Текст книги "Машина-двигатель
От водяного колеса до атомного двигателя"
Автор книги: Марк Левин
Жанры:
История
,сообщить о нарушении
Текущая страница: 2 (всего у книги 16 страниц)
«Ветер, ветер, ты могуч!»
Помните, как сказано у Пушкина:
«Ветер, ветер, ты могуч,
Ты гоняешь стаи туч,
Ты волнуешь сине море,
Всюду веешь на просторе…»
И действительно, как мог человек не обратить внимания на такую могучую природную силу, как ветер? Почему же ветер зря тратит свои неиссякаемые силы?
Нельзя ли как-либо использовать их?
И вот появился парус. Быстро стало развиваться мореплавание. Человек избавился от тяжелого труда, который приходилось затрачивать на то, чтобы двигать корабли своей мускульной силой. Суда стали двигаться с помощью паруса, используя энергию ветра. Глядя на парус, человек начал задумываться о том, как бы использовать силу ветра и для других целей.
Об одном интересном применении силы ветра рассказывают древние русские летописи.
В 907 году князь Олег подошел под стены Царьграда. Чтобы устрашить осажденных греков и с меньшими потерями завладеть городом, Олег пошел на военную хитрость. Он приказал поставить свои морские корабли на колеса и поднять паруса, а кроме того, склеить из легких тканей, натянутых на легкие каркасы, воздушные змеи в форме всадников на конях. И вот, когда всё было готово, он выждал появления сильного попутного ветра и дал сигнал. К стенам осажденного города по суше двинулись корабли, а по небу поскакало огромное количество вооруженных всадников. Греки были ошеломлены. Олег же, воспользовавшись первым замешательством врага, блестяще осуществил свой замысел – Царьград был завоеван.
В этом эпизоде, характеризующем замечательную изобретательность русских воинов, ветер двигал даже сухопутные повозки.
Давным-давно человек начал использовать энергию ветра и для привода мельниц и для подъема воды на орошение засушливых земель. В Египте еще и сейчас стоят каменные цилиндрические башни ветряных мельниц, сложенные 3000 лет назад. Такие мельницы приводились в движение ветряным колесом, состоящим из нескольких лопастей, напоминающих паруса.
В VII веке ветряные колеса стали применяться персами для орошения.
Участники крестовых походов перенесли идею и опыт постройки ветряных двигателей с Востока на Запад. В странах Западной Европы ветряные мельницы появились в X–XIII веках, а на территории нынешней России – еще раньше, в III–IV веках.
Позднее крестьянская ветряная мельница стала непременной принадлежностью российского пейзажа.
Жернова мельницы приводились в движение ветряным колесом, состоящим из нескольких лопастей.
Ветряная мельница не нуждалась ни в топливе, ни даже в воде, ее можно было построить на любом холме. Строили ветряные мельницы двух видов: козловые и шатровые.
Козловая мельница имеет огромные лопасти-крылья, которые со всеми передачами и жерновами вместе держатся на центральном столбе. Когда меняется направление ветра, всю мельницу поворачивают вокруг столба – и крылья вновь начинают вращаться.
Шатровую мельницу уже не требуется поворачивать всю, – достаточно повернуть только крылья вместе с верхней частью – шатром.
Шатровые мельницы могут быть более мощными. Если у козловых диаметр крыльев доходит лишь до 10 метров, а мощность не превышает 5 лошадиных сил, то у шатровых крылья бывают до 28 метров в диаметре, а мощность доходит до 50 лошадиных сил.
Шатровая ветряная мельница.
Козловая ветряная мельница.
Но крылья ветряных мельниц еще плохо используют энергию ветра. Даже у современной крестьянской мельницы коэффициент полезного действия крыльев не превышает 20 %.
Современной? Но разве и сейчас строят ветряные мельницы – эти деревянные скрипучие сооружения?
В степных, безводных районах ветряной двигатель и теперь является весьма необходимым. Ведь он не требует никакого топлива, а ветра в поле, как известно, всегда вдоволь.
Еще и сейчас кое-где строят ветряные мельницы, правда, с усовершенствованными крыльями, с металлическими валами и шестернями, передающими вращение на жернова.
