355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Марк Левин » Машина-двигатель
От водяного колеса до атомного двигателя
» Текст книги (страница 1)
Машина-двигатель От водяного колеса до атомного двигателя
  • Текст добавлен: 7 мая 2017, 15:30

Текст книги "Машина-двигатель
От водяного колеса до атомного двигателя
"


Автор книги: Марк Левин



сообщить о нарушении

Текущая страница: 1 (всего у книги 16 страниц)

Марк Левин
МАШИНА-ДВИГАТЕЛЬ
От водяного колеса до атомного двигателя


Первое слово о двигателе

Автомобиль, самолет, электричество, кино, радио, телевидение – все эти и многие другие достижения современной техники сделали нашу жизнь не похожей на жизнь наших дедов и прадедов. Пытливый человеческий разум раскрыл и продолжает раскрывать одну за другой тайны природы. То, что казалось когда-то сказкой, о чем мечтал человек, как о несбыточном, вошло в жизнь, стало для нас самым обыденным.

Могучие средства современной техники преобразили нашу страну.

В глухих деревнях зажглись «лампочки Ильича», заговорило радио. Автомобили, железные дороги, пароходы и теплоходы, аэросани и самолеты приблизили дальние районы к столицам.

На поля вышли чудесные машины, которые облегчили тяжелый труд хлеборобов; почти вся пахотная земля в нашей стране обрабатывается тракторами.

Стальные исполины-экскаваторы роют каналы и строят плотины. Сейчас уже наша промышленность выпускает такие экскаваторы, которые сами могут перешагивать с места на место и в один прием вырывать до 20 кубических метров земли. Одна такая машина способна заменить до двенадцати тысяч землекопов.

Локомотивы, речные и морские суда, снабженные двигателями огромной мощности, перевозят пассажиров и грузы в таком количестве, что сделать это с помощью конной тяги, парусного и гребного флота и даже с помощью первых паровозов и пароходов прошлого века было бы практически невозможно.

Всё больше и больше вводится в строй электрических станций– от маленьких, передвижных, до самых крупных. Мы далеко ушли вперед от того времени, когда была пущена первая русская электростанция в Петербурге на реке Мойке (1882–1883 годы). Так входит в нашу жизнь техника – и прежде всего машинная техника, поставленная на службу человеку.

Но машина, став у нас другом человека, облегчая его труд, улучшая условия жизни, требует и к себе дружеского, внимательного отношения. Машину надо знать, надо любить ее.

Вы скажете: но ведь их очень много, этих машин, нельзя же всех их знать! Это правда. У нас много инженеров, техников, механиков, которые изучают и совершенствуют дальше машины; одни работают в одной отрасли техники, другие – в другой. Есть инженеры-электрики, которые знают и совершенствуют электрические машины; есть инженеры-автомобилисты, которые знают и совершенствуют автомобили; инженеры-машиностроители, строящие различные сложные машины; инженеры-теплотехники, сооружающие тепловые машины, и так далее. И если даже инженеры специализируются в определенной области технических знаний, то было бы нелепо полагать, что каждый человек должен знать в совершенстве все машины.

Нет, узнать всё о современных машинах без глубокого изучения техники нельзя. Но не знать ничего о машинах сегодня, в век техники, тоже нельзя. Надо уметь разобраться во всем многообразии окружающих нас машин, надо понимать принцип действия главнейших из них.

К таким главнейшим машинам относится машина-двигатель.

Двигатель…

Пока человечество не умело использовать различные силы природы, заставив их работать на себя, двигателем был сам человек или рабочий скот. Мускульная сила человека заставляла вращаться первые деревянные приспособления: ворот колодца, гончарный станок, ручной жернов. Лошадь двигала телегу, тащила соху и борону. Человек придумывал различные приспособления, которыми он мог бы сделать больше работы, чем голыми руками. Строились машины – орудия, заменявшие ручной труд. Машины-орудия усложнялись, и, чтобы приводить их в движение, мускульной силы человека и животных не хватало. И вот появились новые машины, которые сами стали двигать другие машины. С тем, что было не под силу, скажем, лошади, новые машины-двигатели справлялись легко. Люди начали создавать большие станки, можно было ставить много станков – появились заводы, фабрики. Здесь потребовались и весьма мощные двигатели. Потом машину-двигатель поставили на рельсы, и она потянула за собой длинные составы вагонов.

