355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Марк Левин » Машина-двигатель
От водяного колеса до атомного двигателя
» Текст книги (страница 9)
Машина-двигатель От водяного колеса до атомного двигателя
  • Текст добавлен: 7 мая 2017, 15:30

Текст книги "Машина-двигатель
От водяного колеса до атомного двигателя
"


Автор книги: Марк Левин



сообщить о нарушении

Текущая страница: 9 (всего у книги 16 страниц)

Можно работать и в два такта

В тот самый 1878 год, когда громко, на весь мир заявил свое право на существование четырехтактный двигатель внутреннего сгорания Отто, англичанин Дуглас Клерк, адвокат по образованию и инженер по призванию, предложил еще один оригинальный двигатель.

Двигатель Клерка должен был работать не в четыре такта, а в два.

И действительно, если глубже вдуматься в процесс работы четырехтактного двигателя, разве не напрашивается сам собой вопрос: нельзя ли получать вспышку в цилиндре чаще, не через оборот, а подряд, за каждый оборот вала?

Ведь что происходит за первый такт? Поршень идет вниз и всасывает рабочую смесь в цилиндр.

А за второй такт? Поршень идет вверх и сжимает рабочую смесь.

Ну, а за третий такт? Поршень идет вниз, совершается рабочий ход, газы расширяются.

И, наконец, за четвертый такт? Поршень идет вверх, выталкивая отработавшие газы, опорожняя цилиндр.

Как будто бы все четыре такта необходимы. Приходится мириться с тем, что первый и четвертый такты вроде как бы вспомогательные, то есть один оборот вала тратится на очистку и наполнение цилиндра. Без свежего заряда двигатель не смог бы и работать.

И, тем не менее, было бы куда целесообразнее, если бы каждый ход поршня вверх использовался для сжатия, а с каждым ходом вниз поршень совершал бы полезную работу. Тогда количество вспышек удвоилось бы, удвоилось бы за то же время количество рабочих ходов, а следовательно, – удвоилась бы и мощность двигателя.

Но как быть с очисткой цилиндра и с зарядкой его новой смесью?

И вот выход предложен.

Схема работы двухтактного двигателя с прямоточной продувкой.

Пусть через верхние клапаны всё время поступает свежий заряд рабочей смеси, а внизу цилиндра пусть будут вырезаны окна, через которые уйдут отработавшие газы. Тогда первым тактом, когда поршень пойдет вверх, он своим телом закроет нижние окна, и, если в цилиндре есть свежий заряд, он его сожмет. К концу первого такта (сжатия) в цилиндр будет подана электрическая искра, – произойдет вспышка и поршень пойдет вниз, совершая второй такт – расширение, рабочий ход. Но поршень в конце хода вниз откроет окна, и отработавшие газы устремятся через окна наружу. При этом специальным механизмом откроются также и клапаны в крышке, через которые особым насосом будет нагнетаться свежая рабочая смесь. За время, пока окна остаются открытыми, свежий поток газа должен успеть вытеснить отработавшие газы – «продуть» цилиндр. Затем, когда поршень, возвращаясь к верхней мертвой точке, вновь перекроет выхлопные окна, свежая рабочая смесь поступит через клапаны в цилиндр, заполнит его объем, зарядив для очередного сжатия.

Таким образом, вместо двух насосных тактов (всасывания и выхлопа) здесь появится процесс продувки цилиндра. Теперь уже за каждый оборот можно получить рабочий ход.

Казалось бы, новый двухтактный двигатель, позволяющий развить при тех же размерах цилиндра почти удвоенную мощность, должен перенять пальму первенства у двигателя четырехтактного.

Но этого не произошло.

Оказалось, что продувать цилиндры рабочей смесью дело не выгодное, – много топлива уносится вместе с выхлопными газами через продувочные окна. И четырехтактный двигатель стал господствовать.

Лишь в некоторых «нефтянках», где цилиндр мог продуваться и заполняться не смесью топлива с воздухом, а чистым воздухом (топливо впрыскивалось в цилиндр в конце хода сжатия), двухтактный процесс еще находил применение.

Однако, как только получили широкое распространение дизель-моторы, о двухтактном цикле вспомнили всерьез. Дизель-мотор не «нефтянка» – это экономичный тепловой двигатель, но коль скоро в цилиндр дизеля также засасывается не рабочая смесь, а воздух, который и будет продувать цилиндр, то прямой смысл двухтактный процесс применить и здесь. Ведь воздуха не жалко. Его можно подать побольше и очистить цилиндр получше.