Но ведь ветряной двигатель может приводить в движение не только жернова. Теперь, в наше время, гораздо целесообразнее заставить такой двигатель приводить во вращение электрогенератор. Тогда от ветроэлектростанции можно получать энергию и для мельниц, и для сельскохозяйственных машин, и для освещения, и на многие другие нужды. Для таких ветроэлектростанций теперь разработаны и строятся специальные ветряные двигатели, напоминающие ветряную мельницу только разве тем, что обладают также большими крыльями-лопастями. Однако форму и размеры этих крыльев теперь точно рассчитывают. Уже изучены свойства ветра, и инженеры могут строить ветряные двигатели, хорошо использующие его энергию. Современные ветродвигатели могут развивать большие мощности.
Чтобы лучше использовать ветер, ветродвигатель поднимают на большую высоту и ставят на огромные стальные ноги. Помещение, где стоит электрогенератор – машина, вырабатывающая электрический ток, – напоминает дирижабль.
При такой форме потоки воздуха легко обтекают гондолу и не мешают работе ветряка.
Подобный ветродвигатель был построен и установлен у нас еще до войны в Крыму, на берегу Черного моря, где всегда бывают ветры. Смотря по тому, какова была скорость ветра, эта установка развивала мощность от 22 до 177 лошадиных сил, и это был самый мощный ветряной двигатель в мире. Стоял он на башне высотой в 25 метров и имел размах крыльев в 30 метров.
Интересную разновидность современных ветряных двигателей представляет собой двигатель, у которого электрический генератор расположен внизу, возле самой земли. Это очень удобно: и уход, и наблюдение за ним облегчаются. Крылья же подняты высоко – на 30 метров от земли – и имеют размах 13 метров.
Один из типов современных ветродвигателей.
Однако крылья с электрогенератором здесь ничем не связаны: нет никаких длинных валов, никаких цепей или ремней. Вращается генератор от особой воздушной турбины.
Получается это так: ветер вращает крылья, крылья же сделаны внутри полыми, а на концах имеют отверстия. Поэтому, когда крылья вращаются, воздух, находящийся во внутренних полостях, под влиянием центробежной силы выбрасывается через отверстия на концах крыльев.
Таким образом, внутри крыльев и внутри всей башни создается воздушное течение: вместо ушедшего воздуха снизу через окна в стволе башни поступают новые порции. И вот этим воздушным потоком приводится в движение турбина– колесо с лопастями. А от турбины вращается и электрогенератор. Такой ветряной двигатель недавно построили в Англии, и он развивает мощность в 100 киловатт (136 лошадиных сил).
Но разве нельзя от ветра получить больших мощностей, как, скажем, удается получить от воды в гидротурбинах?
Ветер, вообще говоря, может развивать очень большую энергию.
Вот, например, известно, что в 1703 году через Англию и Францию пронесся такой ураган, что было опрокинуто и разрушено 400 ветряных мельниц, 800 домов, 100 церквей и несколько маяков. Этим же ураганом было вырвано с корнем и отнесено на большие расстояния 250 000 деревьев, при этом, как потом подсчитали, в несколько секунд ветер развил мощность свыше 10 миллионов лошадиных сил.
Но такие ураганы редки, и их нельзя использовать для нормальной работы двигателей. Ведь 400 ветряных мельниц оказались просто разрушенными. Рабочая скорость ветра обычно не превышает 10 метров в секунду.
Для таких скоростей ветра нашими научными институтами были спроектированы двигатели и на 1000 киловатт и на 5000 киловатт и даже на 10 000 киловатт, но построить такие двигатели пока еще оказалось трудно, а главное, – и не очень-то выгодно.
Ветродвигатель, в котором электрогенератор приводится во вращение воздушной турбиной.
В чем основные недостатки ветряных двигателей?
Чтобы взять от ветра энергию для мощного двигателя, приходится строить крылья-лопасти огромных размеров; они получаются громоздкими, тяжелыми, дорогими. Кроме того, построив мощный двигатель, трудно ожидать, что каждый день или даже каждый час он будет работать с нужной мощностью. Ведь ветер не подчиняется воле людей, ветер образуется по своим законам: то он сильнее, то он слабее… А может случиться, что несколько дней подряд и вовсе ветра не будет. Значит, тот завод, машины которого будут приводиться от ветряного двигателя, встанет.
