355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Мартин Гарднер » Когда ты была рыбкой, головастиком - я... » Текст книги (страница 9)
Когда ты была рыбкой, головастиком - я...
  • Текст добавлен: 4 октября 2016, 10:31

Текст книги "Когда ты была рыбкой, головастиком - я..."


Автор книги: Мартин Гарднер



сообщить о нарушении

Текущая страница: 9 (всего у книги 16 страниц)

Глава11
Покрытие «изуродованных» шахматных досок с помощью L-тримино

Среди современных математиков приобрела большую популярность так называемая теория покрытий. Нижеследующий текст первоначально был опубликован в «College Mathematical Journal» (май 2009).

Введение

Пусть стандартную шахматную доску «изуродовали», удалив два крайних угловых поля, расположенных по диагонали друг напротив друга. Можно ли оставшиеся 62 квадрата покрыть с помощью 31 прямоугольной костяшки домино? Ответ – нет, потому что убранные квадраты – одногоцвета. Допустим, их цвет – белый. Тогда среди оставшихся 62 полей окажутся два «лишних» черных квадрата. Между тем каждая костяшка домино покрывает одну черную и одну белую клетку. После того как мы поместим на доску 30 костяшек, две черные клетки останутся свободными. Они не могут примыкать друг к другу (иметь общую сторону), а следовательно, их невозможно покрыть при помощи костяшек домино. Эта широко известная задача, которая решается элементарной проверкой равенства, являет собой простой пример задачи покрытия изуродованной шахматной доски.

Менее известна связанная с ней другая задача. Предположим, доску изуродовали, удалив две клетки разногоцвета из любых мест доски. Всегда ли можно будет покрыть при помощи костяшек домино оставшиеся 62 клетки? Ответ – да, и существует прелестное доказательство, полученное Ральфом Гомори [72]72
  М. Gardner, «The Eight Queens and Chessboard Divisions», in The Unexpected Hanging and Other Mathematical Diversions (Chicago: University of Chicago Press, 1991).


[Закрыть]
.




Рис. 1. Доказательство Гомори

Проведем по доске жирные линии, как показано на рис. 1. Получим замкнутую дорожку, вдоль которой клетки лежат, словно камешки чередующегося цвета в ожерелье. Если с этой дорожки убрать две любые клетки противоположного цвета, получится два незамкнутых сегмента – или один, если удаленные клетки находились рядом (имели общую сторону).

В каждом сегменте будет поровну черных и белых клеток, а следовательно, его можно будет покрыть с помощью костяшек домино. Остроумное доказательство Гомори легко обобщить, применив его ко всем квадратным доскам с четным числом полей.

Если вместо пластинок домино покрывать доску с помощью L-тримино (называемых также косыми, или V-тримино, или угловыми тримино), тогда все квадратные доски, у которых число клеток без остатка делится на 3, можно будет покрыть такими фигурами (кроме доски 3×3). Среди них мы не будем рассматривать «неповрежденные», а возьмем лишь такие изуродованные доски, где число клеток кратно 3 после того, как из произвольного места доски удалили одну клетку. Будем называть такие доски дефицитными.Иными словами, доска со стороной n является дефицитной, если n 2–1 кратно 3; т. е. само n некратно 3. Длины сторон таких досок образуют ряд (1):

2, 4, 5, 7, 8, 10, 11, 13, 14… (1)

Каждое из этих чисел будем называть порядкомдоски. И еще: здесь и далее слово «тримино» будет означать исключительно L-тримино.

Основной вопрос: какие дефицитные доски (полученные после того, как из произвольного места обычной доски убрано одно поле) со сторонами из ряда (1) можно покрыть (без разрывов и наложений) с помощью L-тримино? Мы будем рассматривать эти доски, грубо говоря, по возрастанию их порядка, кульминацией же станет полное и универсальное решение задачи.

Степени двойки

Рассмотрим доску второго порядка. Ее можно покрыть, какую бы клетку мы ни удалили (см. рис. 2, слева). На рис. 2, справа, показано, как можно покрыть доску 4-го порядка. Вырезанная клетка неизбежно оказывается в квадрате 2×2, в каком-то из его четырех углов. Остальная часть доски покрывается благодаря приему, который Соломон Голомб окрестил rep-tile («рептилия»): элемент покрытия (tile) как бы воспроизводит увеличенную копию (replica) самого себя. Левый верхний квадрат 2×2 можно поворачивать, чтобы недостающая клетка оказывалась в четырех разных местах, и весь квадрат 4-го порядка можно при этом поворачивать так, чтобы эта клетка попадала на любое из его шестнадцати полей.



