Текст книги "Принципы системного моделирования"
Автор книги: Лёвин Гаврилович
Жанр:
Философия
сообщить о нарушении
Текущая страница: 3 (всего у книги 5 страниц)
Известно, что в системах, находящихся в состоянии молекулярного хаоса, не может самопроизвольно рождаться и сохраняться устойчивая организация. Эти системы эволюционируют в направлении термодинамического равновесия, при котором неопределённость состояния их микроэлементов достигает максимума. Одновременно в них минимизируется уровень свободной энергии.
Что касается синергетического подхода, то он выявляет новую ситуацию, в которой условием возникновения коллективных (кооперативных) состояний элементов становится сильная неустойчивость системы. При сильной неустойчивости даже малое случайное отклонение на микроуровне может резко усиливаться и давать макроэффект, порождать новое макросвойство системы.
Г.И. Рузавин полагает, что в неживых системах синергетическое объединение элементов, способствуя возникновению устойчивой структуры, не сказывается на природе самих элементов /27/. Думается, однако, что синергетические процессы идут по другому. Теперь уже известно, что для их реализации требуется достаточно высокий уровень энергетической подпитки системы, а также необходимо возбуждение активности её элементов сверх той меры активности, которую они проявляют в стационарном термодинамическом состоянии. Лишь при таком условии потенциально любой из элементов может отклониться от среднего уровня флуктуации. Но именно при этом условии очень высока вероятность возникновения новых функциональных элементов в системе, для которых нормой становится сверхсильная флуктуация, если её сравнивать с прежними порогами случайных отклонений в поведении элементов. Подобные новые функциональные узлы способны возникать благодаря распространению поля активности отдельных старых элементов, а также благодаря группировке, суммированию и умножению их действия. Эту новую роль могут играть и вносимые в систему обновленные вещественные компоненты, обладающие резонирующими, каталитическими свойствами. В проведенных уже исследованиях показано, например, что на предбиологическом уровне организации систем проявляются своеобразные автопоэтические механизмы их обновления / 28/.
Говоря о вхождении в систему новых элементов и о вовлечении в неё с помощью последних новых процессов, надо иметь в виду, что абстрактно возможны два типа реакции старой системы: 1) отторжение новых элементов; 2) выживание и размножение новых элементов, а вместе с тем – возникновение нового режима функционирования системы. Можно уверенно предположить, например, что второй тип сопутствовал предбиологической эволюции. Современные исследования показывают, как могли возникнуть системы, устойчивые к появлению "мутантных" полимеров и одновременно приспособленные к росту своей организации. Ранее уже рассматривалась концепция М. Эйгена, которая даёт объяснение таким возможностям. Конкретный механизм возникновения соответствующих систем должен включать, по М. Эйгену, автокаталитический синтез новых молекул из молекул исходного множества /29/.
Синергетика, однако, вводит представление о дополнительных аспектах самопроизвольной организации, рассматривая условия отбора новых структур. Принятый в её рамках подход учитывает, что отбор не задаётся каким-либо априорным правилом, равно как не регулируется и не направляется к какой-либо заранее установленной пели. Напротив, результат отбора трактуется в ней как следствие особого флухтуационного поведения системы, когда флуктуации столь сильны, что выводят систему из прежнего равновесия со средой. При этом происходит вымирание вероятностей, с которыми поддерживался средний уровень равновесных флуктуаций, в силу чего обеспечивается прирост информации и под воздействием этого фактора идёт рост самоорганизации системы.
Интересно, что модель синергетнческой системы фиксирует процесс самопроизвольной организации как зависимый от определённого типа взаимодействий системы со средой. Это взаимодействие необычное. В науке чаще всего обращается внимание на его открытый характер, на установление обмена между системой и средой потоками вещества, энергии и информации. Однако, главное здесь состоит в том, что система за счёт резких флуктуаций, дающих макроскопический эффект, приобретает, по выражению И. Пригожина, диссипативную структуру /30/. Сегодня существуют значительные трудности в определении смысла данного понятия. Ясно, по крайней мере то, что оно позволяет уловить новые аспекты системной картины мира, не раскрываемые другими понятиями системного ряда. В исследованных синергетикой ситуациях диссипативная структура представляется как форма динамической организации, которая выходит за рамки динамики хаоса и обнаруживает законы неклассической термодинамической эволюции. Наличие этой структуры свидетельствует, что система может длительное время пребывать в состоянии, далёком от теплового равновесия. Диссипация означает рассеивание беспорядка системы в окружающую среду, но вместе с тем растёт внутренняя упорядоченность некой глобальной ситуации, обладающей неравновесностью / 31/.
