крепкие, а сейчас уже заметно сносились, стали потоньше.

Опыты показали, что аккуратный человек может сделать по хорошей дороге примерно миллион шагов, прежде чем его подметки проносятся насквозь. Конечно, если они из прочной, хорошей кожи.

Посмотрите на ступени лестниц в каком-либо старом здании, в магазине или в театре – словом, там, где бывает много народу. В тех местах, куда люди ступают чаще, в камне образовались углубления: шаги сотен тысяч людей стерли камень. Каждый шаг чуть-чуть разрушал его поверхность, и камень стирался, превращаясь в пыль.

Снашиваются и подметки, и поверхность пола, по которому мы ходим. Стираются рельсы железных дорог и трамвайных путей. Постепенно исчезает, превращается в пыль асфальт шоссейных дорог – его стирают колеса автомобилей. Резиновые шины тоже расходуются, как и резинки, которыми стирают написанное карандашом.

Поверхность каждого твердого тела всегда имеет неровности и шероховатости. Зачастую они совершенно незаметны на глаз. Поверхности рельсов или полозьев саней кажутся очень гладкими и блестящими, но если посмотреть на них в микроскоп, то при большом увеличении будут видны бугры и целые горы. Так выглядят мельчайшие неровности на «гладкой» поверхности. Такие же микроскопические «Альпы» и «Карпаты» существуют и на стальном ободе колеса. Когда колесо катится по рельсам, неровности его поверхности и рельса цепляются друг за друга, происходит постепенное разрушение трущихся предметов, а движение замедляется.

Ничто в мире само собой не делается, и, чтобы производить даже ничтожнейшее разрушение поверхности стального рельса, приходится затрачивать некоторое усилие. Трение скольжения и качения оттого-то и тормозит всякое движущееся тело, что ему приходится расходовать часть своей энергии на разрушение своей же поверхности. Чтобы уменьшить износ трущихся поверхностей, их стараются делать как можно ровнее, как можно глаже, так, чтобы на них оставалось поменьше всяких шероховатостей. Одно время думали, что единственной причиной трения является шероховатость поверхности. Казалось, что трение можно совсем уничтожить, если хорошенько отшлифовать и отполировать трущиеся поверхности. Но, как выяснилось на основании весьма искусно сделанных опытов, победить трение не так-то просто.

Трибометр.

Неожиданный результат

При воспроизведении опытов Кулона с трением покоя взяли стальную плиту и стальной брусок, по форме похожий на кирпич, но только не такой большой. Он прижимался к поверхности плиты силой своего веса. К бруску был приделан крючок. За крючок зацепили пружинные весы – динамометр и, потянув за кольцо динамометра, стали двигать брусок по плите.

Динамометр показывал силу тяги. Если тянуть за динамометр так, чтобы брусок двигался совершенно равномерно и прямолинейно, сила тяги будет в точности равна силе трения. Динамометр покажет величину силы трения скольжения. Она будет несколько меньше силы трения покоя, определенной Кулоном. Но при малых скоростях скольжения эти силы можно считать равными.

Так и делали: протягивали бруски по плите с определенной небольшой скоростью и замечали показания динамометра.

Потом стали шлифовать и полировать трущиеся поверхности плиты и бруска и время от времени измеряли, как изменяется сила трения от такой обработки. Сначала все шло так, как предполагали: чем глаже и ровнее становились трущиеся поверхности, тем слабее сказывалась сила трения. Исследователи уже подумывали, что они вскоре добьются того, что трение исчезнет совсем. Но не тут-то было!

Когда полированные поверхности заблестели, как зеркальные, силы трения стали заметно возрастать. Хорошо отполированные металлические поверхности проявили склонность слипаться.

Это доказало, что силы трения – не только следствие шероховатости трущихся поверхностей, но и результат действия молекулярных сил сцепления, присущих всем веществам, – тех самых сил, которые действуют между мельчайшими частицами вещества, заставляя их прижиматься друг к другу, заставляя твердые тела сохранять свою форму, масло – приставать к металлу, клей – клеить, смолу – липнуть, ртуть – скатываться в шарики. Эти силы сцепления между частичками вещества получили название молекулярных сил.

«Лекарство от трения»

Во время опытов со стальной плитой и бруском произошел такой случай: однажды в лабораторию принесли пузырек с валерианкой и открыли его – запах валерианки быстро распространился по всей комнате, и… вдруг трение между плитой и бруском резко уменьшилось. Этот случай породил много шуток, так как известно, что валерианку часто употребляют нервные люди в качестве успокаивающего средства, она же оказалась «лекарством от трения».