Правда, есть разные способы, помогающие выйти из затруднительного положения. Например, когда ветер сильный и двигатель развивает очень большую мощность, заряжают специальные электрические аккумуляторы, а когда ветер окажется слабым или его вовсе не будет, – берут ток от аккумуляторов. Но все эти способы очень удорожают установку, и хотя сам ветер природой отдается нам даром, зато постройка сложной ветросиловой установки оказывается дорогой. Поэтому основное распространение пока получают малые ветряные двигатели, которые недороги и очень удобны в условиях деревни, особенно если нет поблизости рек. Но со временем, возможно, удастся применить мощные ветродвигатели в одной энергетической системе с гидроэлектростанциями. Это было бы очень полезно, потому что как раз тогда, когда гидростанциям не хватает воды (например, зимой), в природе возникают сильные ветры, и некоторое снижение мощности гидростанций может перекрываться повышенной мощностью ветряных станций.
Великий Ленин, составляя «Набросок плана научно-технических работ», в апреле 1918 года обратил внимание Академии наук на «водные силы и ветряные двигатели вообще и в применении к земледелию».
Наши советские ученые и инженеры, помня ленинское указание, всё время работали и продолжают работать над задачами наилучшего использования дешевых видов энергии – воды и ветра – для нужд нашего социалистического народного хозяйства.
Но не всегда и не везде удается обойтись водяными и ветряными двигателями, – есть целый ряд областей техники, где основными типами двигателей являются тепловые. В таких двигателях в механическую энергию превращают тепло. Вот к этим двигателям теперь и перейдем.
Глава II. Огненные машины
От пушки «самый сильный гром» до необычайного двигателя Бранка
В некоторых старых учебниках физики рассказывался приблизительно такой случай: сидел как-то англичанин Джемс Уатт, механик по специальности, возле плиты, на которой подогревал себе чай. Сидел, поглощенный работой, – разбирал какой-то механизм. Вдруг на чайнике задребезжала крышка. Сначала Уатт не обратил на это внимания, а потом, когда крышка так сильно запрыгала, что, казалось, вот-вот слетит вовсе, механик оглянулся. Тут-то ему в голову и пришла будто бы примерно такая мысль: «Ого-го! Откуда столько силы у пара, что тяжелой крышкой он играет, как ореховой скорлупкой? Уж не заставить ли эту силу делать более полезное дело?» И будто бы после этого случая Уатт стал работать, изобретать и изобрел, наконец, паровую машину.
Как всё ясно и просто, как необычайно повезло Уатту, не правда ли? На самом же деле такого случая, вероятно, никогда и не было – или, если и произошло что-либо подобное, то для создания паровой машины такой случай не имел никакого значения. Уатт сделал для паровой техники много, но всё это было результатом большого труда.
Уатт далеко не первый открыл ту могучую силу, которой обладает пар, и не первый предложил паровую машину, то есть двигатель, в котором энергия пара превращается в механическую энергию.
В рукописях знаменитого итальянского ученого Леонардо Да Винчи описывается очень любопытная паровая пушка, которую Леонардо да Винчи считает изобретением известного вам греческого математика и механика Архимеда.
Эскиз паровой пушки «архитронито», сделанный рукой Леонардо да Винчи.
Как такая пушка должна была стрелять? А вот как: длинный ствол на одну треть помещался в жаровню, и там эта часть нагревалась до раскаленного состояния. Над раскаленной частью ствола ставился бак с водой. По трубке вода могла попасть внутрь раскаленного ствола; для этого надо было повернуть запорный кран. Здесь вода быстро испарялась, и образовавшимся давлением пара выбрасывалось пушечное ядро. Не правда ли, любопытная пушка? О том, какой эффект производил ее выстрел в те далекие времена, когда еще о порохе ничего не знали, можно судить по данному ей названию. Ее именовали «архитронито», что в точном переводе означает: «самый сильный гром».
