Текст книги "АКТУАЛЬНОСТЬ СЛОЖНОСТИ Вероятность и моделирование динамических систем"
Автор книги: Лёвин Гаврилович
сообщить о нарушении
Текущая страница: 4 (всего у книги 9 страниц)
Однако в свете высказанных выше соображений мне не представляется убедительным утверждение этого автора, что вероятностная зависимость в большинстве случаев имеет чисто функциональную природу. В естественнонаучной области отношение причинного и статистического описания друг к другу является более сложным, чем простое взаимоисключение либо полное совпадение. Скорее всего, следует вести речь о косвенном выражении с помощью статистических законов сложного причинения. Здесь как будто налицо тот случай, когда абстрагирование, отвлечение от ряда характеристик причинной связи является отступлением, чтобы вернее попасть, полнее охватить соответствующий аспект действительности.
Иными словами, соглашаясь с А.С.Кравцом в том, что в вероятностном законе учитываются не непосредственно причинные отношения между явлениями (событиями), но структурные, следует подчеркнуть, что структурно-функциональный подход, осуществляемый в рамках статистического описания, дает известное совпадение с причинным подходом. Факт такого относительного совпадения обнаруживается хотя бы во взаимозависимости этих двух форм описания, на что указывал в своей книге А.С.Кравец.
Правда, А.С.Кравец не ставил вопроса о степени эквивалентности данных форм описания и границах их взаимозависимости. Более того, он по существу склонялся к точке зрения дополнительности причинного и вероятностного описания. При этом имелось в виду, что находясь в рамках одного, мы вынуждены отойти от другого. Задавая, скажем, вопрос о причине отдельного явления (события), надо перестать мыслить в вероятностных категориях, поскольку в каких-то других рамках можно указать строго однозначную материальную связь, ведущую именно к этому отдельному событию [56].
Но, если принимать идею дополнительности в такой форме, то чрезвычайно затруднительно найти какие-то рациональные основания отмеченной выше взаимозаменяемости причинного и вероятностного описаний. Не трудно заметить также, что А.С.Кравец противопоставлял вероятностное описание причинному описанию индивидуального события, как структурное (т.е. имеющее отношение ко всей системе). Он исходил по существу из предположения о возможности выделения индивидуальных причинных рядов. Однако для сложного случая причинения как раз такое выделение и становится если не возможным, то,– по крайней мере, весьма трудным делом. Считаю, что противопоставлять индивидуальную причинную цепь структуре массового явления – это значит вырывать индивидуальное событие из целостной системы взаимоопределяющих факторов и включать его в другую жестко детерминированную систему. Оставаясь же в рамках статистической системы, необходимо признать, что вероятностное описание касается индивидуальных событий, а структуру вероятностных отношений следует рассматривать в ряду детерминирующих факторов для этого события.
5. Статистика: необходимость и случайность
Отмеченный выше момент относительного, частичного совпадения причинного и вероятностно-статистического описания свидетельствует, очевидно, о том, что на базе категории причинности нельзя дать исчерпывающего раскрытия природы статистических закономерностей. Косвенным подтверждением тому могут служить многочисленные попытки истолкования их содержания посредством других категорий. Чаще всего эти попытки связаны с обращением к категориям «необходимость» и «случайность». Такие попытки в известное время представлялись вполне естественными. Существовала определенная традиция соотнесения категорий «закон» и «необходимость».
Свою главную задачу в исследовании природы статистических закономерностей на базе данных категорий значительная часть авторов усматривала в решении вопроса о правомерности приписывания закону двух атрибутов одновременно: необходимости и случайности. Дело здесь в том, что классическая наука демонстрировала лишь одну форму закономерности, которая не знала исключений и выражала строгую определенность, истолковываемую как необходимость. Причем, строгий характер этой определенности не ставился под сомнение даже при учете несовпадения эмпирически наблюдаемых результатов с теоретически вычисляемыми. Такое расхождение объяснялось неточностью измерений, которая в принципе считалась устранимой.
Иная картина наблюдается в отношении статистических законов. В применении к физическим явлениям, скажем, закон первого типа звучит так: в солнечной системе орбита Земля является строго определенной (пусть даже в некоторых рамках точности), так что нельзя представить себе движение Земли по любому произвольному направлению.
