355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Мартин Гарднер » Теория относительности для миллионов » Текст книги (страница 4)
Теория относительности для миллионов
  • Текст добавлен: 6 октября 2016, 22:31

Текст книги "Теория относительности для миллионов"


Автор книги: Мартин Гарднер



сообщить о нарушении

Текущая страница: 4 (всего у книги 9 страниц)

5. Общая теория относительности


В начале гл. 2 мы указывали, что есть два пути обнаружить абсолютное движение: измерять движение по отношению к пучку света и использовать явление инерции, возникающее при ускорении предмета. Опыт Майкельсона – Морли показал, что первый путь непригоден. И специальная теория относительности Эйнштейна объяснила причину этого.

В этой главе мы возвращаемся ко второму методу: использованию явлений инерции как ключа к абсолютному движению.

Когда ускоряется космический корабль, космонавт внутри корабля гигантской силой прижимается к спинке своего кресла. Это обычное явление инерции, вызванное ускорением ракеты. Доказывает ли это явление, что ракета движется? Для доказательства относительности всех движений, включая и ускоренное движение, необходимо, чтобы и ракету можно было принять за неподвижную систему отсчета. В этом случае Земля и все космическое пространство должны будут казаться движущимися назад, прочь от ракеты. Но, посмотрев на создавшееся положение с этой точки зрения, можно ли объяснить силы, действующие на космонавта? Сила, которая прижимает его к креслу, показывает, без всякого сомнения, что движется ракета, а не космос.


Другой подходящий пример представляет вращающаяся Земля. Центробежная сила, инерционное явление, сопровождающее вращение, вызывает растяжение земного экватора, так что Земля сплющивается. Если всякое движение относительно, то нельзя ли принять Землю за неподвижную систему отсчета и считать космос вращающимся вокруг нее? Конечно, это можно вообразить, но что же тогда растягивает земной экватор? Это растяжение показывает, что вращается сама Земля, а не Вселенная. Кстати, астрономы не договорились еще, растягивают центробежные силы и сейчас экватор Земли или растяжение возникло в прошедшие геологические эпохи, когда вещество Земли было более пластичным, а теперь стало характерной чертой твердой Земли, чертой, которая сохранится, даже если прекратится вращение Земли. Все согласны, однако, что центробежная сила ответственна за это растяжение.


Цепь размышлений, приведших Ньютона к мысли о том, что движение не относительно, точно такая же. Он ссылался как на доказательство на тот факт, что во вращающемся вокруг вертикальной оси ведре центробежная сила искривляет поверхность воды и даже может привести к выплескиванию воды через край. Невозможно представить себе, что вращающаяся Вселенная может так влиять на воду, следовательно, утверждает Ньютон, необходимо признать, что вращение ведра абсолютно.


В течение десяти лет, последовавших за опубликованием специальной теории относительности, Эйнштейн размышлял над этой задачей. Большинство физиков не рассматривало ее как задачу вообще.

Почему бы, говорили они, равномерному движению не быть относительным (как это утверждает специальная теория относительности), а ускоренному – абсолютным? Такое положение дел Эйнштейна не удовлетворяло. Он чувствовал, что если равномерное, прямолинейное движение относительно, то таким же должно быть и ускоренное движение. Наконец, в 1916 г., через 11 лет после создания специальной теории относительности, он опубликовал свою общую теорию относительности. Эта теория названа общей, так как она является обобщением, расширением специальной теории. Она включает в себя специальную теорию как частный случай.

Общая теория является значительно более крупным научным достижением, чем специальная теория.

Если бы не Эйнштейн впервые сформулировал специальную теорию, то нет сомнения, что эта теория вскоре была бы создана другими физиками. Пуанкаре был одним из тех, кто почти вплотную подошел к ней. В своей замечательной речи, произнесенной в 1904 г., Пуанкаре предсказал возникновение «совершенно новой механики», в которой никакая скорость не может достигать скорости света, подобно тому, как никакая температура не может опуститься ниже абсолютного нуля. Будет установлен, говорил он, «принцип относительности, согласно которому законы физических явлений должны быть одинаковы, независимо от того, покоится наблюдатель или находится в равномерном и прямолинейном движении; у нас не будет способа различать, находимся мы в состоянии покоя или в таком движении». Пуанкаре не видел того решающего шага, который необходимо было сделать для выполнения этой программы, но интуитивно он понял сущность специальной теории. В то время Эйнштейн еще не сознавал, насколько мысли Пуанкаре, Лоренца и других были близки его собственным. Несколькими годами позже он чрезвычайно высоко оценил выдающийся вклад этих людей.