Рис. 2. Порядки 2 и 4

А 1953 году Голомб, «отец» полимино (он придумал для них название и первым начал изучать их), вывел индуктивное доказательство, продемонстрировав, что все доски со сторонами, отвечающими прогрессии 2, 4, 8, 16…) можно покрыть с помощью тримино, когда отсутствует произвольная клетка доски. Впервые доказательство было опубликовано в 1938 году [73]73
  S.W. Golomb, «Checker boards and polyominoes», American Mathematical Monthly 61: 675–682, 1954.


[Закрыть]
. Позже его повторил Э.Б. Эскотт (см. статью в журнале «Open Court» [74]74
  S.W. Golomb, Polyominoes (New York: Scribner, 1965).


[Закрыть]
). С тех пор математики включают это доказательство в свои книги, часто без ссылки на Голомба. Роджер Нельсен приводит Голомбово доказательство в виде единственной диаграммы, без всяких словесных пояснений [75]75
  R.Nelsen, Proofs Without Words II: More Exercises in Visual Thinking (Washington, D.C.: Mathematical Association of America, 2000).


[Закрыть]
. Знаменитое доказательство Голомба начинается с рассмотрения квадрата 2×2 (рис. 3, слева). Этот квадрат затем помещается в угол квадрата 4—го порядка (рис. 3, в центре). А уже этот квадрат 4×4 располагается в углу квадрата 8-го порядка (рис. 3, справа), после чего рядом с углом зачерненного квадрата 4-го порядка укладывают одно тримино. Мы уже знаем, что зачерненный квадрат можно покрыть при отсутствии в нем любой клетки, и мы знаем, что три незачерненных области (примыкающих к нашему одиночному тримино) можно покрыть с помощью тримино, так как в каждой из них отсутствует одна клетка (угловая). Поворачивая доску [76]76
  При этом недостающая клетка может находиться в любом месте квадрата 4-го порядка (аналогично рассмотренному выше случаю с досками 2 и 4-го порядка).


[Закрыть]
, можно добиться того, чтобы любая клетка в зачерненном квадрате приходилась на любое место доски 8-го порядка.



Рис. 3. Голомбово индуктивное доказательство

Порядки 5 и 7

Далее нас ждет доска 5-го порядка, поскольку 5 – следующее число в последовательности (1), для которого мы пока не вывели доказательства. Если убрать центральную клетку, полученную фигуру можно покрыть очень аккуратно и симметрично (как показано на рис. 4. слева). Я покрыл эту доску четырьмя элементами 2×3. Каждый из них можно в свою очередь двумя различными способами покрыть двумя тримино. Покрытия 2×3 – очень полезный инструмент при решении задач с тримино. Когда недостающая клетка расположена, как показано черным на рис. 4 (средний квадрат), клетку над ней, как нетрудно убедиться, приходится покрывать с помощью тримино, примыкающего слева или справа. В любом случае у нас появятся две свободное клетки (они обозначены как 1 и 2), которые нельзя покрыть тримино. И в самом деле, квадрат 5-го порядка можно покрыть тримино, только если недостающая клетка находится в одной из позиций, обозначенных черным на рис. 4. справа. Вот вам приятное упражнение: посмотрите, удастся ли вам покрыть доску, если вырезанная клетка находится в углу.



Рис. 4. Квадрат 5-го порядка

Доску 7-го порядка анализировать гораздо труднее. Я не сумел придумать одиночную диаграмму, которая доказывала бы, что такую доску можно покрыть тримино, однако Голомб прислал мне свое неопубликованное доказательство, где он использует три диаграммы.



Рис. 5. Квадрат 7-го порядка можно покрыть тримино (доказательство Голомба)

Его доказательство развивается так. На рис. 5 показаны три способа покрытия доски 7-го порядка. Очевидно, что при каждом таком покрытии квадрат 2×2 можно покрыть с помощью тримино, если недостающая клетка находится в любом из его четырех углов. Поворачивая эти три фигуры, можно добиться того, чтобы недостающая клетка приходилась на любое место доски.

Несколько труднее придумать, как покрыть доски с помощью максимального количества элементов 2×3. Вот вам задачка: сможете ли вы покрыть доску 7×7 с помощью шести элементов 2×3 и четырех тримино (рис. 6)? Решение – единственное (если не считать его зеркального отражения). (Это решение приводится на с. 204).