Статистический же закон утверждает нечто другое. Например, в термодинамике говорят: теплое тело нагревает холодное тело, потому что слишком невероятно, чтобы холодное тело охлаждало теплое. В иной формулировке это звучит так: наиболее вероятен переход тепла от тела с высшей температурой к телу с низшей температурой. Приводя этот пример, А.Эддингтон справедливо добавлял, что обратный случай, хотя не является полностью невозможным, но он невероятен [57].
В свою очередь, невероятность обнаруживает себя достаточно строго в тех случаях, когда имеют дело с большим числом элементов. Данное обстоятельство служит часто основанием для утверждения, что статистический закон, рассматриваемый в плане необходимости, характеризует не уровень отдельных элементов, а уровень массовости. Что касается случайности, то ее истолковывают тогда как характеристику отдельного элемента.
Подобная трактовка природы статистических законов получила довольно широкое распространение. Однако резкое разделение уровней так называемой случайности и необходимости приводит к ряду трудностей. В первую очередь возникает вопрос о механизме складывания необходимости, «фундаментом» которой является «чистая» случайность. Отвечая на него, говорят о нейтрализации случайностей, их взаимном погашении и т.п. Но такой ответ неявно предполагает взаимодействия и взаимовлияние между объектами совокупности, между тем как уже самый смысл случайности состоит здесь в признании независимости между микрообъектами. Об этом явно говорил, например, Ю.В.Сачков. Он писал: «...статистические совокупности не есть, так сказать, целостные системы, где состояние одних частей системы существенным образом влияет на состояние ее других частей, где положение отдельных частей определяет структуру целого, наподобие того, как атомы, входящие в состав некоторой молекулы, определяют строение и свойства молекулы» [58].
Примерно также высказывался А.С.Кравец, когда указывал, что подчеркивание массового характера статистических закономерностей фиксирует лишь их внешнюю сторону, поскольку не отражает специфику явлений, подчиняющихся этим законам. Остается неясным, скажем, почему в одном случае сквозь массу явлений просвечивает закон жесткой детерминации, а в другом – закон статистической детерминации [59].
Способ истолкования статистической неоднозначности, использующий идею двух различных уровней – необходимости и случайности – имеет кроме того тот недостаток, что по существу не порывает с ориентацией, идущей от классической механики: закон должен быть «очищен» от случайности и содержать лишь необходимость. Однако собственное содержание статистических законов вряд ли можно вписать в рамки такого истолкования, поскольку им свойственна принципиально вероятностная природа. Если же настаивать на том, что случайность, в конечном счете, должна быть элиминирована из содержания закона, тогда возникают сомнения относительно полноценности вероятностных методов и статистических закономерностей (Сачков Ю. В.). Соответственно, при подобной трактовке возникают трудности доказательства объективного содержания статистических теорий и их самостоятельной значимости. Такой характер обоснования статистических законов и свойственной им неоднозначности трудно согласовать с широким внедрением вероятностно-статистических методов в естественнонаучные теории, если исходить из признания объективного содержания и значимости последних.
Я полагаю, что все это заставляет исходить из более широкого толкования необходимости и случайности, именно из учета их диалектической природы и, тем самым, из их взаимопроникновения и взаимопереходов.
Специфическое переплетение необходимости и случайности находит свое отражение в понятии «вероятность». В самом деле, описание массовых случайных явлений посредством аппарата теории вероятностей позволяет приписывать определенные значения вероятностей, как отдельным элементам всего множества случайных событий, так и различным его подклассам. Значение же вероятности выступает как важнейшая характеристика случайной величины, входя составным компонентом в распределение этой величины. Следовательно, установление вероятности (даже и единичного явления) означает включение его некоторым образом в класс необходимых связей, но не на уровне его конкретных (скажем, физико-химических) свойств, а на уровне вероятностей.
Здесь надо иметь в виду, что элементы статистической совокупности, находят свое выражение в количественных отношениях. Статистическая же закономерность выявляет устойчивый, инвариантный аспект этих отношений. Своеобразие данного инварианта состоит в том, что его нельзя непосредственно приложить к элементам, т.е. он не дает какого-либо правила перехода от одного объекта статистической совокупности к другому.
Налицо, таким образом, обобщенный, интегральный характер статистической необходимости, в рамках которой случайность утрачивает специфическую черту изолированности и самостоятельности, но выступает как лабильный момент упорядоченной связи, обусловливания двух уровней – массовости и отдельных элементов. Иными словами, обращение к вероятностям позволяет отразить своеобразным способом некоторую абстрактно-общую природу элементов, и данное обстоятельство свидетельствует в пользу наличия в такой связи момента необходимости.