Позднее машину-двигатель заставили вращать машины, вырабатывающие электрический ток. Появился новый вид энергии – электричество, которое дало свет, новую двигательную силу, получившуюся с помощью электрических двигателей; появилось кино, радио, телевидение.

Нашли машину-двигатель и для городских повозок, чтобы заменить извозчичьи пролетки и колымаги, – появился автомобиль, легковой и грузовой.

Машину-двигатель поставили на колеса и впрягли в плуг, в борону, – появились тракторы.

Машину-двигатель связали с огромными ковшами, которые стали вгрызаться в землю, рыть котлованы, – появились экскаваторы.

Всё, к чему пришла современная техника, было бы немыслимо достичь без машин-двигателей, и притом разных двигателей.

И нет ничего удивительного в том, что среди машин, окружающих нас, так много машин-двигателей, машин, вырабатывающих энергию.

О машинах-двигателях и написана эта книга.

Здесь рассказано о том, какими путями входила в жизнь человека машина-двигатель, о том, как она развивалась и совершенствовалась. Эта книга повествует также и о людях, чей труд и знания были отданы на благо человечества и чьи имена нельзя не вспомнить, когда заходит речь о сделанных ими открытиях и изобретениях, обогативших технику.

Эта книга – не учебник. Здесь нет подробного описания устройства разных двигателей. Здесь рассказано лишь о принципах, на которых основана работа двигателей, о том, что связывает между собой разные типы двигателей, и о том, что их отличает. В этой книге говорится о двигателях-«старичках», которые, сыграв свою роль, уже покинули или покидают сцену, о двигателях-«юнцах» и о двигателях-«младенцах», то есть о тех, которые лишь недавно завоевали право на жизнь, и о тех, кто переживает свой «детский возраст», готовясь занять прочное место в технике завтрашнего дня.

Для многих из вас это будет первая книга о двигателях. И автору хочется думать, что среди читателей найдется немало таких, кого всерьез и надолго заинтересует техника двигателе-строения, кто вслед за этой книгой прочтет специальные технические книги и по ним углубит свои знания.

Глава I. Укрощенные стихии

«Вода примером служит нам…»

Вы помните, откуда эти слова? Это знаменитая песенка Шуберта. Может быть, вы помните и мелодию этой песенки?

Если вы хоть раз ее слышали, то, конечно, помните. Разве можно забыть эту музыку, в которой воплощено само движение, неудержимый поток, каскад падающих струй!.. Даже если вы не знаете слов этой песенки, в одной только музыке почувствуете, как неугомонная, вечно бурлящая, вечно текущая вода заставляет беспрестанно работать мельницу, заставляет вращаться тяжелые жернова в извечном трудовом ритме.

Вода! Вот кому обязано человечество своими первыми двигателями.

Человек давным-давно понял, что текущая в реке вода обладает большой силой. Пловцу было трудно бороться с течением, гребцу было тяжело вести лодку вверх по реке. А падающая вода долбила камень. И, выбиваясь из сил в борьбе с природной стихией, человек свои мысли обратил к воде. Надо заставить текущую воду работать и приносить пользу!

И вот появились самые первые двигатели – водяные колеса. Появились они еще несколько тысячелетий тому назад в древнем Китае, где из бамбуковых стержней сооружали водяные вертушки.

Позднее в древнем Вавилоне и в древнем Египте водяные колеса широко применялись для поливки орошаемых земель. Делалось это так. В дно многоводной реки вбивали специальные устои или неподвижно, на каменных якорях, ставили рядом две лодки. Устои или лодки служили опорами для вала огромного деревянного колеса.

Увлекаемые течением, лопатки поворачивали колесо.

Колесо это было необычным: во все стороны от центра на одинаковых расстояниях торчали из обода лопатки. Внизу лопатки погружались в воду, и вода их увлекала течением. Передвигаясь по течению, эти лопатки поворачивали колесо и в воду опускались следующие лопатки. Так колесо вращалось.

К такому колесу привязывали различные сосуды-черпаки. Они тоже погружались по очереди в воду, наполнялись, затем поднимались колесом наверх и сливали воду в желоба, откуда вода поступала на орошение полей.

С Востока водяные колеса проникли в Рим. Здесь их стали использовать не только для орошения, но и для снабжения городов питьевой водой из рек и каналов. Здесь же водяные колеса заставили вращать мельничные жернова.