Рис. 6. Задача

Посмотрев на рис. 5, можно отметить, что для каждого приведенного разбиения количество свободных тримино (не входящих в элементы 2×3) оказывается четным. И это не совпадение. Мне удалось вывести следующий тривиальный закончик. Когда порядок доски – четный, количество свободных тримино при покрытии – нечетное, и наоборот: когда порядок доски – нечетный, число свободных тримино должно быть четным.

Доказать эти равенства просто. Если доска имеет четный порядок, то после удаления одной клетки количество тримино при любом способе покрытия составит величину, равную (n 2–1)/3, т. е. нечетное число. В каждом элементе 2×3 содержится два тримино, а значит, общее количество тримино, входящих в состав элементов 2×3, неминуемо окажется четным. Если вычесть это четное число из общего числа тримино (а оно – нечетное), мы получим нечетное число тримино, не входящих ни в один элемент 2×3.

Пусть доска имеет нечетный порядок. После удаления одной клетки на доске останется четное число клеток. «Вычтем» из него четное число тримино, входящих в элементы 2×3, и получим четное число тримино, в такие элементы не входящих.

Выше 7-го порядка

Индуктивное доказательство Голомба применимо к бесконечному числу рядов, чьи элементы удваиваются. В частности, после того как мы успешно покрыли доску 7×7, можно понять, как покрываются доски размером n×n, где n = 2k·7. К примеру, возьмем доску 14-го порядка. Разобьем ее на области, расположив зачерненную доску 7-го порядка в левом верхнем углу и положив одно тримино у нижнего правого угла этой зачерненной доски, подобно тому, как мы проделывали раньше (см. рис. 3, справа). Поскольку доску 7-го порядка можно покрыть, из этого с очевидностью вытекает доказательство для доски 14-го порядка, а далее, по индукции, доказательства для порядков 28, 56, 112…

Подобное доказательство нельзя вывести для доски 10-го порядка, расположив в ее углу квадрат 5-го порядка, поскольку его не всегда удается покрыть (см. рис. 4). Однако с этой сложностью легко справиться, применив несколько иной подход. Разместим в левом верхнем углу квадрат 8-го порядка – его, как нам известно, можно покрыть. Остается угловая область, имеющая ширину 2 и занимающая низ и правую часть большого квадрата (см. рис. 7). Путем поворотов и отражений любую недостающую клетку в квадрате 8-го порядка удается расположить в любом месте этой доски. Таким же образом получаем доказательство для порядков 20, 40, 80 и т. д. Сходное доказательство существует для доски 11-го порядка: квадрат 7-го порядка располагаем в ее углу, и тогда угловая область, занимающая нижнюю и боковую часть большого квадрата, будет иметь ширину 4. Индукция позволяет вывести доказательства и для порядков 22, 44, 88… Понятно, что эта методика дает нам бесконечное количество покрываемых досок, длина сторон которых удваивается (это своего рода удваивающийся ряд). Просто располагайте в левом верхнем углу любой доски заведомо покрываемый квадрат со стороной, которая меньше стороны исходной доски либо равна ей. Если оставшуюся снизу и сбоку область большой доски вам удастся покрыть – значит, и большая доска покрываема.



Рис. 7. Доску 19-го порядка можно покрыть.

Обычно труднее всего покрыть доски, у которых длина сторон – простое число. Проблему доски 17-го порядка удается решить, поместив в ее угол квадрат со стороной 13 и оставив внизу и сбоку область шириной 4. Проблему доски 19-го порядка – поместив в ее угол квадрат 14-го порядка (доказательство его покрываемости основано, в свою очередь, на таком же свойстве квадрата 7-го порядка) и получив угловую область шириной 5 (см. рис. 8).



Рис. 8. Доску 19-го порядка можно покрыть.

ПОЛНЫЙ И УНИВЕРСАЛЬНЫЙ РЕЗУЛЬТАТ

Занимаясь разбиением этих фигур, я подобрался (но пока недостаточно близко) к тому, чтобы вывести индуктивное доказательство того, что все дефицитные квадраты покрываемы, за исключением квадрата 5-го порядка. Это доказательство в конце концов получили И. Пинг Чу и Ричард Джонсонбау [77]77
  L.P. Chu and R. Johnsonbaugh, «Tiling deficient boards with trominoes», Mathematics Magazine 59:34–40,1986.