Интересно то, что упорядоченность проявляется в данной ситуации через наложение ограничений на уровень флуктуаций. Но, кроме того, для системы; находящейся в неравновесном состоянии, как бы предзадан выбор одной из нескольких ветвей последующей эволюции, т.е. один из многих аттракторов. Ограничения накладываются факторами мирового целого, в том числе малозаметными привходящими действиями, например, малыми изменениями гравитационных сил, потенциалов электрических полей и т.п. Влияние последних становится параметром порядка, а по терминологии Г. Хакена – информатором /32/.
Г. Хакен справедливо ведёт речь о возникновении в условиях диссипации целостного информационного пространства или сигнальной среды. Он показывает, что извлечение соответствующего сигнала может побудить исходную систему пробежать все допустимые ветвления. Но содержащаяся в сигнале информация может оказаться также недостаточной или избыточной. В последнем случае к одному и тому же аттрактору ведут несколько сигналов. Понятно также, что из возникшей универсальной информационной среды черпают свою часть информации микроэлементы системы, обладающие коллективным действием, сравнимым с макропараметрами системы.
Существенно также, что рождение упорядочивающей информации идёт в уровневом масштабе, поэтому способы построения синергетических моделей не опровергают положения термодинамики о невозможности возникновения самоорганизации внутри теплового хаоса. Но синергетика обращает внимание на способы надстраивания регулирующей информации над уровнем теплового равновесия. В силу этого надстраивания физические, неживые системы перестают быть "слепыми", нейтральными к влиянию суперсистемных факторов, напротив, они приобретают способность "учитывать" указанные факторы в своём функционировании. Уровневый подход, тем самым, включается в описание объективных сложных систем, их спонтанной "адаптивной организации" и подстройки к окружающей среде.
Выводы
1. Развитие научного познания показывает, что с понятием «система» связан универсальный способ определения предметной области научно-теоретического мышления. Системность рассматривается в науке как методологический регулятив исследования объективных законов в рамках конкретной целостности. Системная целостность моделируется в науке как область изменений, характер которых сводится к самоопределению и самообусловленности объектов.
2. В специальных науках моделирование объектов как систем основано на выявлении полного набора параметров, фиксирующих систему в качестве функциональной определённости, которая способна к самосохранению. С другой стороны, научное описание систем правомерно трактовать как редукцию от бесконечного к конечному. При этом модель системы артикулирует относительно автономную область действительного мира, на изменения которой накладываются детерминационные ограничения. В рамках таких ограничений специальные науки фиксируют функциональную устойчивость системы. В классической науке модели функциональной устойчивости отражают обратимые изменения объектов. В современной науке такие модели фиксируют законы активного поведения систем, механизмы интенсификации внутренних процессов, учитывают способы порождения новой информации и действие факторов самоорганизации систем.
3. В междисциплинарных исследованиях методы моделирования опираются на язык типологического выражения системных законов. С его помощью решается задача роста информационной ёмкости описания целостных многокачественных объектов. Концептуальную основу такого языка образуют понятия "взаимодействие", "событие", "поведение", "организация", которые формируют смысловое поле моделирования сложных системных отношений и выводят на обобщённую трактовку закономерности, приспособленной к отражению динамики самоактивных, саморегулирующихся и самоорганизующихся систем.
Глава 2. ПРАКСЕОЛОГИЧЕСКИЕ ОСНОВАНИЯ СИСТЕМНОГО МОДЕЛИРОВАНИЯ
2.1. СИСТЕМНОЕ МОДЕЛИРОВАНИЕ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ
Системный подход чаще всего рассматривается как закономерный результат преобразования общенаучных методологических тенденций, связанных с поворотом научного мышления к изучению сложных и сверхсложных объектов. При этом в современной литературе основное внимание уделяется развитию категориального аппарата системной парадигмы научного мышления. Тем самым системные методы берутся как основное звено прогрессивной эволюции научного знания.
Однако сегодня формирование системного подхода идёт в более широкой сфере и выходит за границы потребностей становления нового стиля мышления в научном познании. Есть множество данных, свидетельствующих о том, что возникновение и развитие системного подхода и системного моделирования обусловлено возрастанием практического интереса к науке, связано с систематическим использованием науки для решения практических проблем, а также с решением практических задач эффективной организации научной деятельности в целом. На это всё ещё обращают недостаточно внимания. Между тем изучение определяющего влияния современной практики на формирование системного подхода должно способствовать преодолению сциентизма в истолковании специфики системных исследований и открыть поле для разработки праксеологического раздела системной методологии.