С общей теорией относительности положение совершенно отличное. Она была, по выражению Теллера, «прекрасной неожиданностью»; работой такой изумительной оригинальности, такой необычности, что она вызвала в научном мире нечто похожее на то, что произошло в танцевальных залах США, когда в 1962 г. в них вторгся новый танец, крик моды, твист. Эйнштейн изменил [3]3
  В оригинале непереводимая игра слов. По-английски twist(читается твист) переводится и как «изменение», и как твист (название танца). – Прим. перев.


[Закрыть]
древние ритмы танцев времени и пространства. В удивительно короткое время каждый физик или танцевал новый твист, не скрывая охватившего его ужаса перед ним, или жаловался на старость, мешающую научиться новому танцу. Если бы не родился Эйнштейн, то нет сомнения, что другие ученые дали бы физике такой же твист, но могло бы пройти столетие или больше, прежде чем это бы произошло. В истории науки немного основополагающих теорий, в такой степени являющихся делом рук одного человека.

«Ньютон, прости меня», – писал Эйнштейн в конце жизни. «В твое время ты нашел тот единственный путь, который был пределом возможного для человека величайшего ума и творческой силы». Это трогательная дань уважения гениальнейшего ученого нашего времени своему гениальному предшественнику.

Центральным стержнем общей теории Эйнштейна является то, что получило название принципа эквивалентности.

Принцип эквивалентности не что иное, как ошеломляющее утверждение (Ньютон счел бы Эйнштейна безумцем), что тяжесть и инерция одно и то же. Это не просто похожие явления. Тяжесть и инерция – два различных слова для одного и того же явления.

Эйнштейн был не первый ученый, которого поразило странное сходство между гравитационным и инерционными явлениями. Представим себе, что пушечное ядро и маленький деревянный шарик падают с одной и той же высоты. Допустим, что вес ядра в сто раз больше, чем вес деревянного шарика. Это означает, что на ядро действует сила тяжести, в сто раз большая, чем сила, действующая на деревянный шарик. Легко понять причину, по которой враги Галилея не могли поверить, что эти шарики достигнут Земли одновременно. Мы теперь, конечно, знаем, что если пренебречь сопротивлением воздуха, то шары будут падать бок о бок. Чтобы объяснить это явление, Ньютон должен был предположить нечто очень удивительное. В той же степени, с какой тяжесть тянет вниз ядро, инерция ядра, сопротивляемость силе, его сдерживает. Действительно, на ядро действует сила тяжести в сто раз большая, чем на деревянный шарик, но инерция сдерживает ядро ровно в сто раз сильнее!

Физики часто выражают это другими словами.

Сила тяжести, действующая на предмет, всегда пропорциональна инерционной массе этого предмета.

Бели предмет А вдвое тяжелее предмета Б, его инерция также вдвое больше. Вдвое большая сила необходима для ускорения предмета А до той же конечной скорости, что и у предмета Б. Если бы это было не так, то предметы разного веса падали бы с разными ускорениями.


Очень легко вообразить себе мир, в котором нет пропорциональности между этими силами (инерции и тяготения). И действительно, во времена от Аристотеля до Галилея ученые представляли себе мир именно таким! Мы очень хорошо чувствовали бы себя в таком мире. Изменились бы условия в падающем лифте, но ведь мы не часто в нем оказываемся.


Как бы там ни было, мы имеем счастье жить в мире, где эти две силы пропорциональны. Впервые это показал Галилей. Удивительно точные опыты, подтвердившие открытие Галилея, были выполнены около 1900 г. венгерским физиком бароном Роландом фон Этвешем. Наиболее точная всесторонняя проверка была сделана несколько лет назад группой ученых Принстонского университета. С той точностью, которой они могли достигнуть, гравитационная масса (вес) всегда оказывалась пропорциональной инертной массе.