[Закрыть]
. Чу и Джонсонбау позаботились не только обо всех дефицитных квадратах, но и обо всех дефицитных прямоугольниках! Их индуктивное доказательство – слишком специальное, чтобы его здесь приводить. Коротко говоря, они продемонстрировали покрываемость для всех прямоугольников m×n (включая и квадраты – случай, когда m=n) с числом клеток, кратным 3 после удаления одного поля. Подобные доски покрываемы, если выполняются все четыре необходимых и достаточных условия:

1) m ≥ 2,

2) n ≥ m,

3) если m=2, n должно тоже равняться 2,

4) m ≠ 5.

Прямоугольник 4×7 – самый маленький дефицитный прямоугольник (не квадрат), который можно покрыть с помощью L-тримино. Вот еще одно упражнение: много ли у вас уйдет времени на то, чтобы покрыть такую фигуру с помощью тримино и двух элементов 2×3, если недостающая клетка у этой фигуры располагается в углу?

Кристофер Йенсен показал в своей неопубликованной статье, что если в углу любой доски убрать двеклетки, как показано на рис. 9. получившуюся доску нельзя будет покрыть с помощью тримино. Однако, если исключитьприведенные пять случаев, доску с длинами сторон 3m–1 и 3n+1 и с любыми двумя недостающими клетками окажется возможным покрыть при следующем необходимом и достаточном условии: либо если n=1, либо если m ≥ 3 и n ≥ 3.




Рис. 9. Невозможность покрытия при отсутствии двухклеток в углу

Заключение

Кейт Джонс, основавшая и возглавляющая фирму «Kadon Enterprises», которая выпускает и продает разные симпатичные механические головоломки и другие забавные математические предметы, выпустила на рынок игру под названием «V-21» [78]78
  K. Jones, Vee-21 available at www.gamepuzzles.com/polycub2.htm#V21.


[Закрыть]
. Буква V здесь – от «V-тримино», а 21 – число тримино в наборе, где кроме ярко раскрашенных фишек имеется также доска 8-го порядка, на которую их можно класть. Первое задание – положить мономино (квадрат 1-го порядка) в произвольное место доски, а затем покрыть оставшуюся площадь с помощью тримино (т. е. решить задачу для доски 8-го порядка). К игре прилагается сорокастраничное руководство. В нем напечатана короткая статья Нортона Старра «Дефицитная шахматная доска» и приводятся изображения прямоугольных досок и задачи к ним.

Завершим наш рассказ красивейшим симметричным покрытием стандартной шахматной доски (рис. 10).



Рис. 10. Покрытие квадрата 8-го порядка без использования элементов 2×3 и с пятью «самовоспроизводящимися» элементами rep-tile

А вот и ответ на задачу, которую я предложил вам на с. 197:



Глава12
Ay, мистер Херш, вы «здесь»?

Рубен Херш принадлежит к небольшой группе математиков, убежденных, что математика реальна лишь в контексте человеческой цивилизации. А я – бесстыжий платоник и предпочитаю иной язык мышления, предполагающий, что если из Вселенной исчезнут все разумные существа, то математические объекты и теоремы в каком-то смысле никуда не денутся – даже если не останется никого, кто смог бы писать или говорить о них. Гигантские простые числа продолжают быть простыми, хоть никто и не доказывал, что они являются таковыми. Как выразился однажды Бертран Рассел, даже в центре Солнца дважды два – четыре.

Более ранние мои замечания по этой теме см. под заголовком «В защиту платоновского реализма» – так называется глава у моей книги «Джинн из гиперпространства» (Амхерст, штат Нью-Йорк: «Prometheus Books», 2008).

Брайан Дэвис в своей статье «Дайте платонизму умереть» («IMS Newsletter» [79]79
  «Бюллетень «Intelligent Manufacturing Systems»».


[Закрыть]
, июнь 2007) определяет математический платонизм как убежденность в том, что математические объекты существуют «в некоем математическом царстве, за пределами времени и пространства». Но у меня (как, полагаю, и у большинства математических платоников) – иные убеждения. Аристотель, математический реалист, с радостью ухватился за платоновские универсалии трансцендентального царства («оранжевость», «коровность», «двоечность» и т. п.), приспособив их к объектам, существующим во времени и пространстве. Так, геометрическая форма вазы находится «здесь», в данной вазе, эта форма не плавает где-то возле платоновской «пещеры».