Если прав в своих предположениях Леонардо да Винчи, то, следовательно, уже в III веке до нашей эры, во времена Архимеда, люди знали о могучей силе пара.
Но совсем достоверно известно, что немногим позже (I век до н. э. или I век н. э.) пар использовали для приведения в движение многих устройств, предназначенных для забавы. Описание таких устройств оставил выдающийся греческий инженер и ученый Герои Александрийский. Одна из его игрушек – Геронов шар – послужила прообразом современного двигателя – паровой реактивной турбины. Этот шар по принципу действия напоминает «сегнерово колесо».
Геронов шар.
Разница в том, что внутрь шара здесь подается не вода, а пар, который затем также выходит наружу через две отогнутые трубки и заставляет шар вращаться по той же причине отталкивания. Такое действие пара называется реактивным.
Но ни паровая пушка, ни Геронов шар еще не были двигателями. Геронов шар, казалось, мог бы приводить в движение какую-либо машину, но развивал очень малую мощность и оставался игрушкой.
Лишь много столетий спустя (в XV веке), после средневековья, в эпоху нового расцвета культуры и наук великий итальянский ученый и инженер Леонардо да Винчи вновь напомнил человечеству о паре как источнике механической энергии.
Эскизы, сделанные рукой Леонардо да Винчи, изображающие принцип действия паровой поршневой машины.
Леонардо да Винчи набросал пером два эскиза: цилиндр с поршнем и цилиндр с кожаным мешком, «куда наливается немного воды».
Под такие цилиндры следовало подводить огонь и заставлять воду испаряться. И так как пару некуда выходить, – он должен был двигать поршень или расширять кожаный мешок.
Как надеялся Леонардо да Винчи дальше получить повторения такого же процесса, – из эскизов неясно, но уже сама идея цилиндра и поршня, двигающегося под давлением пара, намного опередила свое время. Эта идея потом легла в основу создания паровой машины. Немногим позже, в 1629 году другой итальянский ученый – архитектор Джиованни Бранка – опубликовал свое изобретение: «толчею для изготовления порошка необычайным двигателем». Это было очень забавное изобретение, причем наиболее забавным выглядел сам двигатель.
Необычайный двигатель Бранка.
Посмотрите на рисунок и попробуйте там этот двигатель отыскать. Внешне ничего похожего на современные двигатели вы не найдете. В самом деле, разве можно предположить, что изображенная в левом верхнем углу голова есть не что иное, как паровой котел, а поставленное на вертикальную ось колесо с лопатками – паровая турбина?
Оказывается, что это именно так. Изо рта головы – парового котла – вырывается сильная струя пара, ударяющая по лопаткам колеса и заставляющая их вращаться. А далее, от колеса, уже идет передача движения с помощью зубчатых колес на барабан, который попеременно зацепляет шпильками то левую, то правую ступку, производя непрерывно процесс дробления какого-либо сыпучего вещества.
Вот тут уже явное использование пара как двигательной силы.
Заметим, что на этом принципе воздействия струи на лопатки колеса (принцип активного действия) работают современные паровые двигатели, так называемые активные турбины.
Итак, о силе, которую в известных условиях можно получить от пара, знали давно. Даже пытались использовать эту силу. Но прежде чем был создан настоящий паровой двигатель, удобный тем, что хорошо поддавался управлению и не зависел от рек или от капризных свойств ветра, – прошло много времени. Надо было прежде всего изучить свойства самого пара.
Куда девалась вода из стакана?
Действительно, пока люди имели дело только с энергией воды и ветра, всё казалось простым и понятным: вода течет и увлекает за собой лопатки колеса, ветер надувает паруса или толкает крылья мельницы. Вода – в реке, ветер – в поле…
Но вот человек решил использовать энергию пара. Почему, когда воду нагревают, она закипает и превращается в пар?
Почему этот пар, если его не собрать, быстро рассеется и никакой работы от него не получить? А вот, если его собрать в Геронов шар и оттуда позволить ему вырываться через узкие трубки, – он окажется настолько сильным, что, отталкивая трубки, заставит весь шар вращаться. Или, если пар запереть в небольшом пространстве, как в случае с пушкой Архимеда, и к тому же подогреть, – он станет еще сильнее: дальше, чем любая пружина, пошлет из пушки ядро.