Вместе с тем, в силу самого определения вероятности, с данным понятием всегда связан момент случайности, иррегулярности, так что применимость вероятности к уровню массовости свидетельствует о соотносимости присущих ему характеристик со случайностью. Более того, даже значение вероятности, близкое к единице или равное единице, не выводит данный класс явлений за рамки влияния случайности, что и выражается, например, в широко известном физическом принципе флуктуации (используемом в статистической физике).
В этой связи уместно остановиться на утверждении, звучащем: строго говоря, всякая закономерность является статистической. Иная формулировка этой же мысли такова: всякая динамическая закономерность является статистической с вероятностью осуществления, близкой к единице. Вероятностный смысл динамической закономерности, равно как и статистической, обосновывается тем самым введением представления о степени ее реализуемости. Последняя ограничивается со стороны неисчерпаемости вглубь любого материального образования, а также со стороны незамкнутости любой материальной системы от внешних воздействий. В свете этих ограничений представление о динамических законах приходится рассматривать как отвлечение от реальных моментов сложности, как чрезмерную идеализацию, упрощающую действительную картину поведения системы. Иными словами, сложность, свойственная любой связи или обусловливанию, при описании с помощью динамических закономерностей просто игнорируется (и элиминируется таким грубым образом).
Именно, и только, в плане стремления выразить некоторым образом универсальный характер неопределенности следует, по моему мнению, понимать приписывание динамическим закономерностям значение вероятности близкое единице.
Однако в строгом смысле слова приведенное выше использование понятия и метрического значения вероятности содержит элементы вольности и его нельзя, как мне представляется, понимать буквально. Например, математическое понятие вероятности допускает в данном случае и сопряженное значение вероятности, равное нулю, для нереализуемости динамического закона. Дело здесь в том, что вероятность есть математическая характеристика распределения и вне такового она не имеет строгого математического смысла. Даже простейший случай, когда вероятность р=1, имеет смысл в связи с дополнительным значением вероятности противоположного события q=0. Причем, класс событий, сопутствующих этой вероятности, не может быть пустым.
В применении к вопросу о вероятностном характере динамических закономерностей это означает, что в некоторых однородных условиях, необходимых для реализации данного типа закона, можно иметь случай его нереализуемости. Но тогда, очевидно, подрывается самый смысл закономерности. Из сказанного следует, что необходим более осторожный и строгий подход к выработке средств, характеризующих неопределенность в рамках динамических закономерностей.
Не вдаваясь в обсуждение таких средств, замечу лишь, что формальный перенос соответствующих характеристик со статистических закономерностей на динамические оказывается в данном случае неприменимым. Вместе с тем, это обстоятельство может служить одним из свидетельств в пользу качественного своеобразия каждого из названных типов законов и их несводимости друг к другу.
Одновременно подчеркну, что не оправдывается и то представление, которое соотносит вероятность только со случайностью. И дело здесь не в том, что в ряде вероятностных концепций исключается возможность приписывания вероятности отдельному, случайному (в массе) событию. Известно, скажем, что вопрос о применимости понятия вероятности к отдельному событию получил особую значимость в свете становления идей и аппарата квантовой механики. Причем, большинство ученых считали, что теоретико-вероятностные методы используются для описания закономерностей поведения и свойств отдельных микрообъектов. Не вдаваясь в детали дискуссии по этому вопросу, скажу, что его решение связано обычно с признанием новых аспектов вероятности, выражаемых, например, в категориях «возможность» и «действительность».
Главный мотив таких поисков состоял в стремлении найти рациональный фундамент для объяснения индивидуальной случайности, лабильности, иррегулярности. Для той обстановки, которая сложилась в квантовой механике, такого рода разработки, по-видимому, вполне обоснованы. Однако я в сформулированном выше тезисе имею в виду нечто другое. Сам способ вероятностного описания позволяет устанавливать вероятностную меру отдельному событию, правда, при условии отнесения его к некоторому классу. Но посредством такого отнесения вероятность жестким образом связывается с этим случайным событием, что вряд ли можно объяснить исходя лишь из случайной природы вероятности.
В свете сказанного важно уточнить соотношение понятий необходимости и определенности, характеризующих существенные стороны закономерности. Такое уточнение имеет особый смысл для раскрытия форм детерминации, отвечающих задачам исследования сложных систем.