В качестве примера можно рассмотреть камешки. Пусть каждый из них – модель числа 1. В таком случае очевидно, что все теоремы арифметики можно доказать, перекладывая камешки. В принципе таким путем можно даже доказать, что произвольно выбранное число (не важно, насколько большое) является простым или составным.

Рубен Херш, мой давний оппонент, в своей статье «О платонизме» пишет:

На мой взгляд, платонизм (имея в виду обычный, бытовой платонизм типичного практикующего математика) справедливо признаёт существование математических фактов и объектов, не управляемых волей или прихотью конкретного математика, но обрушиваемых на него как объективные факты и сущности, о которых он должен узнавать и чье независимое существование и чьи качества он стремится обнаруживать и исследовать.

Что ж, профессор Херш, добро пожаловать в Платоновский клуб! Любой платоник всецело согласится с вашими словами. Но затем Херш делает невероятное заявление: «Ошибка платонизма – в неверной интерпретации этой объективной реальности, в выведении ее за рамки человеческой культуры и сознания».

Математические теоремы и объекты, продолжает Херш, подобно «многим другим реалиям культуры» являются «внешними и объективными с точки зрения любой отдельной личности(курсив Херша), но при этом внутренними, историчными и социально обусловленными с точки зрения данного социума или данной культуры в целом(по-прежнему курсив Херша)».

Получается, Херш все-таки не платоник! Неужели он вправду отрицает, что перекладывание камешков с целью доказать, скажем, что число 17 является простым, – это процесс, протекающий «здесь» независимо отданной культуры? Разумеется, манипулирование камешками является культурно обусловленным – в том тривиальном смысле, что вообще всякая человеческая деятельность так или иначе обусловлена культурой. Но не более того. Тот факт, что число 17 – простое, очевидным образом реализуется «здесь», в поведении камешков: по сути, аналогичным образом присутствует «здесь» эллиптическая орбита Марса или спиральная форма нашей галактики.

Херш буквально помешан на втискивании математики в социальность; в своей книге «Что же такое математика?» («Oxford University Press», 1997) пишет даже (крепитесь!), что 8+5 не обязательно равняется 13, ибо у отдельных небоскребов нет тринадцатого этажа. Стало быть, если вы доедете на лифте до восьмого этажа, а потом подниметесь еще на пять этажей, вы окажетесь на четырнадцатом этаже. Вероятно, Херш предполагает тем самым, что в субкультуре некоторых высотных зданий законы арифметики постоянно нарушаются?

Надо ли мне отмечать здесь, что с тех пор, как Декарт арифметизировал геометрию, ее модели тоже в принципе возможно строить с помощью камешков? И в самом деле, Вселенная заполнена моделями почти всех математических областей, объектов и теорий. Любой тополог сумеет доказать, построив грубую модель из конверта и затем разрезав ее пополам, что рассечение бутылки Клейна на две равные части даст две зеркальные ленты Мёбиуса [80]80
  Инструкции, объясняющие, как сделать бутылку Клейна из конверта, см. в главе 2 моей книги Sixth Book of Mathematical Games from Scientific American (New York: W. H. Freeman, 1971).


[Закрыть]
.

Для комплексных чисел и производных функций, возможно, не существует материальных моделей, однако и эти объекты вкраплениями испещряют Вселенную. Ньютон и Лейбниц, если выражаться обиходным языком, изобрели дифференциальное и интегральное исчисление, но в более глубинном смысле они открылизаконы, согласно которым живет Вселенная. Множество Мандельброта не находится вне пространства и времени [81]81
  Множество точек на комплексной плоскости, обладающих определенными свойствами. Понятие введено французским математиком Бенуа Мандельбротом (р. 1924). основателем фрактальной геометрии.


[Закрыть]
. Оно существует на компьютерных экранах. Неужели антиреалисты считают, что математик, занимающийся свойствами Мандельбротова множества, на самом деле изучает структуры внутри собственного мозга, так как его глаза и мозг воспринимают экран, или что он исследует часть человеческой цивилизации и культуры, к которой он принадлежит, – потому что именно эта цивилизация создала его компьютер?

Подобные рассуждения грешат таким же искажением научного языка, как и заявления, что астрономы, мол, изучают «нездешние» образования, поскольку телескопы – часть человеческой культуры, не говоря уж о том, что и вся астрономия тоже является ее частью. Отсюда недалеко до утверждений, что и вся Вселенная существует лишь потому, что ее наблюдают человеческие цивилизации (а не наоборот – мы существуем, потому что нас создала Вселенная).