В древнем мире, однако, применение двигателей – даже таких, как водяные колеса, – было не очень выгодным. Куда дешевле и проще было использовать труд рабов. Ведь, чтобы строить сооружения с колесами и желобами, нужны были материалы, за такими сооружениями надо было следить, ремонтировать их, затрачивать средства. А рабы были силой дешевой, их можно было эксплуатировать, не заботясь о последствиях.

В средние века водяные двигатели получили широкое распространение. Их приспособили не только к мельницам, но и к суконному производству, а затем они стали проникать в горную и металлургическую промышленность.

В древней Руси водяные колеса появились тоже очень давно. В различных исторических документах, начиная с XIII века, упоминается о водяных мельницах. В более позднем развитии русской промышленности водяные двигатели были весьма широко использованы. Талантливые русские механики создавали сложнейшие сооружения с применением водяных двигателей.

По указу Петра I бывалый солдат Яков Батищев построил в Туле первые оружейные заводы с водяными двигателями. Одно водяное колесо Батищева приводило в движение около тридцати станков, на которых сверлились пушечные стволы.

Интересное сооружение создал выдающийся русский механик Козьма Фролов.

Система водяных колес, сооруженная Козьмой Фроловым.

Во второй половине XVIII века на Змеиногорском руднике в Сибири Фролов соорудил мощную водосиловую установку.

На речке Змеевке была построена запруда, а за запрудой был прорыт двухкилометровый подземный канал с выходом к другой речке – Корбалихе. Вдоль канала Фролов поставил несколько установок с водяными колесами, для каждой из которых были использованы огромные подземные пещеры – выработки высотой до 21 метра. Вода падала сверху от запруды и вдоль канала с одного колеса на другое – по лесенке – проходила свой путь, сливаясь затем в речку Корбалиху. Несколько раз использовал Фролов один и тот же поток воды. С помощью водяных колес приводились в движение все механизмы рудника: насосы, рудоподъемники, дробильные фабрики и даже вагонетки с канатной тягой.

Водяное колесо дожило и до наших дней. Еще и сейчас где-нибудь в деревне вы можете увидеть водяную мельницу.

Существует три типа водяных колес. Если вы увидите, что вода падает на колесо сверху и поворачивает колесо силой тяжести, – знайте, что такое колесо называется верхнебойным.

А если вода падает на лопатки где-то посредине колеса, – такое колесо именуется среднебойным. Наконец, если никак нельзя заставить воду падать сверху, ставят нижнебойное колесо вроде тех, которые применялись еще в древнем Вавилоне.

Верхнебойное водяное колесо.

Среднебойное водяное колесо.

Нижнебойное водяное колесо.

Так выглядят самые древние и самые простые двигатели – водяные колеса. С помощью этих двигателей человек использовал энергию воды.

Но хорошо ли водяная энергия была использована? Не пропадала ли часть энергии зря? Столько ли энергии человек получал от двигателя, сколько вода могла этому двигателю сообщить?

Иными словами, – каков был коэффициент полезного действия такого двигателя, то есть какая доля подведенной к двигателю энергии могла быть снята с вала двигателя для полезной механической работы?

Коэффициент полезного действия обычно выражают либо в процентах, либо в долях единицы. О коэффициенте полезного действия – или КПД, как его сокращенно записывают, – мы будем часто говорить в этой книге.

Так вот, в случае водяных колес оказывалось, что лучше всего использовалась энергия воды в верхнебойном колесе, где вода падает. Коэффициент полезного действия (КПД) этого колеса доходил до 75 %. Среднебойное колесо имело КПД 65 %, а нижнебойное и того меньше.

Водяные колеса были маломощными двигателями. Обычно их мощность не превышала 5–6 лошадиных сил.

Итак, с незапамятных времен энергия воды служит человеку. Она и теперь является одним из основных и одним из богатейших источников двигательной силы.

В природе запас водной энергии очень велик; человек может им располагать, не задумываясь о том, что этот запас способен истощиться.

Вспомним, как происходит круговорот воды в природе. Солнце теплом своих лучей заставляет испаряться воду. Пар скапливается в облака, которые от – соприкосновения с холодными потоками воздуха конденсируются, то есть превращаются вновь в воду. Вода падает на землю, наполняя ручьи и реки. По естественным скатам поверхности земли вода находит сток к морю. Вот на пути этого течения человек и ставит свои водяные двигатели.

Запас энергии воды огромен.

Разве мыслимо, чтобы такие силы природы пропадали бесцельно?

Недаром наш великий учитель, основатель советского государства, Владимир Ильич Ленин уже в апреле 1918 года, когда страна стала восстанавливать свое хозяйство, намечая пути технического развития, обращал внимание инженеров и ученых на необходимость максимального использования водных сил природы.