Так появление дизелей открыло широкую дорогу еще одной разновидности двигателей внутреннего сгорания – двухтактным двигателям.

Первым начал работать над созданием двухтактных дизелей всё тот же завод «Людвиг Нобель» в Петербурге. Были построены специальные опытные цилиндры со стеклянными вставками, через которые наблюдался процесс продувки при разной форме и различном размещении продувочных и выхлопных окон.

Дело в том, что, кроме описанного выше способа продувки, который называется прямоточным, могут быть и другие способы – «петлевые».

При этих способах в крышке цилиндра нет клапанов, но зато в нижней части цилиндра имеется два ряда окон. Левую полуокружность занимают, например, продувочные окна, а правую – выхлопные. Выхлопные немного повыше; поэтому, опускаясь вниз, поршень сначала откроет эти окна, и отработавшие газы вырвутся наружу, а потом, когда поршень откроет и продувочные окна, в цилиндр через них начнет поступать нагнетаемый особой воздуходувкой воздух, который, обходя цилиндр «петлей», вытеснит через всё еще открытые выхлопные окна остаток отработавших газов. К концу продувки цилиндр окажется заполненным чистым воздухом, и поршень, поднимаясь вверх, перекрывая сначала продувочные, а затем и выхлопные окна, начнет сжатие свежего заряда.

Следует заметить, что со временем двухтактные дизели получили столь же широкое распространение, как и четырехтактные, а для мощных установок даже преобладающее.

Схема петлевой продувки цилиндра двухтактного двигателя.

Судьба Дизеля и дизелей

Двигатели с воспламенением от сжатия теперь называют дизелями. Но, как вам уже известно, первый дизель, который решил всю дальнейшую судьбу этого двигателя, был построен не Рудольфом Дизелем, а на русском машиностроительном заводе. И хоть не верил изобретатель в возможности русской промышленности, но именно в России было доказано, что нефтяной экономичный двигатель можно построить.

Надо сказать, что и в дальнейшем развитии этого двигателя много труда и конструкторской мысли было вложено русскими инженерами.

Рудольф Дизель, владея патентом, выдавал разрешения фирмам разных стран строить двигатель с воспламенением от сжатия лишь по своему усмотрению. Это сдерживало широкое развитие двигателя.

Только с 1908 года, после истечения срока патента, строительство дизель-моторов получило широкий размах.

Новый двигатель стал быстро совершенствоваться, всё дальше удаляясь от своего прообраза – первого двигателя Дизеля.

Рудольф Дизель, как и Отто в свое время, выдержал серию судебных процессов, где доказывалось, что всё, чем отличается новый двигатель, – высокое сжатие, самовоспламенение и постепенное сгорание, – уже предлагалось до него другими конструкторами. И многие из подобных утверждений имели к тому веские основания. Это лишний раз доказывало, что творчество многих и многих инженеров, техников и изобретателей подготовляло рождение новой машины. Должен был лишь появиться тот, кто сумел бы своей энергией и настойчивостью добиться претворения в жизнь созревшей идеи. Такими изобретателями были Ленуар, Отто и, наконец, Дизель.

Рудольф Дизель погиб при загадочных обстоятельствах. В 1913 году он отплыл на пароходе «Дрезден» из бельгийского порта Антверпен в Англию. Однако в английский порт Харвии пароход пришел без Дизеля. Вероятно, во время шторма Дизель был подхвачен и унесен в море нахлынувшей волной. Были, однако, и предположения об убийстве изобретателя по приказу германского генерального штаба из боязни, что накануне носившейся в воздухе войны Дизель передаст англичанам сведения о новых двигателях на немецких подводных лодках.

Некоторые считали, что утомленный борьбой Дизель покончил жизнь самоубийством, бросившись в воды океана. Таков трагический конец еще одного изобретателя в капиталистическом мире.

Но дизели продолжали свое победное шествие.

* * *

К директору Путиловского завода в Петербурге обратился студент технолог Тринклер с предложением построить двигатель высокого сжатия, который бы отличался от других дизелей тем, что для обеспечения впрыскивания топлива в цилиндр не требовалось бы строить специальный компрессор. Это было в 1898 году, на самой заре дизелестроения.