Впрочем, не только одна валерианка оказалась способной уменьшать трение. То же самое наблюдалось, когда в лабораторию приносили блюдечко с уксусной эссенцией или открывали флакон с духами.

Это явление не вполне изучено. По всей вероятности, летучие вещества, такие, как эфир, на котором настаивают валериановые капли, уксус и др., оседают на поверхности металла в виде тончайших пленок и как-то отделяют трущиеся поверхности друг от друга; может быть, они заполняют мельчайшие впадинки и неровности поверхности металла, сглаживают их, тем самым уменьшая трение, а может быть, эти частички просто перекатываются между соприкасающимися поверхностями, как шарики. В чем тут дело, еще не вполне понятно, но установлено, что летучие вещества уменьшают трение. Трение между слегка загрязненными гладкими поверхностями часто бывает меньше, чем между чистыми.

Особенно резко уменьшается сила трения скольжения, когда трущиеся поверхности смазывают маслом. Вязкое масло заполняет все неровности, затягивает поверхность металла сплошной пленкой. В таком случае происходит уже не движение металла по металлу, а движение одной масляной пленки, приставшей к трущейся поверхности, по другой, приставшей к противоположной поверхности. Сила трения скольжения при этом резко уменьшается.

В качестве смазочного вещества не всегда употребляют масло, для этой цели иногда годятся и другие жидкости: вода, ртуть, растворы мыла и т. п. Твердые вещества, измельченные в тончайший порошок, могут образовывать так называемую сухую смазку. Для этого часто применяют графитовую пыль.

Возникновение теплоты

При самой лучшей смазке и при самой тщательной шлифовке трущиеся поверхности заметно разогреваются. Всякое трение сопровождается выделением теплоты.

Первобытные люди с помощью трения добывали огонь. Трением пользуемся и мы, когда зажигаем спички. Во время работы токарных и других станков резцы, сверла и фрезы нагреваются так, что их приходится охлаждать струей жидкости. Вьется дымок под салазками, на которых спускают на воду корабли. При работе точильного камня и из-под тормозных колодок, когда они схватывают вращающиеся колеса, вылетают потоки горящих искр.

От быстрой езды резиновые шины автомобилей разогреваются иногда настолько, что до них нельзя дотронуться рукой. Еще сильнее нагревается летящая в воздухе пуля. В темном небе вспыхивают светлые звездочки метеоров, сгорающих при попадании в атмосферу; поверхность метеоритов, достигающих поверхности земли, всегда бывает оплавлена.

Выделение теплоты при движении тел является самым существенным признаком наличия сильного трения. Энергия механического движения преобразуется при этом в тепловую.

Древний способ добывания огня.

Скользкость льда

Что лед скользок, знают все, а вот почему он скользок– не всякий сумеет объяснить. Один английский ученый утверждал, что лед скользок потому, что он обладает замечательной способностью плавиться под давлением – таять.

– Конькобежец тяжел, а скользкая поверхность конька мала, – говорил этот ученый. – От сильного давления лед слегка плавится, подтаивает. Между скользящей поверхностью конька и льдом образуется тончайшая пленка воды. Эта вода служит естественной смазкой и делает лед скользким.

Конькобежец на льду.

Такое объяснение в течение долгого времени считалось общепризнанным и правильным. Так было напечатано в старых учебниках и в популярных книгах. Но это объяснение оказалось не совсем верным. Между поверхностью льда и коньком действительно образуется пленка воды, но получить ее одним только давлением нельзя, даже если на коньки поставить слона.

Ошибку разъяснил советский ученый В. Б. Вейнберг.

На коньках катаются не только взрослые и толстые люди, обладающие солидным весом. Это любимая забава малышей. Они прекрасно скользят на коньках, хотя давление на лед, оказываемое ими, совсем невелико.

Если бы лед под коньком действительно плавился от давления, то кататься на катке можно было бы только при температуре не свыше одного градуса мороза. В действительности же в оттепель кататься не так уж хорошо, на морозе куда лучше!

Дело не в давлении, а именно в том, что всякое движение в земных условиях всегда сопровождается трением, а всякое трение ведет к выделению теплоты. Трение между льдом и сталью конька порождает тепло. От этого тепла и плавится лед, а образовавшаяся при этом водяная пленка создает смазку и облегчает движение конькобежца.

Во время очень сильных морозов теплоты, развивающейся от трения, оказывается уже недостаточно, чтобы расплавить лед под коньком. Тогда кататься на катке неприятно – спортсмены говорят, что лед «сухой».


    Ваша оценка произведения:

Популярные книги за неделю