Но как же современная техника использует водную энергию? Не с помощью же водяных колес – таких громоздких и маломощных двигателей, обладающих к тому же и низким коэффициентом полезного действия?

Нет. Современная техника ушла очень далеко от водяных колес, создав мощные водяные двигатели. Эти двигатели называются гидротурбинами («гидро» – по-гречески означает «вода», «турбо» – по-латыни означает «вихрь», «вращение»).

В 1750 году венгерский ученый Сегнер изобрел интересный прибор, который и сейчас еще вы можете увидеть в школьном кабинете физики. Этот прибор состоит из резервуара, штатива и двух отогнутых под прямым углом трубок. Когда вода, заливаемая сверху через горловину, будет вытекать из отогнутых трубок, резервуар начнет вращаться, как показано стрелкой. Это происходит потому, что, вытекая, вода как бы отталкивается от трубок, отчего трубки отходят в противоположную сторону. Прибор этот получил название: «сегнерово колесо».

Сегнерово колесо.

Этим прибором заинтересовался русский академик, знаменитый математик, Эйлер. Он понял, что на принципе «сегнерова колеса» могут работать водяные двигатели, и дал очень точный расчет таких машин.

В 1834 году французский инженер Фурнейрон, пользуясь расчетами Эйлера, построил первую водяную турбину, еще далеко несовершенную.

Почти в то же время – в 1837 году – уральский мастер Игнатий Сафонов, сооружавший ранее плотины для водяных колес, построил на Алапаевском заводе первую в России гидротурбину.

Первая турбина, построенная Игнатием Сафоновым, работала еще не так, как хотелось мастеру. Ее коэффициент полезного действия был равен только 53 % – меньше, чем у хорошего водяного колеса. И вот, через два года Игнатий Сафонов построил и установил новую турбину на Ирбитском заводе, КПД которой уже равнялся 70 %.

По такому принципу работает колесо реактивной гидротурбины.

По такому принципу работает колесо активной гидротурбины.

С тех пор прошло более ста лет.

За это время инженеры всех стран много поработали над водяной турбиной.

Особенное значение водяная турбина получила тогда, когда наука открыла способы использования электрической энергии превращением ее в энергию механическую. Оказалось, что водяную турбину можно применить для вращения машин, вырабатывающих электрический ток. Так появились первые гидроэлектростанции.

Современная водяная турбина, конечно, не похожа на «сегнерово колесо», и работает она тоже не совсем так.

Современные гидротурбины строятся двух типов. Первый тип турбин – активные.

Вернемся несколько назад и посмотрим на рисунок верхнебойного водяного колеса. Почему оно вращается? Потому, что вода своей тяжестью опускает одну лопасть за другой. Вода сливается с той же стороны колеса, с которой к нему подводится.

Но попробуем теперь создать колесо с лопастями, встречающими как бы в лоб струю воды.

Эта струя образуется оттого, что перед колесом вода пропускается через специальную направляющую трубу. Струя воды попадает на вогнутые лопасти, скользит вдоль них и сливается в центральную часть колеса. Такое колесо уже будет вращаться не потому, что падающая вода своей тяжестью (верхнебойное колесо) или текущая вода силой течения (нижнебойное колесо) увлекает за собой лопасти.

Здесь на вогнутых лопастях происходит замедление скорости вытекающей струи, меняется ее направление и струя отдает свою энергию колесу, давя на лопасти, толкая их. Такое колесо целиком не заполнено водой, вращается в воздухе.

Один из распространенных типов активной турбины – «ковшовая турбина». Вода по направляющей трубе подводится к колесу, лопасти которого выполнены в виде ковшиков, и заставляет колесо вращаться. Силу давления струи, а значит, и мощность турбины, можно регулировать «иглой», то есть большой пробкой. Этой пробкой-иглой прикрывают или открывают отверстие, через которое бьет струя. Чем отверстие будет больше, тем и количество протекающей воды окажется больше, а значит, – и струя сильнее.

«Ковшовая» активная турбина.

Такие турбины строятся сейчас на большие мощности и устанавливаются там, где вода на турбину падает с большой высоты. Так, сейчас на Металлическом заводе в Ленинграде строится ковшовая турбина мощностью в 65 тысяч киловатт для напора в 680 метров. С высоты в 2/3 километра будет падать вода на лопасти этой турбины.