Действительно, сразу же, как только первые дизели получили распространение в промышленности, всем стало ясно, что основным недостатком нового двигателя является необходимость в компрессоре. Из общего числа цилиндров двигателя два, а то и три приходилось отводить под компрессор. В этих компрессорных цилиндрах не происходило сгорания топлива, а только сжимался воздух. Сжатый воздух подавался к форсунке, где он встречался с топливом и увлекал его дальше, в рабочий цилиндр, раздробляя жидкую струю на мельчайшие капельки.

Воздуха для распыливания топлива во всех цилиндрах требовалось много, и компрессор всё время работал, отбирая на себя часть мощности, утяжеляя машину, делая ее большой по размерам.

Так распыливалось жидкое топливо с помощью сжатого воздуха в компрессорных дизелях.

Вот почему предложение студента Тринклера заинтересовало Путиловский завод.

Надо сказать, что и сам Дизель об этом много думал, но ему ничего не удалось сделать для ликвидации компрессора.

Тринклер же предложил отказаться от компрессорных цилиндров, а в крышке каждого рабочего цилиндра сделать маленький компрессор, который бы сжимал лишь столько воздуха, сколько требуется, чтобы обеспечить только один впрыск после каждого такта сжатия. Такой цилиндрик с маленьким поршеньком занимал мало места, а приводился поршенек в движение толчком от специального механизма как раз в тот момент, когда нужно было впрыснуть топливо.

Так распыливается жидкое топливо в бескомпрессорных дизелях.

Предложение русского студента Тринклера явилось первым практическим шагом к созданию бескомпрессорного дизеля.

В царской России было в моде преклоняться только перед заграничными новинками, и Тринклеру пять лет пришлось добиваться патента на свое изобретение. Путиловский же завод, сначала взявшись горячо, потом, с приходом нового директора, перестал помогать изобретателю, и Тринклер вынужден был уехать в Германию, чтобы там построить свой двигатель. У Тринклера появились последователи, и работа над бескомпрессорным дизелем началась сразу в ряде стран.

В этой же области значительный вклад сделал еще один русский изобретатель – Яков Мамин. Этот, в то время молодой, талантливый самоучка-механик решил добиться впрыска топлива в цилиндр вообще без помощи воздуха.

Работая с «нефтянками», Мамин построил специальный топливный насос, который мог бы создавать большие давления и впрыскивать через форсунку топливо в цилиндр. Потом, в 1908 году, он построил на небольшом заводе в Балаково (на Волге) свой первый двигатель высокого сжатия, который им был назван «русским дизелем», чтобы тем самым обеспечить его распространение.

В «русском дизеле» впрыск топлива производился без сжатого воздуха: в нужный момент кулачок набегал на поршенек топливного насоса, и тот под высоким давлением продавливал топливо через отверстия форсунки, отчего оно дробилось на мелкие капли, то есть распыливалось.

Это был еще несовершенный, но в полном смысле слова бескомпрессорный дизель.

Именно по этому пути и пошли в дальнейшем конструкторы, – по пути насосного распыливания. И надо заметить, что полностью избавиться от компрессора, наладив хорошее распыливание бескомпрессорным способом при хорошем перемешивании капелек топлива с воздушным зарядом цилиндра, удалось лишь в 20—30-х годах нашего века.

Теперь уже нет ни одного завода в мире, где бы строили двигатели с компрессорами.

Оба изобретателя – и Густав Васильевич Тринклер и Яков Васильевич Мамин – дожили до наших дней.

Густав Васильевич Тринклер еще и поныне является профессором Горьковского института инженеров водного транспорта. Несмотря на свой преклонный возраст, он и сейчас руководит работами по созданию двигателей внутреннего сгорания новых разновидностей; а Яков Васильевич Мамин, которому принадлежит также честь изобретения первых тракторов с двигателями внутреннего сгорания, до последнего времени по день своей смерти работал в Челябинском институте механизации– сельского хозяйства, став за годы советской власти из самоучки-механика кандидатом технических наук.

Вспомним, в каком подавленном состоянии духа, оставшийся один, без поддержки окончил свой жизненный путь Дизель. И разве не ярким примером обратного является интересная, полная творческого труда старость двух других изобретателей, которым посчастливилось вторую половину жизни прожить в стране социализма, окруженными заботами и поддержкой народа!