Возможно, кардинальные числа, введенные Кантором [82]82
  Кардинальное число множества – обобщение понятия количества (числа элементов множества), имеющее смысл для всех множеств, включая бесконечные. Введено немецким математиком Георгом Кантором (1845–1918), создателем теории множеств


[Закрыть]
, не находятся «здесь», но кто знает?.. Не исключено, что они скрываются где-нибудь в космосе. Подобно физикам, математики часто совершают открытия, исследуя материальные модели. Классический пример: Фрэнк Морли вывел свою «теорему Морли», изучая углы бумажных моделей произвольных треугольников – моделей таких же «здешних», как камни или звезды. Никоим образом нельзя сказать, будто Морли изобрелсвою теорему или нашел ее где-то внутри своего черепа или культуры, к которой принадлежал.

В своей статье Херш справедливо называет меня теистом. И добавляет, что я верю в действенность молитвы. Атеисту Хершу это кажется оскорблением. Что ж, все зависит от значения слова «действенность». Я не верю, что если кто-нибудь помолится о победе футбольной команды или о выздоровлении любимого человека, больного раком, то Господь приложит десницу к Вселенной и тут же ее изменит. Я могу допустить, что Бог вполне способен менять вероятности исхода событий на квантовом уровне, – в наши дни эта догадка популярна среди теистов, – но все же я склонен сомневаться и в этом.

Однако я в самом деле считаю, что молитвы о прощении оправданны, а молитвы о даровании мудрости помогают принимать верные решения. Гилберт Честертон замечает где-то, что для атеиста настанет грустный день, когда с ним произойдет что-то чудесное, а ему будет некого за это поблагодарить.

Херш пишет также, что как-то раз я обвинил его в сталинизме. Не могу себе представить, как бы я мог такое сделать. Если все-таки сделал – приношу свои извинения. Возможно, я однажды напомнил ему душераздирающую сцену из оруэлловского «1984», где чиновник ухитряется, пытая узника, заставить того поверить, что, когда два пальца прибавляют к двум, появляется еще и пятый.

Кроме того, Херш заявляет: один раз я обвинил его в том, что он солипсист. И снова я не совсем понимаю, что он имеет в виду. Не исключаю, что я описывал его антиреализм как туманную разновидность социального (коллективного) солипсизма. Херш – большой поклонник статьи антрополога Лесли Уайта «Место математической реальности». Ее место, как заявляет Уайт, не во внешнем мире, а в человеческой культуре. Математические теоремы сходны в этом смысле с правилами дорожного движения, модами, живописью, музыкой и т. п.

Конечно же это не солипсизм в обычном смысле слова. За пределами психиатрических лечебниц вообще нет истинных и последовательных солипсистов. Однако антиреализм Уайта и Херша приправлен социальным солипсизмом – поскольку, по их утверждениям, если исчезнет человеческая цивилизация, уйдет в небытие и вся математика. Ну да, Вселенная при этом не погибнет, однако больше не останется никого, кто занимался бы математикой (разве что ученые на других планетах). Полагаю, Херш согласится: то, что мы называем математическими структурами и явлениями, будет по-прежнему существовать, однако если не останется ни одного разумного существа, которое бы изучало их, во Вселенной не будет ничего, что заслуживало бы названия математики.

И тут снова возникает вопрос о том, какой же научный язык в данном случае самый лучший и наименее противоречивый. Мне кажется, лучше всего сказать, что если исчезнут все разумные существа, то 2+2 по-прежнему будет равно четырем, отношение длины окружности лунного диска к его диаметру по-прежнему будет близко к та, а сумма внутренних углов евклидова треугольника будет по-прежнему составлять 180°. Подозреваю, Херш предпочтет заявить, что ни одно из этих суждений больше не будет верным, поскольку не останется цивилизаций, где такие утверждения могли бы выдвигаться. А если он думает иначе, тогда Херш, чего доброго, превратится в платоника.

Вместе с Полем Дираком и тысячами других выдающихся математиков я верю, что существует Бог – непревзойденный математик, чьи познания в этой науке гораздо, гораздо обширнее наших. Но бесконечны ли они – откуда мне знать? Господу наверняка неведома последняя цифра числа то, ибо такой цифры не существует вообще. Даже будь я атеистом, мне бы казалось чудовищным высокомерием считать, что математика реально существует лишь в сознании разумных обезьян.


    Ваша оценка произведения:

Популярные книги за неделю