Весьма распространенными водяными двигателями являются гидротурбины другого типа – реактивные. Принцип работы этих современных гидротурбин имеет много общего с принципом «сегнерова колеса». Их устройство, однако, не напоминает сосуда с отогнутыми трубками.

Реактивная гидротурбина с вертикальным валом. Вода поступает вначале в спиральную камеру, окружающую направляющий аппарат, и затем – через каналы между неподвижными лопатками направляющего аппарата на рабочее колесо турбины. Лопасти колеса имеют специальную форму, вода проходит по суживающимся каналам и сливается вдоль вертикальной оси вниз, во всасывающую трубу. Лопатки направляющего аппарата можно поворачивать с помощью специального механизма, который называется сервомотором. Этим суживаются или расширяются каналы направляющего аппарата и меняется количество воды, пропускаемое на рабочее колесо, а значит – и мощность турбины.

На рисунке показана схема лопастной реактивной турбины. Ее колесо имеет так же, как и колесо активной турбины, множество лопастей специальной формы. Вокруг колеса помещается неподвижный металлический пояс, направляющий аппарат, разделенный перегородками на каналы особой формы. Вода поступает сразу во все каналы кожуха (как показано стрелками) и движется вдоль каналов сразу на все лопасти колеса.

Обратите внимание, как эти лопасти устроены: они выгнуты так, что проход между ними суживается к центру колеса. Кроме того, «узкие горлышки» оказываются направленными не по радиусу, а как бы отогнутыми в сторону от него. Вот и получается, что вода, попадая на колесо, проходит но суживающимся каналам между лопастями, постепенно ускоряясь, а выходит она с лопастей под некоторым углом к радиусу, вызывая тот же эффект, что и в «сегнеровом колесе»: как бы отталкиваясь от лопастей, вода их вращает. И чем больше вода «разгоняется» в суживающихся каналах лопастей, тем больше та реактивная сила, которая отталкивает колесо, вращает его. Так как поступление и истечение воды идет непрерывно, – колесо непрерывно вращается. При этом всё колесо всегда залито водой.

Можно подводить воду и так, что ось колеса будет вертикальной, как это делается, например, в турбине Днепровской гидроэлектростанции.

Весьма большое распространение получил еще один вид реактивных гидротурбин – пропеллерные, и прежде всего с поворачивающимися лопастями.

Такими турбинами оборудуется сейчас Куйбышевская и другие гидроэлектростанции.

Пропеллерная турбина имеет вертикальный вал, заканчивающийся втулкой, напоминающей головку снаряда. Ко втулке прикрепляется несколько пропеллерных лопастей (крыльев), причем с помощью специального механизма допускается поворот лопастей вокруг своей оси, так что они могут принимать разный угол наклона. Вода на такое колесо падает сверху, проходя через каналы направляющего аппарата. Когда вода скользит по винтовым поверхностям лопастей, она их отталкивает и тем самым вращает вал гидротурбины.

Поворотное устройство для лопастей сделано потому, что для получения разных мощностей требуется разное количество воды, а при этом и разный угол наклона лопастей, при котором данное количество лучше всего используется турбиной. Тогда вода будет экономно расходоваться, а турбина всегда будет работать с высоким коэффициентом полезного действия.

Поворотное устройство усложняет и удорожает турбину, поэтому его делают только для мощных турбин. Для турбин малых, которые ставят, например, на колхозных электростанциях, используют пропеллерные турбины без поворотного устройства лопастей.

Коэффициент полезного действия лучших современных гидравлических турбин доходит до 94 %, то есть почти вся энергия падающей воды используется для получения механической работы вращения. Размеры крупных современных гидротурбин очень велики. Так, например, диаметр рабочего колеса поворотно-лопастной турбины мощностью в 100 тысяч киловатт равен 9 метрам.

Современные гидротурбины – это сложные металлические сооружения. В Советском Союзе производство гидротурбин было начато в 1924 году.

Первые турбины обладали мощностью в 50—100 киловатт (68—136 лошадиных сил). Их мощность была в 10–20 раз выше мощности обычного водяного колеса.

Рабочее колесо с поворачивающимися лопастями пропеллерной гидротурбины Куйбышевской ГЭС.

Но наша промышленность недолго задерживалась на таких турбинах. Уже в 1927 году гидротурбины стали выпускать мощностью в 3700 киловатт (5032 лошадиных силы), а в 1930–1933 годах до 15 000 киловатт (20 400 лошадиных сил).