* * *

Итак, двигатели с самовоспламенением топлива, которые до наших дней сохранили короткое название дизелей, отличаются значительно от первых двигателей Рудольфа Дизеля.

Сейчас это машины высокого класса, оборудованные сложными системами управления, развивающие большие мощности.

Изготовляли (правда, отдельные экземпляры) многоцилиндровые дизели мощностью до 22 000 лошадиных сил.

Вообще же есть дизели и малых мощностей – от 1,5 до 150 лошадиных сил, – и средних мощностей – от 150 до 800 лошадиных сил, – и более крупных мощностей – от 800 лошадиных сил и выше, до 10–12 тысяч лошадиных сил.

Такой широкий диапазон мощностей позволяет применять дизели и для тракторов, и для электростанций, и на железной дороге, для тепловозов, и на судах – теплоходах.

Современный мощный дизель с газотурбинным наддувом. Выхлопные газы двигателя вращают турбинку. От турбинки приводится в движение воздухонагнетатель, который гонит в цилиндры двигателя воздух под повышенным давлением От этого цилиндр «заряжается» большим количеством воздуха, сюда впрыскивается и большее количество топлива. А значит, и мощность в цилиндре двигателя с наддувом развивается большая, чем в цилиндре двигателя без наддува.

Особое значение в современной технике приобретают дизели больших мощностей.

В директивах XX съезда КПСС ставится перед нашей промышленностью весьма важная задача:

«Организовать серийное производство новых мощных тепловозных, судовых и стационарных дизелей».

Это должны быть современные двигатели, развивающие мощность по нескольку тысяч лошадиных сил. Такие двигатели нужны для отечественных тепловозов. Тепловозы вместе с электровозами призваны заменить на железнодорожном транспорте малоэкономичные паровозы. Вспомним о том, что паровые машины, которые двигают паровозы, ведь очень невыгодные тепловые двигатели, – в них используется полезно только 3–4 % тепла, выделяющегося при сгорании угля.

А в тепловозах?

Но ведь эти локомотивы оборудуются дизелями, дизели же пока являются самыми экономичными тепловыми двигателями, – их коэффициент полезного действия равен 35 %, а в ряде случаев и выше.

Какое имеет значение замена паровозов тепловозами для железнодоржного транспорта нашей страны, представить себе нетрудно.

Раз у дизеля коэффициент полезного действия более чем в 10 раз превышает коэффициент полезного действия паровой машины, то вес потребного для тепловозов жидкого топлива оказывается значительно меньше, чем вес угля, требующегося для паровозов.

Значит, для перевозки тех же грузов и на те же расстояния тепловозам потребуется меньше топлива. От этого стоимость перевозок удешевится.

Тепловозу не надо возить с собой большие топливные запасы, отчего он сможет перевозить больше полезного груза. На станционные склады тоже не придется завозить много запасов топлива, а значит, те поезда, которые были заняты перевозкой угля для железных дорог, теперь будут перевозить полезные грузы для промышленности и сельского хозяйства. Тепловозы не нуждаются и в частой заправке водой, как этого требуют паровые котлы. В результате тепловозные составы будут меньше времени терять на стоянки, а их средняя скорость движения возрастет. Грузы будут скорее доставляться на место назначения. Тепловозы смогут вести составы по безводным степям и пустыням.

Мощный советский тепловоз «ТЭ-3».

Было подсчитано, например, что в 1954 году перевозки грузов тепловозами на дорогах нашей страны стоили в два с половиной раза дешевле, чем паровозами. А на тех дорогах, где ощущались трудности в снабжении водой, тепловозные перевозки оказывались дешевле почти в пять раз!

Там, где стали использоваться тепловозы, вес топлива, подвозимого к заправочным станциям, оказался в 13 раз меньше, чем прежде. Если средние скорости паровозных составов равны 30–40 километрам в час, то тепловозные составы идут со скоростями 70 километров в час и смогут в дальнейшем делать до 100 километров в час.

В Советском Союзе первый тепловоз был построен еще в 1924 году, по прямому указанию Владимира Ильича Ленина. Мощность этого тепловоза равнялась одной тысяче лошадиных сил. Это был, пожалуй, первый в мире построенный тепловоз.

Количество тепловозов, курсирующих по дорогам нашей страны, увеличивалось с каждым годом. Однако потребности также быстро возрастали. За годы шестой пятилетки количество выпускаемых тепловозов должно возрасти в 12 раз.