Ньютон, конечно, знал об этой удивительной связи между тяжестью и инерцией, связи, которая заставляет все предметы падать с одинаковым ускорением, но он никак не мог это объяснить. Для него эта связь казалась необычайным совпадением. За счет такого совпадения можно использовать инерцию таким образом, что гравитационное поле будет возникать и исчезать. В первой главе было рассказа но об искусственном поле тяжести, которое может быть создано в космическом корабле тороидальной формы (в виде бублика) простым вращением корабля как колеса. Центробежная сила будет прижимать предметы к внешнему краю. Вращая корабль с определенной постоянной скоростью, можно получить внутри корабля поле сил инерции с таким же действием, как и поле тяжести Земли. Прогуливающийся космонавт будет чувствовать себя как бы на кривом полу. Брошенные предметы будут падать на этот пол.

Дым будет подниматься к потолку. Все явления будут такими же, как и в обычном поле тяжести. Для иллюстрации этого положения Эйнштейн предложил следующий мысленный эксперимент.

Вообразите в космосе лифт, двигающийся вверх с постоянно нарастающей скоростью. Если ускорение постоянно и в точности равно ускорению падающего на землю предмета, то человек внутри лифта будет чувствовать себя так же, как и в гравитационном поле, в точности равном земному. Этим способом можно не только промоделировать тяжесть, но и нейтрализовать ее. В падающем лифте, например, ускорение вниз полностью ликвидирует влияние тяжести внутри кабины. Состояние с g= 0 (отсутствие тяготения) существует внутри космического корабля все то время, пока он находится в состоянии свободного падения, т. е. когда он движется только под действием сил тяжести. Невесомость, которую ощущали советские и американские космонавты в полетах вокруг Земли, объясняется тем, что их корабли находились в состоянии свободного падения, обращаясь вокруг Земли. Все время, пока ракетные двигатели космического корабля выключены, внутри корабля будет состояние с g = 0.


Замечательное соответствие между тяжестью и инерцией оставалось иеобъясненным до тех пор, пока Эйнштейн не создал общую теорию относительности.

Как и в специальной теории относительности, он предложил наипростейшую, наиболее смелую гипотезу. Вспомните, в специальной теории относительности Эйнштейн предположил, что причина, по которой мы не замечаем эфирного ветра, состоит в том, что нет никакого эфирного ветра. В общей теории относительности он сказал: тяжесть и инерция кажутся одним и тем же потому, что они являются одним и тем же.

Неправильно говорить, что внутри свободно падающего лифта притяжение Земли нейтрализуется.

Тяготение не нейтрализуется, оно ликвидируется.

Тяготение действительно исчезает. Аналогично этому неправильно говорить, что тяготение во вращающемся космическом корабле или в поднимающемся с ускорением лифте моделируется. И в этом случае тяготение не моделируется, оно создается. Гравитационное поле, созданное этим способом, имеет иную математическую форму, чем гравитационные поля, окружающие большие небесные тела, например Землю, но тем не менее это обычное гравитационное поле.

Как и в специальной теории, математическое описание природы усложняется в общей теории, но окончательный результат оправдывает это усложнение.

Вместо двух различных сил оставлена только одна.

Более того, теория приводит к новым предсказаниям, которые могут быть проверены на опыте.

Принцип эквивалентности Эйнштейна – эквивалентности тяготения и инерции – дает возможность рассматривать все движения, в том числе и ускоренные, как относительные. Когда воображаемый лифт Эйнштейна с нарастающей скоростью движется в космосе, внутри него можно наблюдать явления инерции. Но теоретически лифт можно рассматривать как неподвижную, фиксированную систему отсчета.


Тогда вся Вселенная со всеми ее галактиками окажется движущейся вниз мимо лифта с нарастающей скоростью. Это ускоренное движение Вселенной создает гравитационное поле, которое заставляет все предметы в лифте прижиматься к полу. Можно сказать, что эти явления не инерционные, а гравитационные.

Но что же происходит в действительности? Движется лифт, и его движение создает инерционные явления, или движется Вселенная, создавая гравитационное поле? Это неправильный вопрос. Нет никакого «действительного», абсолютного движения. Существует лишь относительное движение лифта и Вселенной. Это относительное движение создает силовое поле, описываемое уравнениями поля общей теории.