Какими же тайными свойствами обладает этот волшебник-пар? Как можно наилучшим образом овладеть этими свойствами? Изучение свойств пара длилось долгое время, и только к концу прошлого века сложились вполне точные научные представления. Правда, создание парового двигателя шло своим чередом, не ожидая того времени, когда пар будет изучен всесторонне. Как только опытом удавалось найти какое-либо новое свойство, – сразу же оно применялось в новых изобретениях.
Однако совершенный двигатель, работающий паром, стал строиться позднее, уже на основании точных знаний.
Прежде чем продолжить рассказ об интереснейшей истории создания паровой машины, следует напомнить вам основные сведения о паре, которые когда-то никому не были известны и о которых теперь знает каждый школьник седьмого класса.
То, что жидкости, в том числе и вода, испаряются, всякий из вас замечал. Действительно, кто не наблюдал, например, таинственного исчезновения воды из стакана, оставленного летом на окне? Сначала, когда вы были маленькими, вам казалось, что кто-то выпивает эту воду. Но потом, когда вы стали учиться в школе, то поняли, что вода просто улетучивается, то есть испаряется. Почему?
Уже давно люди задумывались над тем, что представляют собой различные вещества, которые окружают нас.
Люди заметили, что каждое вещество можно получить в больших и в малых порциях. Такое вещество, как вода, может наполнять огромные водоемы, но может и в виде маленькой росинки искриться на лепестке цветка. До каких же пределов можно мельчить вещество, не меняя его свойств? Ведь есть же самая мельчайшая частица? Да, такая частица, как выяснили ученые, есть, и назвали они ее молекулой. Молекулы вещества друг к другу притягиваются, друг за друга держатся, но для этого они должны находиться очень близко друг к другу. Однако при очень близком соприкосновении у них возникают и силы отталкивания.
В твердом теле молекулы расположены очень близко друг к другу и, находясь под влиянием сил притяжения и сил отталкивания, совершают небольшие колебательные движения, которые нам, конечно, не заметны.
Но вот давайте твердое тело, например кусок свинца, нагревать – и вы увидите, что в определенный момент он превратится в жидкость, – расплавится. Что же произошло?
Оказывается, когда мы нагревали свинец, мы тем самым заставляли молекулы колебаться всё чаще и чаще и увеличивать размах этих колебаний (вот почему тела при нагревании расширяются). Наконец, при какой-то вполне определенной для каждого вещества температуре молекулы начинают отделяться друг от друга, вновь соединяться в новые группы, опять отделяться, чтобы затем опять соединиться по-новому. Молекулы начинают хаотическое движение внутри массы вещества, и вещество превращается в жидкость. Вода и представляет собой вещество, которое в обычных условиях является жидкостью.
А что, если жидкость – в данном случае воду – тоже нагреть? Ускорится ли движение молекул? Да, ускорится. При этом молекулы начнут так быстро двигаться, что некоторые с размаху вылетят прочь, покидая поверхность и устремляясь в атмосферу. Вот это и есть испарение. Оказывается, если даже не нагревать воду, то испарение всё равно происходит – правда, медленно. Так улетучилась за день вода из стакана, стоявшего на окне. Но если воду нагревать, то, чем выше будет ее температура, тем быстрее пойдет испарение.
Нагревая воду в открытом сосуде и измеряя ее температуру, дойдя до 100 °C, мы заметим, что вода при этом закипела, температура дальше не поднимается, а вверх устремились клубы пара. Началось парообразование: не только от поверхности, но и по всей массе жидкости происходит отрыв молекул, образуются пузыри, которые поднимаются вверх, прорываются через поверхность, и молекулы улетучиваются. Всё тепло, которое мы теперь при нагревании сообщаем воде, пойдет на отрыв молекул, – вот почему температура, как установилась в 100°, так и будет держаться до тех пор, пока не выкипит, то есть не испарится, вся вода. Из жидкого тела вода превратится в газообразное – в пар.