В своё время на важность разработки этого раздела указал В.П. Кузьмин. Однако он ограничился анализом тенденции инженеризации научно-технической деятельности, полагая, что специальные познавательные средства системного подхода удовлетворяют потребности в универсализации инженерно-прикладной функции науки /1/. В предлагаемой работе раскрывается более широкий круг практических функций науки, реализация которых требует уточнения специфики методов системного моделирования.
Важно отметить, что в контексте взаимодействия практики, науки и системных исследований меняется содержание главного вопроса, с ответом на который связана разработка специализированных средств системного моделирования. Классическая его постановка ориентирована на выяснение того, что есть система как особый предмет познания. Теперь налицо иная установка, смысл которой заключён в вопросе: чем должна быть система в условиях решения практических проблем? Поиск ответа на второй вопрос выводит на новую трактовку понятия "система", которое коррелирует не с предзаданным объектом как некой реальностью, а с деятельностью, со способами её рациональной организации. Деятельностная трактовка понятия "система" фиксирует практическую и методологическую активность субъекта. Соответственно и объект рассматривается не как равный самому себе. Он берётся в формах опережающего отражения, с которым соотносится процесс системосозидаюшей деятельности.
В рамках этой деятельности "система" и "системный подход" превращаются в средства конструктивизации действительности. Ориентирами системного подхода здесь становятся: многокачественность (многомерность) создаваемых систем, интегратизм (синтез) и управляемость. Системный подход связан в этой сфере с учётом качественного многообразия факторов решения комплексных проблем и выступает методологической базой анализа соответствующих проблем. В его состав включаются интегративные способы деятельности, которые современное человечество освоило в различных областях познания и практики. Он также покоится на описании реальных возможностей регуляции и управления конструируемыми системами и самой деятельностью по их созданию.
Существенно, что в контексте деятельности определение системы зависит от конкретной постановки практической задачи. Можно, например, двигаться от заданного свойства к структуре и элементам, обеспечивающим воплощение данного свойства. Можно также идти от элементов и структуры к получению новых эффектов и свойств. Круг практических проблем, решение которых опирается на указанные методы и приёмы, широк и разнообразен. Велика, например, их роль в обобщении научно-технической информации. Они активно применяются в практике управления и проектирования сложных инженерных комплексов. Типичным здесь является предварительное определение генеральной функции, для реализации которой подбирается оборудование, (формируются кадр, организационная структура. Вместе с тем приходится учитывать многообразие целевых функций, иерархию целей и соответствующих им программ деятельности, неопределённость конструктивных решений и т.д.
Эта форма системного подхода служит продолжением и дополнением объективной тенденции развития практики. Такую тенденцию можно определить как системизацию практики. В дальнейшем рассматривается одна из сторон указанной тенденции – систем изация производственной практики. Ее укрепление осуществляется через ряд ступеней. Исходной и простейшей среди них является та, для которой типичным объектом производственной деятельности служил отдельный предмет. Ее историческое место соответствует орудийному производству; в рамках последнего взаимодействуют отдельный производитель и предмет его труда. Подобная практика функционально направлена на овладение полезными свойствами отдельных вещей и предполагает высокую степень индивидуализации труда. Здесь мы имеем дело с локализованными ячейками систем деятельности, каждая из которых может быть изолирована от других и воплощаться в дополнительных обстоятельствах в уникальную форму предметной деятельности. В целом же общественная производственная практика этой эпохи представляет собой статичную организацию, достаточно жестко структурированную на отдельные звенья, так что о существовании единой универсальной системы производственной практики для указанной эпохи говорить не приходится. Напротив, в данном случае речь можно вести о существовании вырожденной формы системности, которая легко распадалась под воздействием привходящих обстоятельств.
Более зрелой ступенью объективной системизации практики является та, которая основана на производственной деятельности, использующей большую совокупность свойств вещей одновременно. При этом производство ориентировано на установление многомерной функциональной согласованности между различными вещами. Мощный толчок этому процессу дало создание машин. Машина вошла в производственную практику как многокачественная система, в которой относительно обособлены друг от друга, но и согласованы друг с другом энергетические процессы, функционирование рабочих органов и контроль за состоянием предмета труда. В эту цепочку входит также функционально обученный работник, который сам оказывается как бы элементом машинной техники.