Казалось бы, если один водяной двигатель – турбина – дает свыше 20 000 лошадиных сил в то время, как простое водяное колесо дает всего 5–6 лошадиных сил, – это ли не вершина техники?

Нет, это еще была далеко не вершина.

К 1941 году наша советская промышленность уже освоила по тому времени самые мощные в мире поворотно-лопастные турбины по 70 000 киловатт (95 200 лошадиных сил).

Когда в годы первой пятилетки строили Днепровскую гидроэлектростанцию, потребовалось установить там весьма мощные турбины, которые тогда еще у нас не выпускали. Пришлось воспользоваться американскими турбинами, каждая из которых развивала мощность по 91 тысяче лошадиных сил и имела КПД 91 %.

Гидроэлектростанция с одной турбиной пропеллерного типа.

Во время Великой Отечественной войны гитлеровские варвары разрушили детище первой пятилетки – Днепровскую гидроэлектростанцию. Как только отгремели бои, советский народ начал ее восстановление.

Но теперь уже наш Ленинградский Металлический завод изготовил для этой станции турбины еще более мощные, чем американские, – по 100 тысяч лошадиных сил в каждой, с коэффициентом полезного действия 93 %.

Сейчас на том же заводе разрабатывается турбина на 200 тысяч киловатт (272 000 лошадиных сил), а в шестой пятилетке предполагается освоить турбины небывалых еще мощностей – в 250 и даже в 400 тысяч киловатт. Свыше полмиллиона лошадиных сил будет развивать один двигатель!

Вот какими стали современные водяные двигатели! Это наиболее мощные двигатели, применяющиеся в технике. Они тяжелы, громоздки и используются только для одной цели: приводить в движение электрические машины, вырабатывать электрический ток. А уж ток передается по проводам и используется для нужд промышленности, сельского хозяйства, транспорта и для бытовых нужд.

Машинный зал Волховской ГЭС – первой крупной советской гидроэлектростанции, построенной по указанию Ильича. Виден ряд электрогенераторов.

Гидравлическая турбина вращает вал электрической машины, которая называется электрогенератор.

«Генератор» – по-латыни «рождающий»; «электрогенератор» – машина, вырабатывающая электрический ток. Обе машины, связанные между собой, представляют гидроагрегат.

Современные гидроэлектростанции оборудуются такими гидроагрегатами, рассчитанными на разную мощность.

На рисунке (на странице 18) показано, как устроена гидроэлектростанция с одной турбиной.

Река перегорожена плотиной. Это необходимо для того, чтобы образовался повышенный уровень, с которого вода могла бы падать на колесо турбины.

Вертикальная турбина установлена в специальном здании, в верхнем этаже которого помещается электрогенератор, а в нижнем – турбинная камера с водой и сама турбина.

На гидроэлектростанции может быть установлено несколько турбин.

С 1926 года, когда вступила в строй Волховская гидроэлектростанция, в нашей стране строятся всё новые и новые гидроэлектростанции, мощность которых всё возрастает и возрастает.

На Волге и Днепре сейчас сооружаются мощные гидроэлектростанции – Куйбышевская, Сталинградская и Каховская. Каждая из таких станций, как Куйбышевская и Сталинградская, будет вырабатывать электрической энергии в год в 5 раз больше, чем все электростанции царской России. Ток от этих станций будет передаваться на самые дальние в мире расстояния – 800—1000 километров.

Мощность только одной гидротурбины Куйбышевской ГЭС будет равна 126 тысячам киловатт. Высота такой турбины равна 40 метрам, то есть достигает высоты 10—11-этажного дома. Турбина будет весить 1500 тонн, что потребует для ее перевозки целого железнодорожного состава в 25–30 вагонов.

В шестой пятилетке развертывается строительство еще более мощных гидроэлектростанций: Братской на реке Ангаре и Красноярской на реке Енисее. Каждая из этих гидростанций по своей мощности (3 миллиона 200 тысяч киловатт) будет примерно равна двум волжским гидростанциям – Куйбышевской и Сталинградской или пятидесяти трем таким гидростанциям, как Волховская.

Но, кроме гидростанций большой мощности, в нашей стране широко развертывается строительство и малых, сельских гидростанций.

Итак, водяные двигатели можно ставить там, где есть вода, их нужно делать мощными, – тогда энергия воды будет хорошо использоваться. Эти мощные двигатели лучше всего применять для получения электрической энергии.


    Ваша оценка произведения:

Популярные книги за неделю