Силовое поле может называться гравитационным или инерционным в зависимости от выбора системы отсчета. Если системой отсчета служит лифт, то поле называется гравитационным. Если же системой отсчета является космос, то поле называется инерционным. Инерция и тяготение – всего лишь два различных слова, примененных к одному и тому же явлению. Естественно, много проще и более удобно рассматривать Вселенную покоящейся. В этом случае никто не попытается назвать поле внутри лифта гравитационным. Общая теория относительности говорит, однако, что это поле может быть названо гравитационным, если выбрана подходящая система отсчета.

Ни один эксперимент, выполненный внутри этого лифта, не сможет доказать «ложность» такого представления.

Когда говорят, что наблюдатель внутри лифта не может сказать, является поле, прижимающее его к полу, инерционным или гравитационным, то это не означает, что он не может найти разницу между этим полем и гравитационным полем, окружающим большие количества вещества, скажем планету. Гравитационное поле вокруг Земли, например, обладает сферической симметрией и такое поле нельзя точно воспроизвести ускорением лифта в пространстве. Если два яблока разнести на метр, а затем сбросить с большой высоты на Землю, то, падая, они будут сближаться, так как каждое яблоко падает по прямой линии, направленной к центру Земли. В движущемся лифте, однако, все предметы падают по параллельным линиям. Это различие между двумя полями может быть найдено опытами внутри лифта, но этими опытами нельзя найти различия между инерцией и тяготением. В опытах можно различить только поля различной математической структуры.


Подобное положение возникает и на вращающейся Земле. Древний спор о том, вращается Земля или небеса вокруг нее (так думал Аристотель), оказывается не более чем спором о выборе самой простой системы отсчета. Конечно, наиболее удобно выбрать систему отсчета, связанную со Вселенной. Мы говорим, что относительно Вселенной Земля вращается и инерция сплющивает Землю, растягивая ее экватор.


Ничто, кроме неудобства, не мешает нам выбрать Землю в качестве фиксированной системы отсчета.

В последнем случае мы скажем, что космос вращается вокруг Земли, создавая гравитационное поле, воздействующее на ее экватор. И снова это поле будет иметь математически иную структуру, чем гравитационное поле вокруг планеты, и тем не менее оно справедливо может быть названо гравитационным.

Если мы выберем Землю за неподвижную систему отсчета, нам даже не придется изменять нашу повседневную речь. Мы говорим, что Солнце всходит по утрам и заходит вечером, что Большая Медведица вращается вокруг Полярной Звезды. Какая же точка зрения «правильна»? Вращаются небеса или вращается Земля? Этот вопрос лишен смысла. С тем же основанием официантка могла бы спросить клиента, желает он мороженое на пироге или пирог под мороженым.


Вообразите себе космос вскруженным некими «захватами» для каждого предмета в нем. (В гл. 7 рассматривается вопрос о происхождении этих захватов.) Необычайность этих захватов состоит в том, что, пока предмет движется по Вселенной прямолинейно и равномерно, Вселенная не препятствует его движению. Но стоит только попытаться заставить предмет двигаться неравномерно (ускоренно), захват сожмется. Если за неподвижную систему отсчета принята Вселенная, то захват называется инерцией предмета, его сопротивляемостью изменению движения. Если за неподвижную систему отсчета принят предмет, захват называется тяготением, попыткой Вселенной сдержать неравномерное движение предмета относительно нее.


Часто общую теорию относительности резюмируют следующим образом. Ньютон разъяснил, что если наблюдатель находится в состоянии равномерного и прямолинейного движения, то нет ни одного механического опыта, с помощью которого он мог бы отличить свое состояние от покоя. Специальная теория относительности распространила это заключение и на оптические опыты. Общая теория является следующим по порядку сообщением – обобщением специальной теории на неравномерное движение. Ни один эксперимент, говорит общая теория, какого бы вида он ни был, не поможет наблюдателю, в каком бы движении тот ни находился, равномерном или неравномерном, отличить свое состояние от состояния покоя.