Известно, что давняя философская традиция связывает необходимость со строгой определенностью (Демокрит, Спиноза, Гольбах, Лаплас и т.д.). В этом плане своеобразно продолжал традицию Г.В.Плеханов. Он писал: «Случайное есть нечто относительное. Оно является лишь в точке пересечения необходимых процессов» [60].
Относительность случайности получила здесь смысл возможности перехода к строгой необходимости, если брать более широкую систему связей явления. С этих позиций определялся в последствие идеал науки как установка на преодоление и элиминацию случайности. Эта установка уже подвергалась основательной критике. Между тем, точка зрения на необходимость как строгую определенность имеет и сейчас своих сторонников. В рамках названной позиции необходимость – это такая характеристика действительных связей, отношений, которая раскрывает себя как неизбежность, обязательность именно данного события, результата, процесса и т.д. Случайность же, в отличие от необходимости, не имеет обязательного характера в силу того, что с ней связано нечто в данном отношении недетерминированное или частично детерминированное.
Мне представляется, что такая позиция заслуживает критики на основании следующих соображений. Прежде всего, если под детерминизмом понимают просто опосредование и зависимость одного от другого, тогда трудно оправдать исключение случайности из рамок детерминизм. Ибо, случайность представляет из себя один из видов связи и способна служить характеристикой изменения, опосредования и т.д.
В то же время выдвижение для различения случайности и детерминизма (соответственно – необходимости) признака определенности в его строгом значении проводит резкую грань между случайностью и необходимостью, что трудно согласовать с признанием диалектической природы необходимости и случайности.
Само по себе выдвижение признака определенности для характеристики необходимости является вполне правомерным. Однако истолкование определенности как строгой однозначности, строгого соответствия или выводимости одного из другого связано с особым характером идеализаций, свойственных классической науке и не получающих подтверждения во многих областях современного научного знания. Среди этих идеализаций видное место занимало представление о равнозначности параметров рассматриваемой системы в отношении к необходимости, к сохранению однозначности в поведении системы, на что справедливо указывал Ю.В.Сачков [61].
На основании данного представления сложилась исследовательская ориентация, приводящая к тому, что в теорию включали лишь строго необходимые параметры и исключали случайные. Одновременно принимался во внимание лишь строго однозначный переход от одного параметра к другому, поскольку руководствовались требованием, что в законах науки и ее теориях необходимость должна отражаться однозначно и в чистом виде.
Соответственно этому, укоренилось убеждение, что адекватной формой выражения закона может служить строгая функциональная зависимость. Тем самым в качестве «истинной» закономерности принимались лишь законы предельного типа, т.е. такие, для которых при сколь угодно большом ограничении в разбросе значений переменных наблюдается сколь угодно большое ограничение колебаний в поведении системы. В литературе уже отмечалось несоответствие этой идеализации статистическим законам, которые являются законами непредельного типа [62]. Вообще существует целый ряд ситуаций, когда обнаруживается недостаточность идеи предельности, соответствующей представлению о строгой необходимости. Показательно, что строго однозначный характер зависимости между элементами не находит подтверждения во многих задачах классической механики, на что указывал Н. Винер в своей книге «Я – математик» [63]. Невозможность опираться на строго однозначную закономерность при описании некоторого вида механического движения разбирал также JI. Бриллюэн, который подводил данный случай под обобщение, известное в науке под названием «Великая теорема Пуанкаре» [64]. JI. Бриллюэн указывал, что классические законы механики соответствуют некоторой «невозмущенной функции Гамильтона» Но; они не могут объяснить поведения функции в так называемых точках вырождения, которые отмечены в теореме Пуанкаре и связаны с неизбежным дополнением Но некоторым малым ДН1. В общем случае, согласно указанной теореме, полная энергия есть единственная величина, относительно которой можно составить предсказание, поскольку лишь полная энергия Е представляет собой непрерывную функцию начальных условий.
Надо добавить, что непредельный характер законов получил широкое признание в области исследования сложных систем. Вместе с тем, получила признание идея о неравноценности переменных, описывающих систему. Яркий пример тому – разработка математических представлений о так называемых «хорошо организованных функциях», что отражено в работах И. Гельфанда и М.Цетлина [65]. Согласно этим авторам, хорошо организованная функция объединяет большое число переменных, которые можно разделить на существенные и несущественные. Причем они устойчиво сохраняют эту отнесенность к одному из названных подклассов. Важная особенность первого типа переменных – определять общий вид, форму функции. Их действие сказывается на значительных интервалах изменения системы. В то же время несущественные переменные обусловливают резкие скачки и изменения формы функции на малых интервалах изменения системы.