Распространение машин связано с развитием массового производства. Эффективность последнего проявилась в полной мере в условиях комплексирования отдельных, но неразрывно связанных технологических потоков. При этом открылись возможности для усложнения искусственных технологий. В итоге постепенно сложилась ситуация, когда достижение конечных целей производственного процесса стало доступным лишь совокупному работнику, организующему весь ход производства.
Современная ступень системизации практической деятельности характеризуется возрастанием её масштабов и усложнением способов её организации – за счёт комплексирования и интегрирования усилий людей вокруг решения крупных социально значимых проблем. Это направление системизации практики предполагает развитие управляющей составляющей в деятельности людей, выработку эффективной стратегии управления производственными и социальными процессами. При этом современная практика широко опирается на научную информацию, которая используется в выборе надёжной стратегии управления.
Надо добавить, что в производственной сфере современная практика ориентирована на решение задач автоматизации, которая способствует объединению множества технологических процессов и позволяет создавать большемасштабные системы управления такими процессами. На этой ступени деятельность практического субъекта строится на научном отражении многопорядковой системы законов, которым подчиняется поведение большемасштабных систем. С функциональной точки зрения деятельность субъекта становится многоцелевой и подчиняется принципу оптимизации в отношении затрат и ожидаемых эффектов. Одновременно в ней делается упор на формирование гармоничных соотношений между ведущими компонентами практики, что содействует созданию условий для объединения в единый поток технического, экономического, социального и духовного прогресса общества.
Итак, системно-деятельностный подход включается в практику, которая ставит и решает новые, системные по своей природе, задачи. Применяемые этим подходом средства позволяют придать рациональную, онаученную форму современному этапу системизации практики. При этом существенно, что субъекты науки, включаясь в решение практических задач, рассматривают их как задачи масштабного эксперимента, постановка которого предполагает использование системной методологии для контроля за ходом и результатами соответствующей экспериментальной деятельности. Не всегда, правда, для подобного контроля применяются строго очерченные модели и образы системности, ибо практические проблемы зачастую не удаётся жестко структурировать, а цели и функции масштабного практического эксперимента нередко просматриваются нечётко. Поэтому системный подход к организации научно управляемой деятельности строится не только с помощью просчитываемых моделей, но и с использованием неявного знания, выражаемого на уровне приблизительных установок. Тем не менее, здесь действует общая ситуативная направленность на системное видение сложных практических задач, а выбор средств их решения реализуется из доступного арсенала системных продуктов современного научного знания.
В число самых мощных средств из этого арсенала входит программная продукция. Научно-практические программы, опираясь на единую целевую установку, связывают между собой достижение многих частных целей, в них взвешиваются приоритеты и различные альтернативы деятельности, учитываются многие возможности и вероятные следствия осуществления тех или иных альтернативных решений конкретных практических проблем. В программах комплексное понимание практических задач связывается с необходимостью охвата значительных материальных и человеческих ресурсов. Кроме того, здесь предусматривается комбинированное рассмотрение исследовательских, управленческих и организационных аспектов проблемы. В то же время целостность практического решения задач обеспечивается ориентацией на получение программируемого результата, который фиксируется в разработанной программе по весьма общим, но более или менее чётко фиксируемым параметрам. Предусматривается также оценка промежуточных результатов, для чего в программу вводится многоэтапная и управляющая, и контролирующая деятельность /2/.
Реальный выход на программное решение практических проблем обеспечивается применением совокупного, кооперированного труда. К новым формам кооперации относится, например, соединение производственной, научной и организационно-управленческой деятельности. Коллективные формы труда практикуются и в более узких сферах. Так, в современной науке складывается относительно завершенный и полный цикл деятельности: производство знаний – производство средств познания – производство научных кадров. Вместе с тем в современной науке объединяется и организуется деятельность многих субъектов: творцов научных знаний, обучающих кадров, обслуживающего персонала науки, представителей информационных служб. На основе их взаимодействия формируется совокупный научный субъект, обладающий комбинированными, комплексными свойствами и возможностями обеспечения многофункционального характера научной деятельности.