А теперь, вспомнив, что такое пар, вспомним и его основные свойства. Для этого представим себе, что вода, которую мы нагреваем, находится уже не в открытом, а в закрытом со всех сторон сосуде, куда вставлены два измерительных прибора: термометр – для измерения температуры и манометр – для измерения давления пара.
Сосуд металлический, закрытый; сбоку поставлена стеклянная трубка, прочно вделанная сверху и снизу в патрубки, которые сообщаются с внутренним пространством сосуда. Такой сосуд назовем «котлом», а стеклянную трубку – водоуказателем. И действительно, так как водомерная трубка сверху и снизу может сообщаться с пространством котла, нам будет видно, на каком уровне находится вода.
В котле насыщенный пар (слева). В котле перегретый пар (справа).
Допустим, что сначала вода заполняла половину котла, – вторую половину заполнял, следовательно, пар.
Посмотрим, что покажут при этом приборы.
Манометр, оказывается, стоит на нуле, – это значит, что давление внутри котла равно наружному, атмосферному, давлению. Термометр показывает примерно ту же температуру, которую имеет и окружающий воздух.
Открыв верхний кран, начнем нагревать котел. Пока кран открыт, вода будет нагреваться так же, как в обычном открытом сосуде, а пар при этом постепенно вытеснит из котла весь воздух. Теперь закроем кран и, продолжая нагревать, будем следить за приборами. По мере нагрева мы заметим, что уровень воды понижается, а пространство, занимаемое паром, – возрастает. При этом температура будет всё время расти, а вместе с ней и стрелка манометра будет показывать всё большее и большее давление пара.
Мы уже давно прошли температуру кипения 100 °C, но температура воды всё растет и растет… В чем же дело? В открытом сосуде воду никак нельзя было нагреть выше 100 °C, а здесь она нагревается и выше. Почему?
Оказывается, что вода имеет температуру кипения 100 °C только в том случае, когда над ее поверхностью давление равно атмосферному. В открытом сосуде пар улетучивается и давление всё время остается постоянным и равным давлению окружающего воздуха, то есть атмосферному.
Совсем другое дело в закрытом сосуде. Здесь пару деваться некуда, он скапливается над поверхностью воды и оказывает на нее всё большее и большее давление. Если бы это давление было повышенным, но дальше не росло, то при некоторой температуре, более высокой, чем 100 °C, всё равно началось бы кипение. Но стоит воде нагреться на один градус, как и давление в закрытом сосуде тут же возрастает на какую-то долю атмосферы… Так мы и будем отмечать по манометру для каждой новой температуры новое давление, пока вся вода не превратится в пар. Такой пар, который находится в котле в то время, как имеется еще вода, называется насыщенный пар. Это значит, что в этом объеме парового пространства котла, при этой температуре воды, большего количества пара получить нельзя. Пространство насыщено паром. Если из воды при этом продолжает вылетать какое-то количество молекул, то точно такое же количество их возвращается обратно из парового пространства в воду. При новой температуре воды меняется количество могущих вылететь без возвращения частиц и давление насыщенного пара также меняется.
Когда же вся вода испарится, можно продолжать нагревать один пар, но тогда это будет уже не насыщенный пар, а перегретый, и его давление, повышаясь и дальше, уже будет зависеть не только от температуры, но и от объема котла, в то время как давление насыщенного пара в любом объеме зависит только от температуры.
Теперь, вместо нагревания, попробуем начать охлаждение котла. Мы заметим, что перегретый пар превратится в насыщенный, а тот по мере охлаждения будет понижать свое давление. Этот обратный процесс превращения пара в воду называется конденсацией. Посмотрите на узоры, которые расписал мороз на вашем окне. Вы задумывались над тем, отчего эти узоры получаются? А ведь тут тоже происходит явление конденсации паров, находящихся в воздухе. Эти пары, соприкасаясь с холодным стеклом, конденсируются, превращаются в мелкие капли воды, которые тут же замерзают.
Вот теперь мы, пожалуй, закончим нашу беглую экскурсию в область науки о паре. Заметим, что наука эта достаточно сложная, но углубляться в нее мы сейчас не можем, – это уже дело инженеров-теплотехников.