Признавая плодотворность идеи непредельности для описания неклассических ситуаций, следует признать и своеобразие соответствующего ей типа определенности. Оно состоит в том, что определенность здесь выступает просто как ограничение, фиксируемое с помощью средств, позволяющих учитывать подвижность, лабильность границ, выражаемых непредельным законом.
Данные современной науки свидетельствуют о том, что происходит обобщение понятия связи, зависимости, имеющее непосредственное отношение к расширению традиционного толкования необходимости. Одну из форм такого обобщения представляет собой статистическая закономерность. Жесткая определенность, строгая необходимость, исключающая подвижность, лабильность, случайность, уступает место в теоретических представлениях миру гибких связей, обладающих разной степенью значимости для целей функционирования, устойчивости и надежности системы. Соответственно выявилась градация степеней необходимости, и в этом плане – неразрывная связь необходимости и случайности.
Хотелось бы отметить, что постановка задачи отыскания форм для выражения неклассического типа определенности оказалась тесно связанной с разработкой системной проблематики. В самом деле, идея о хорошо организованных функциях, например, представляет собой не что иное, как один из подходов к упрощению сложного поведения системы. На основе этой идеи стремились создать аппарат, способный выразить момент определенности при существенной неопределенности такого поведения.
6. Статистика: возможность и действительность
Истолкование природы статистических закономерностей на основе категории возможность (и сопряженной с ней категории действительность) представляет собой развитие того способа обоснования, который опирается на категории необходимости и случайности. Переход к новой паре категорий во многом связан с трудностями интерпретации случайного характера индивидуальных объектов статистической совокупности и, как отмечалось выше, в значительной мере обусловлен был потребностями истолкования квантово-механической статистичности. По такому пути шел, например, В.Гейзенберг, когда писал, что современная атомная физика использует язык «потенций» [66]. К понятию «возможность» при трактовке квантово-механического описания обращался также В.А.Фок, который исходил из представления о вероятности как численной оценке потенциальных возможностей того или иного поведения объекта [67].
Подобная трактовка естественным образом учитывала ту особенность аппарата квантовой механики и статистической формы описания вообще, которая связана с наличием двух уровней этого описания. Если высший уровень, посредством вероятностей, характеризует поведение системы вполне определенно, то низший допускает вариабельность и лабильность в распределении значений того или иного признака, что и позволило обращаться к категории возможности. Иными словами, одним из веских оснований в пользу обращения к понятию «возможность» для истолкования природы статистических законов выступило наличие градаций, степеней или уровней необходимости, представление о которых существенным образом вошло в содержание этих законов.
В самом деле, глубокий смысл категории возможность состоит в ее связи с необходимостью, причем сама эта необходимость приобретает характер некоторого полагания, становления. И в этом плане ей присущи атрибуты бытия и небытия, т.е. она может быть, но может и не быть. В этом существенное отличие возможности от действительности, ибо последняя обладает определенно достоинством бытия, наличности. Вместе с тем, возможность не есть нечто противостоящее действительности, скажем, в плане противостояния реального и нереального. Напротив, «...возможность, – по справедливому выражению Гегеля, – есть то, что существенно д ля действительности, но она существенна таким образом, что она вместе с тем есть только возможность» [68].
Итак, составляя существенный момент действительности, возможность выступает в качестве необходимости. Однако полагание возможности как действительности опосредовано случайностью; и в этом плане возможность представляет собой частичную необходимость, степень которой выявляется (задается) конкретным определением содержания возможности.
Качественный характер совпадения возможности и необходимости принято определять на основании законов. Закон тем самым признается в качестве определителя возможности. Это означает, что в той мере, в какой некоторое содержание, характеризуемое в плане возможности, полагается законом (законами), оно и представляет из себя возможность данной действительности.
По линии законов происходит отделение, разграничение возможного и невозможного. Последнее представляет собой нечто, противоречащее закону, в этом случае совпадает с недетерминированным. По вопросу о соотношении возможного и невозможного, мне кажется непоследовательной позиция Гегеля, получившая известное признание и в отечественной литературе.