Эффективность комплексной организации науки возрастает благодаря включению в научную деятельность особой подсистемы, которая охватывает разные уровни управления наукой. Функционирование такой подсистемы связано с формированием социальной направленности научной деятельности, с выработкой программ финансирования науки, с определением механизмов обновления кадрового комплекса науки, с поиском надёжных потребителей научной продукции /3/. Высший уровень управления наукой замыкается на общегосударственных органах, ответственных за реализацию эффективной научной политики. При этом государственные институты могут выступать в роли прямых заказчиков научной продукции, но, кроме того, они способны оказывать опосредованное влияние на науку, используя механизмы моральной стимуляции научных работников, поддерживая развитие наукоёмкого производства и т.д.
Возвращаясь к вопросу о включении науки в обоснование программ решения практических проблем, нельзя пройти мимо того обстоятельства, что результаты программной деятельности не могут быть уложены в рамки знаний, накопленных отдельными научными дисциплинами. Обоснование программ строится на привлечении разнообразной информации из многих отраслей научного знания / 4/. Но в таком случае, и это надо подчеркнуть особо, открывается поле для междисциплинарных исследований, для интеграции и синтеза научных знаний вокруг более ёмкого предмета науки, исследование которого позволяет выходить за пределы специализированного знания, накопленного естественными, техническими, социальными науками. Потребность в выработке представлений для описания подобного предмета во многом инициировала развитие понятий системного подхода. Сформировавшийся в его рамках понятийный аппарат служит теперь особой матрицей унификации языка науки. На его основе создаются также средства обмена научной информацией между обособившимися отраслями научного знания, в том числе весьма ёмкие теоретические модели описания, охватывающие специализированные объекты науки.
Интересно, что программная включённость науки в практику основана на таком видении практических проблем, которое позволяет сформировать собственное пространство научных разработок и исследований, организованных вокруг практической проблемы. По существу здесь складывается неизвестная ранее форма системного синтеза знаний. В пределах такого пространства одновременно ставятся задачи, обращенные к целому ряду наук, которые чаще всего вступают в процесс решения практической проблемы, не имея предварительно разработанной теории по соответствующим вопросам. Данная ситуация резко обостряет потребность в обновлении теоретического аппарата и концептуальных средств этих дисциплин. Вместе с тем возрастает их готовность воспринимать смежные, заимствованные друг у друга идеи, модели и т.д.
Важным фактором, стимулирующим системное моделирование практических проблем, является потребность в оптимизации их решений. Поскольку практика ограничена во времени, в ресурсах и т.д., постольку главным условием, детерминирующим организацию практической деятельности, становится поиск альтернатив решений практических задач, экономящих затраты ресурсов при некотором достаточно высоком уровне получаемых результатов. Одновременно это и условие создания искусственных систем с высокой степенью эффективности функционирования.
В решении научно-практических задач методы оптимизации основаны на учёте полного набора возможных альтернатив, ведущих к достижению практически значимого результата. Каждая альтернатива оценивается по определённым показателям, среди которых чаще всего рассматриваются эффективность и затраты. Один из них принимается за лидирующий, и тогда определяются условия, при которых он достигает экстремального значения /5/. К сожалению, на практике нередко приходится руководствоваться не принципом оптимизации, а принципом удовлетворения, т.е. поиском альтернативы, отвечающей ограничениям на различные показатели качества. Иначе говоря, в определённых ситуациях не удаётся с помощью методов оптимизации отыскать лучший путь реализации практической программы. Выбор решения связывается тогда, как отмечают многие исследователи, с отбрасыванием бесперспективных и малоэффективных альтернатив /6/.
Постановка вопросов оптимизационного плана, пожалуй, наиболее убедительно говорит о том, что системный подход далеко не сводится к теоретическому моделированию сложных процессов, он не обусловлен эволюцией чисто теоретического мышления. Напротив, становление системного подхода существенным образом вытекает из осознания ситуации и состояния, в котором находятся практика и наука наших дней. Их взаимодействие детерминировано потребностями поиска системно-рациональных, оптимальных решений комплексных проблем, ставших актуальными в производственной, социальной и других сферах жизни общества.