Сущность общей теории относительности иногда формулируется и так: все законы природы инвариантны (одинаковы) для любого наблюдателя. Это означает, что независимо от того, как движется наблюдатель, он может описать все законы природы (как они ему представляются) одинаковыми математическими уравнениями. Он может быть ученым, работающим в земной лаборатории, или на Луне, или в огромном космическом корабле, медленно ускоряющемся на пути к далекой звезде. Общая теория относительности дает ему ряд уравнений, с помощью которых можно выразить все законы природы, прояв– ляющиеся в любом выполнимом эксперименте. Эти уравнения будут точными независимо от того, находится наблюдатель в покое или в равномерном либо ускоренном движении по отношению к любому другому предмету.

В следующей главе мы подробнее рассмотрим теорию тяготения Эйнштейна и ее связь с новым важным понятием, известным под названием пространства – времени.

6. Тяготение и пространство—время


Прежде чем можно будет что-либо сказать о теории тяготения Эйнштейна, необходимо сделать несколько очень кратких замечаний относительно четырехмерной неевклидовой геометрии. Герман Минковский, польский математик, дал теории относительности изящную интерпретацию в терминах четырехмерного пространства – времени. Многие идеи этой главы в такой же мере принадлежат Минковскому, как и Эйнштейну.

Рассмотрим геометрическую точку. Она не имеет размера. При движении вдоль прямой она порождает линию, имеющую одно измерение. Будем двигать прямую под прямым углом к ней самой, и она создаст плоскость, имеющую два измерения. Если двигать плоскость под прямым углом к ней самой, то она образует трехмерное пространство. И это тот предел, до которого мы можем дойти в своем воображении.


Но математик представляет себе (не в том смысле, что он создает в своем воображении какую-то картину, а в том смысле, что он разрабатывает математический аппарат) движение трехмерного пространства в направлении, перпендикулярном всем его трем измерениям. Это порождает четырехмерное евклидово пространство. Нет никакой необходимости останавливаться на четырех. Мы можем переходить к пространствам пяти, шести, семи или более измерений. Все эти пространства евклидовы. Они представляют собой развитие евклидовой геометрии точно так же, как евклидова стереометрия является развитием евклидовой планиметрии.

Евклидова геометрия основана на нескольких аксиомах, одной из которых является знаменитая аксиома о параллельных прямых. Она гласит, что на плоскости через данную точку, расположенную вне данной прямой, можно провести одну и только одну прямую, параллельную этой прямой.


Говорят, что евклидова поверхность, на которой выполняется этот постулат, плоская. Она имеет нулевую кривизну и бесконечную площадь. Неевклидова геометрия – это такая геометрия, в которой аксиома о параллельных прямых заменена другой аксиомой. При этом возможны два существенно различных случая.

В первом случае, называемом эллиптической геометрией, говорится, что на поверхности через данную точку, расположенную вне заданной линии, не может быть проведено ни одной параллельной ей линии. Поверхность сферы представляет собой грубую, неточную модель неевклидовой поверхности такого типа. «Наиболее прямой» линией на сфере является большой круг (круг с диаметром, равным диаметру сферы). Все большие круги пересекаются друг с другом, и поэтому невозможно, чтобы два больших круга были параллельны. Говорят, что неевклидова поверхность этого типа имеет положительную кривизну. Такая кривизна приводит к тому, что поверхность замыкается сама на себя. Она имеет конечную, а не бесконечную площадь.


Неевклидова геометрия другого типа, называемая гиперболической, – это геометрия, в которой евклидов постулат о параллельных прямых заменен постулатом, гласящим, что на поверхности через точку, расположенную вне данной линии, проходит бесконечное множество параллельных ей линий. Грубой моделью части поверхности такого типа является седловидная поверхность. Говорят, что такая поверхность имеет отрицательную кривизну. Она не замыкается сама на себя. Подобно евклидовой плоскости, она тянется до бесконечности во всех направлениях.


И эллиптическая, и гиперболическая геометрии представляют собой геометрии поверхностей постоянной кривизны. Это означает, что кривизна везде одна и та же, объекты не претерпевают искажений при переходе из одной точки в другую. Неевклидова геометрия более общего типа, обычно называемая римановой геометрией, это такая геометрия, в которой кривизна может меняться от точки к точке любым заданным образом.


Точно так же, как имеются евклидовы геометрии пространств 2, 3, 4, 5, 6, 7…. измерений, существуют неевклидовы геометрии 2, 3, 4, 5, 6, 7…. измерений.