Гегель ставит на одну доску возможность и невозможность, если их рассматривать в формальной плоскости. Основанием формальной возможности служат законы традиционной логики – закон тождества, закон достаточного основания и т.д. В этом смысле, возможно, скажем, все, в пользу чего можно привести основание, или чему можно сообщить форму тождества [69]. Но как только учитывают определенность содержания, в отношении которого встает вопрос о возможности, так переходят в область конкретного тождества, включающего в себя противоречие. Тогда в этой сфере оказывается нереализуемой универсальная форма возможности, на которую претендует формальная возможность. Содержательность и определенность, таким образом, ликвидируют ее как самостоятельный класс возможности. Отсюда тезис Гегеля: с тем же правом, с каким все рассматривается как возможное, мы можем рассматривать все как невозможное. Тем самым здесь подчеркивается, что возможность, опирающаяся на универсальные законы формально-логического типа, представляет собой пустую по значимости сферу и равна невозможности.
Однако при таком подходе теряется вообще почва для различения возможного и невозможного, поскольку создается впечатление, что наличие законов для их разграничения недостаточно. Отказ от формальной возможности был бы оправданным лишь тем, что принимают абсолютную бессодержательность универсальных логических законов. И к этой мысли склоняется сам Гегель, для которого названные законы выступают в лучшем случае в качестве недостаточных абстракций. Между тем, универсально-всеобщий характер логических форм не означает отсутствия их соотношения с конкретным. Поскольку конкретное представляет собой единство, нераздельность единичного и всеобщего, случайного и необходимого, закономерного и незакономерного и т.д. Иное дело, что формально-логическое не обладает самостоятельной значимостью вне и помимо конкретного, но лишь в соотнесении с последним. Именно это обстоятельство служит источником развития формально-логической сферы, но оно как раз осталось незамеченным Гегелем.
Опровержением тезиса Гегеля о пустоте класса формальных возможностей и об отсутствии у таковых познавательной ценности является также состояние дел в современной науке, где появилась обширная область, имеющая непосредственное отношение к возможностям данного типа. Прежде всего, это математика и математическая логика. Скажем, одним из важных условий конструирования математических объектов выступает понятие «непрерывности». Широко используется также понятие «потенциальной осуществимости», имеющее особую значимость в теории алгоритмов и теории конечных автоматов, где требуется показать, что некоторая конечная последовательность операций приведет к решению.
В равной мере соотнесенность с законами служит определением для абстрактной возможности, которую правомерно рассматривать в качестве иного, в сравнении с формальной, уровня возможности. Таковая относится к некоторой конкретной области действительности и ее законам.
Специфической особенностью абстрактной возможности является характер ее связи с необходимостью и, вместе с тем, способ ее реализации в действительность. С точки зрения реализуемости, т.е. необходимости и действительности, она опосредуется случайностью. И в этом плане состоит важное отличие абстрактной возможности от необходимости.
Необходимое предполагает полноту всех моментов своего содержания, каковыми выступает все богатство сторон действительности. Развертывание одной действительности из другой само представляет действительный процесс, конкретизируемый и получающий свое определение в универсальных связях и взаимодействиях. Но в силу этого справедливо утверждение, высказанное еще Гегелем, что необходимое опосредуется самим собою, т.е. необходимым же [70]. Между тем, абстрактная возможность представляет в некотором роде лишь частичную необходимость, обусловленную неполнотой, незавершенностью, неразвитостью ее собственного содержания.
Налицо, таким образом, как бы два вида необходимости. Одна из них есть получившая всестороннее определение и конкретизацию развитая действительность, т.е. такая, которая раскрыла себя и представлена своей результативной стороной. Другая же обладает моментом неопределенности в отношении результата, поскольку потенциальному движению ее содержания сопутствует момент внешности, условности, случайности.
Сказанное можно естественным образом интерпретировать в терминах системно-структурных представлений. Показательно, что имея некоторый набор элементов, допустимо связывать с ним множество возможных систем, «построенных» из этого набора. Как отмечал Б.В. Ахлибининский, при учете свойств самих элементов круг возможностей зависит лишь от данного типа связей между ними. Соответственно этому как бы предопределяется вероятность каждой из возможных систем свойствами исходных элементов [71]. Однако, на реализацию того или иного типа связей в общем случае оказывают существенное влияние также свойства внешних условий. Здесь можно привести простой пример, когда из множества возможных электрических схем, создаваемых свойствами элементов, которые обеспечивают нормальную работу схемы, выбраковывается значительная группа в силу, скажем, несоответствия температурному режиму окружающей среды (недостаточная температурная стойкость элементов может привести к разрушению схемы).