Что же касается паровозов, то время этих локомотивов прошло, и строить их заводы больше не будут.

Мощные дизели нужны морскому и речному флоту. Правда, кроме дизелей морские суда двигаются от паровых или газовых турбин, но всё больше и больше теплоходов, снабженных мощными дизелями, начинают бороздить воды морей и океанов. На речных же судах дизель становится основным первичным двигателем.

Мы можем с удовлетворением отметить, что первой страной, построившей теплоход, была наша страна. В 1903 году завод Нобеля в Петербурге построил дизельное нефтеналивное судно «Вандал». В следующем году на том же заводе был построен еще один такой же теплоход. К 1912 году во всем мире насчитывалось 15 теплоходов с мощностью двигателей от 600 до 1000 лошадиных сил, из них 14 таких теплоходов принадлежало России.

Какие преимущества имеет теплоход по сравнению с пароходом? Современный пароход, как нам известно, имеет в качестве двигателя паровую турбину. Пар при этом вырабатывается в паровом котле, в топке которого сжигается либо уголь, либо нефть. Коэффициент полезного действия судовых паровых турбин оказывается ниже коэффициента полезного действия дизелей. Значит, и на теплоходах, так же как и на тепловозах, надо меньше хранить топлива. А если теплоход снабдить такими же топливными запасами, то он увеличит свой район плавания. Так, при движении на самых больших скоростях теплоход может без наполнения топливом пройти путь раз в пять длиннее, чем паротурбоход.

У дизелей есть и другие преимущества – они не дымят, легко и быстро запускаются, легко управляются. Всё это очень важно для судна.

Наконец, как сказано в директивах XX съезда Коммунистической партии, нужен выпуск и мощных стационарных дизелей.

Стационарные двигатели – это те, которые работают не на транспортных установках, а на электростанциях, на насосных станциях, на компрессорных станциях.

Среди тепловых электростанций сейчас не так много дизельных. Основной двигатель здесь, как мы знаем, – паровая турбина. Но в ряде случаев, например в нефтедобывающих районах, в степных районах, если не требуется очень больших мощностей, есть смысл сооружать дизельные электростанции.

Вернемся к «старичкам»

Дизели – наиболее «молодые» двигатели внутреннего сгорания. Но и «старички» – газовые двигатели и двигатели карбюраторные – еще не отошли в область преданий. До сих пор они несут свою службу. Правда, их тоже коснулось время. Они уже не похожи на своих праотцев, они стали совершенней и заняли свое особое место среди других двигателей.

Газовые двигатели – самые старые, им от роду скоро будет сто лет (если вести счет годам от двигателя Ленуара), но они еще нужны народному хозяйству. В них по-прежнему сжигается и природный газ и светильный газ. Современные двигатели работают и на так называемом газогенераторном газе.

Что такое газогенератор? Это устройство, вырабатывающее газ. Вы помните, как в колбе Лебона появился горючий газ? Деревянные опилки сжигали при малом доступе воздуха. На этом, собственно, принципе работают и современные газогенераторы. Стоит особая печь, в нее заваливают дрова, торф или уголь, там топливо тлеет, а горючие газы засасываются двигателем прямо из этой печи – газогенератора. По пути в двигатель газы проходят фильтры, холодильники, – в цилиндры они попадают чистые и несколько охлажденные.

Чем удобен газогенераторный двигатель? Да тем, что он работает на любом местном топливе. Вот, например, на лесоразработках, – здесь много древесных отходов, а нефть или бензин подвозить сюда далеко и сложно, дороги плохие. Выручает двигатель с газогенератором. И на автомашине и на передвижной электростанции и на тракторе-лесовозе – везде можно применить такой двигатель.

Однако надо заметить, что газогенератор – капризное устройство и газ подается в двигатель не всегда хорошего качества. Большое значение имеет вид топлива, которое сжигается. Это топливо, например, должно быть не очень влажным, мало содержать смол, иначе двигатель будет работать плохо, с недостаточной мощностью, а топлива уйдет много. От смол же быстро загрязнятся клапаны, появится слой нагара на поршне и двигатель придется часто промывать бензином, чистить.