При разработке общей теории относительности Эйнштейн счел необходимым использовать четырехмерную риманову геометрию. Однако вместо четвертого пространственного измерения Эйнштейн выбрал в качестве четвертого измерения время. В понятии четвертого измерения нет ничего таинственного или мистического. Просто это означает, что каждое событие, которое имеет место во Вселенной, представляет собой событие, происходящее в четырехмерном мире пространства – времени.

Это можно уяснить себе, рассмотрев следующее событие. Вы садитесь в автомобиль в 2 часа дня и едете из своего дома в ресторан, расположенный в 3 км к югу и в 4 км к востоку от вашего дома. На двухмерной плоскости кратчайшее расстояние от вашего дома до ресторана есть гипотенуза прямоугольного треугольника со сторонами 3 и 4 км. Эта гипотенуза имеет длину 5 км.

Но вам требуется также затратить какое-то время, скажем 10 мин, на поездку. Этот промежуток времени может быть изображен на трехмерном графике. Одна координата на этом графике есть расстояние к югу в километрах, другая – расстояние к востоку в километрах, а координата по вертикали – время в минутах. На трехмерном графике пространства – времени «интервал» (пространственно-временной промежуток) между двумя событиями (вашим отъездом из дому и прибытием к ресторану) изображен в виде прямой.


Эта прямая линия не есть график реальной поездки. Просто она является мерой пространственновременного расстояния между двумя событиями.

График поездки может быть сложной кривой, поскольку ваша машина ускоряется в начале движения, расположение улиц может сделать невозможной поездку к ресторану по прямой, где-то в пути вы остановитесь при красном свете, и, наконец, вы должны испытать отрицательное ускорение, когда останавливаете машину. Сложный волнистый график реальной поездки в теории относительности называется «мировой линией» поездки. В рассмотренном случае это мировая линия в трехмерном пространстве – времени, или (как его иногда называют) в трехмерном пространстве Минковского.


Так как эта поездка на автомобиле происходила на плоскости, имеющей два измерения, оказалось возможным добавить еще одно измерение – временное и изобразить ее в виде трехмерного графика.

Когда события происходят в трехмерном пространстве, невозможно нарисовать график в четырехмерном пространстве – времени, но математики умеют обращаться с такими графиками, не рисуя их. Попытайтесь представить себе четырехмерного ученого, который умеет чертить четырехмерные графики с такой же легкостью, как обычный ученый чертит двух– и трехмерные графики. Три координаты его графика соответствуют трем измерениям нашего пространства. Четвертая координата – это наше время. Если космический корабль улетает с Земли и приземляется на Марсе, наш воображаемый ученый изобразит мировую линию этого путешествия в виде кривой на своем четырехмерном графике. (Линия будет кривой, так как корабль не может проделать такое путешествие без ускорений.) Пространственно-временной «интервал» между отлетом и приземлением будет изображаться на этом графике прямой линией.

В теории относительности всякий предмет представляет собой четырехмерную структуру, движущуюся вдоль мировой линии в четырехмерном мире пространства – времени. Если какой-либо предмет рассматривается покоящимся по отношению к трем пространственным координатам, он все равно движется во времени. Его мировая линия будет прямой, параллельной временной оси графика. Если предмет совершает равномерное движение в пространстве, его мировая линия по-прежнему будет прямой, но теперь уже непараллельной оси времени. Если предмет движется неравномерно, его мировая линия становится кривой.

Теперь мы можем рассмотреть Лоренц-Фитцджеральдово сокращение специальной теории с новой точки зрения: с точки зрения Минковского, иначе говоря, с точки зрения нашего четырехмерного ученого. Как мы видели, когда два космических корабля проходят один мимо другого, находясь в состоянии относительного движения, наблюдатели на каждом из кораблей обнаруживают некоторые изменения формы другого корабля, а также изменения скорости хода часов на другом корабле. Это происходит по той причине, что пространство и время не являются абсолютными величинами, не зависящими друг от друга. Они похожи, так сказать, на теневые проекции четырехмерных пространственно-временных предметов. Если поставить книгу против источника света и проектировать ее тень на двухмерную стенку, то, поворачивая книгу, можно изменять форму ее тени. В одном положении тень книги представляет собой широкий прямоугольник, в другом – узкий. Книга не меняет своей формы, меняются только ее двухмерные тени.