В новой ситуации изменяются требования к субъекту моделирующей деятельности. Субъект, берущий на себя решение комплексных практических задач, преуспеет тогда, когда возьмёт на вооружение проблемный стиль мышления. Ему важно уметь преодолевать соблазны готовых решений. Он призван учитывать массу конкретных обстоятельств, и на этой основе он должен уметь вырабатывать вариантные способы действия. Но готовность решать проблемы состоит также в прямой зависимости от уровня профессиональной подготовки субъектов деятельности. Только теперь профессионализм связан с компетентностью не в частностях проблемы, а с пониманием всех существенных аспектов практической проблемы. Ключ к такому пониманию даёт овладение методами системного анализа практических ситуаций. Социально-психологические установки, формирующиеся у специалистов в новой деятельностной ситуации, толкают их к овладению системным стилем мышления. Однако стихийной потребности сегодня мало. Для повышения эффективности системно-методологической деятельности следовало бы организовать в стране по соответствующему профилю подготовку и переподготовку кадров специалистов. В тоже время назрел вопрос о том, чтобы дополнить учебные программы для традиционных специальностей разделами, предусматривающими усиления информационной связи между различными дисциплинами, в том числе между техническими и социально-гуманитарными дисциплинами. Перенос акцентов в область методологической подготовки является одним из путей решения данной задачи. Подобную подготовку необходимо углублять как на общефилософском, так и на междисциплинарном уровнях. Важную роль в этом призвана также сыграть универсализация подготовки кадров в области проблем моделирования, в том числе математического моделирования сложных процессов.
2.2. ПРИНЦИПЫ МОДЕЛИРОВАНИЯ СИСТЕМ ПРИНЯТИЯ РЕШЕНИЙ
Принятие решения – одно из ключевых понятий праксиологии. Оно фиксирует важнейший этап рационально организованной практической деятельности. С ним связана разработка и формальное утверждение проекта каких-либо изменений в социальной сфере, нацеленных на преобразование существующих или создание новых человеческих организаций. Принятие решения означает включение его в систему организационных отношений; его осуществление предполагает наличие плана, а также конкретной деятельности людей в рамках такого плана /7/.
Раскрывая специфику отношений, складывающихся между элементами систем принятия решений, следует учитывать, что здесь действует планирующая детерминация, природа которой связана с выработкой генеральной цели и выбором приоритетного направления действий. В системе принятия решений функционируют также особые координаторы и стимуляторы деятельности, и под их влиянием субъект принятия решений оптимизирует пели функционирования социальных организаций, соотнося эти цепи с наличными и вновь возникающими ресурсами деятельности. Если же говорить о главном звене функционирования систем принятия решений, то надо иметь в виду ту основную проблему, вокруг которой строится их функционирование. Это, конечно, проблема рационального выбора действий при наличии множества альтернатив. И потому звено, связанное с обоснованием условий рационального, а вместе с тем и ответственного выбора, является здесь главным, решающим.
Существенно, что квалифицированное принятие решений предполагает весьма сложную ступенчатую аналитическую деятельность, в состав которой чаще всего включаются следующие процедуры:
– обзор сложной совокупности условий, влияющих на практическую проблемную ситуацию;
– фиксация многих "срезов" решаемой проблемы и поиск способов совмещения таких "срезов";
– учёт разнообразных альтернатив решения проблемы;
– оценка их перспективности;
– корректировка деятельности в направлении достижения планируемых результатов.
Моделирование в сфере принятия социальных решений осложняется действием ряда факторов. Один из них связан с творческим характером выработки решений. Рационализация процедуры принятия решений не может быть проведена до конца, поскольку такая процедура опирается на интуицию и собственный опыт экспертов и лиц, принимающих окончательное решение. Тем не менее, научную основу организации принятия решений образуют рациональные методы. Они тем более необходимы, когда решение принимается в многоаспектной ситуации, требующей всестороннего анализ проблемы. Кроме того, в социальной области мы имеем дело с системами, каждая часть которых обладает активностью, собственным поведением. Надо согласиться с мнением Р. Акофа и С. Сенгупты, которые считают, что поведение подобных систем складывается из сознательно осуществляемых операций. Их важно уметь исследовать для выработки рекомендаций по управлению системой со стороны людей / 8/. При этом следует учитывать, что каждая операция подчиняется желаемому результату, а значит должна рассматриваться с точки зрения общего функционирования системы. Рациональный подход учитывает и другой аспект операций – их повторяемость, возможность многократного воспроизведения. Повторяемость служит базой для формализации методов исследования операций, для использования теории вероятностей, математической статистики, теории оптимизации и др. Эти методы внедряются в такие области деятельности, где повторяемость обусловлена массовостью производства, массовостью транспортных операций, торговых операций и т.д. В указанных областях нельзя, как правило, проводить натурные или лабораторные эксперименты с целью выбора лучшего варианта поведения сложной системы. Поэтому здесь обращаются к математическому моделированию процессов.