Поэтому газогенераторный двигатель оказывается и не всегда выгодным. Если таких двигателей много – например, на лесоразработках, – то можно организовать большое вспомогательное хозяйство по подготовке топлива, просушке его. Тогда это обойдется в общем недорого и газогенераторные двигатели можно использовать. Но там, где требуется всего один-два двигателя, там часто предпочитают применять дизели, даже если вокруг много леса или торфа.

Но особое значение сейчас приобретают другие газовые двигатели, работающие на природном или промышленном газе. Природный, подземный, газ в изобилии выделяется на нефтеразработках.

Есть районы, где под землей скопились такие запасы газа, что его подают по длинным трубопроводам (газопроводам) в города. Вот на этом газе могут работать двигатели, обслуживающие такие районы.

Много горючего газа выделяется и в промышленности; наряду с газовыми турбинами, о которых будет сказано ниже, этот газ могут использовать и газовые поршневые двигатели.

Газогенераторная установка с газовым двигателем.

«Старичок» помоложе – бензиновый карбюраторный двигатель – тоже еще не сошел со сцены. На легковых автомобилях, мотоциклах, речных катерах и моторных лодках этот двигатель пока преобладает.

Внутри цилиндра бензинового двигателя, работающего с воспламенением от искры, степень сжатия ниже, чем в цилиндре дизеля, где воздух сжимается до более высоких давлений. Там, как мы знаем, сжимаемый воздух нагревается до значительных температур, при которых уже не надо электрической искры, – происходит самовоспламенение топлива.

При меньшей степени сжатия в бензиновых двигателях образуются и меньшие давления в цилиндре от вспышки рабочей смеси. Это означает, что детали таких двигателей – коленчатый вал, шатун, поршень – можно делать не такими прочными и массивными, как у дизелей. Ну, а более легким деталям можно разрешить вращаться быстрее. Опасные, разрушающие центробежные силы у них возникают на более высоких оборотах, чем у тяжелых деталей дизеля.

Значит, бензиновые двигатели могут работать при более высоких оборотах. Но, чем чаще двигается поршень в цилиндре, чем чаще происходят вспышки, тем большую мощность развивает двигатель. Вот и выходит, что легкие бензиновые двигатели могут вместе с тем развивать сравнительно большие мощности.

Правда, такие двигатели менее экономичны, чем дизели, но зато для легковых автомобилей, мотоциклов, моторных лодок, катеров они очень удобны, – мало занимают места. От этого и сами автомобили, мотоциклы и лодки могут быть небольших размеров, но сильными и подвижными.

Наконец, еще один «старичок» – «нефтянка». Ей бы давно пора сойти со сцены, – уж больно неэкономичный этот двигатель – «пожиратель нефти». Однако так велика нужда нашего народного хозяйства в малых двигателях внутреннего сгорания и так прост этот двигатель, что до сих пор, правда в очень небольшом количестве, этот двигатель строится заводами.

Но можно с уверенностью сказать, – «нефтянка» доживает последние дни. Простой, надежный и экономичный дизель скоро повсюду заменит этот устаревший двигатель.

…Так мы познакомились с путями становления особого класса двигателей, где превращение тепловой энергии в механическую происходит путем сгорания топлива непосредственно внутри рабочих цилиндров. Мы теперь знаем, каковы те разновидности двигателей внутреннего сгорания, которые существуют и поныне. Мы, наконец, вкратце познакомились с тем, где какой тип этих двигателей находит свое применение.

Паровые машины, паровые турбины, поршневые двигатели внутреннего сгорания – это двигатели, прочно вошедшие в нашу жизнь. Но беспокойный, неутомимый человеческий разум продолжает отыскивать еще более совершенные способы получать двигательную силу. Открываются новые виды энергии, новые прочные материалы, создаются новые конструкции двигателей.

На наших глазах рождается новая энергетика.

Еще пятнадцать-двадцать лет назад с трудом верилось, что такие двигатели, как газовые турбины или реактивные моторы, когда-либо удастся построить и применить практически.

А сегодня эти двигатели уверенно входят в жизнь, найдя свое место в технике.

Еще совсем недавно – пять-десять лет назад – о создании атомного двигателя говорили, как о далекой и заманчивой перспективе.

А сегодня в Советском Союзе уже работает промышленная электростанция на атомной энергии.

Следующие главы этой книжки и будут посвящены двигателям, вступающим в жизнь.


    Ваша оценка произведения:

Популярные книги за неделю