Подобным образом наблюдатель видит четырехмерную структуру, скажем, космический корабль, в различных трехмерных проекциях в зависимости от того, как он движется по отношению к кораблю. В некоторых случаях проекция занимает больше пространства и меньше времени, в других случаях наоборот. Изменения, которые он наблюдает в пространственных и временных измерениях другого корабля, могут быть объяснены своего рода «поворотом» корабля в пространстве – времени, приводящим к изменению его теневых проекций на пространство и время. Именно это имел в виду Минковский, когда (в 1908 г.) начал знаменитую лекцию на 80-м съезде германского общества натуралистов и физиков. Эта лекция опубликована в книге «Принцип относительности» Альберта Эйнштейна и др. Никакая из популярных книг по теории относительности не будет полной без следующей цитаты из лекции Минковского:

«Взгляды на пространство и время, которые я хочу изложить перед вами, развивались на основе экспериментальной физики, и в этом их сила. Они радикальны. Отныне пространство само по себе и время само по себе обратились в простые тени, и только какое-то единство их обоих сохранит независимую реальность».

Отсюда следует понять, что пространственно-временная структура, четырехмерная структура космического корабля, остается такой же твердой и неизменной, как в классической физике. В этом состоит существенное различие между отброшенной теорией сокращения Лоренца и теорией сокращения Эйнштейна. Для Лоренца сокращение представляло собой реальное сокращение трехмерного предмета. Для Эйнштейна «реальный» предмет – это четырехмерный предмет, который никак не меняется. Его трехмерная проекция на пространство и его одномерная проекция на время могут изменяться, но четырехмерный корабль в пространстве – времени остается неизменным.


Это другой пример того, как теория относительности вводит новые абсолюты. Четырехмерная форма твердого тела абсолютна и неизменна. Подобно этому, четырехмерный интервал между двумя событиями в пространстве—времени есть абсолютный интервал. Наблюдатели, движущиеся с большими скоростями в разных состояниях относительного движения, могут расходиться во мнении о том, насколько удаленными друг от друга в пространстве представляются им два события и как они разделены во времени, но все наблюдатели независимо от их движения, будут едины в том, насколько разделены эти два события в пространстве – времени.

В классической физике тело, если на него не действует сила, движется в пространстве вдоль прямой с постоянной скоростью. Например, планета двигалась бы по прямой, если бы ее не удерживала сила притяжения к Солнцу. Таким образом. Солнце заставляет планету двигаться по эллиптической орбите.

В теории относительности тело, пока на него не действуют силы, также движется по прямой с постоянной скоростью, но эта прямая должна рассматриваться как линия в пространстве – времени, а не в пространстве. Все это справедливо даже при наличии тяготения. Дело в том, что тяготение, согласно Эйнштейну, вовсе не является силой! Солнце не «притягивает» планеты. Земля не «притягивает» вниз падающее яблоко. Просто большое материальное тело, такое, как Солнце, приводит к искривлению пространства – времени в окружающей его области.

Чем ближе к Солнцу, тем больше кривизна. Иными словами, структура пространства – времени в окрестности больших материальных тел становится неевклидовой. В этом неевклидовом пространстве тела продолжают выбирать возможные наиболее прямые пути, но то, что является прямым в пространстве – времени, изображается кривой линией, когда проектируется на пространство. Наш воображаемый ученый, если бы он изображал орбиту Земли на своем четырехмерном графике, представил бы ее в виде прямой линии. Мы, будучи трехмерными существами (точнее, существами, которые разделяют пространство—время на трехмерное пространство и одномерное время), видим ее путь в пространстве в виде эллипса.


Авторы, пишущие о теории относительности, часто объясняют это следующим образом. Представим себе плоский кусок резины, натянутый на прямоугольную рамку. Апельсин, положенный на этот кусок, создает впадину. Мраморный шарик, помещенный вблизи апельсина, будет скатываться к нему. Апельсин не «притягивает» шарик. Он создает поле (впадину) такой структуры, что шарик, выбирая путь наименьшего сопротивления, скатывается к нему.


    Ваша оценка произведения:

Популярные книги за неделю