Текст книги "Здравствуй, физика!"
Автор книги: Леонид Гальперштейн
Жанры:
Прочая детская литература
,сообщить о нарушении
Текущая страница: 6 (всего у книги 14 страниц)
«Сработанный еще рабами Рима»
Ты, конечно, догадался, что наш первый фонтан действует по закону сообщающихся сосудов. Из сосуда с более высоким уровнем вода перетекает в трубочку. Она стремится в трубочке подняться до того же уровня. Но трубочка кончается – вода бьет фонтаном вверх. Ты можешь проверить, что фонтан поднимается примерно до уровня поверхности воды в большом сосуде.
На законе сообщающихся сосудов основано устройство водопровода. Это очень старое изобретение. Водопровод был еще в древнем Риме.
Конечно, теперешний водопровод стал совсем другим. Римляне не знали ни тонкой очистки воды, ни хлорирования, убивающего микробов. У них не было кранов, сверкающих медью и никелем, не было душей, не было раковин с мойками для посуды. Но в основе древнеримский водопровод был уже таким, как и нынешний.
Вода в водопровод подается из водоема или огромного бака, устроенного на высоком холме.
Отсюда сеть труб идет все дальше вниз, в каждую улицу, в каждый дом. Вода поднимается по трубам на верхние этажи. Лишь бы только они не были выше водоема на холме! Вода дойдет, доберется к каждому крану.
И стоит любой из этих кранов открыть, он начнет работать, как наш фонтан из лампового стекла.
Правда, краны обычно повернуты отверстием вниз, а не вверх. Это не так красиво, как фонтан, зато удобнее набирать воду. Какой сильной струей бьет из крана вода, как она шумит и плещет, как дробится на сверкающие капли! Это река пришла к нам в дом, это вошел водопровод, «сработанный еще рабами Рима»!
Коварная клякса
Вот опыт, который ты наверняка проделывал много раз, с тех пор как стал писать чернилами. Ты берешь листок промокательной бумаги, самой обыкновенной промокашки, и опускаешь его углом в чернила. Клякса медленно всползает вверх, расползается, ветвится…
Как же так? Ведь по закону сообщающихся сосудов должно быть все наоборот! Клякса должна бы спускаться, стекать с промокашки вниз. Но она не желает этого делать.
А кусок сахара на поверхности кофе или чая? Ты не раз смотрел, как все выше всползает по нему коричневая жидкость, как белый сахар буреет, оседает, расплывается…
О, если бы он умел говорить! Он бы, наверное, воскликнул: «Остановись, коварная жидкость! Ты не смеешь ползти вверх, твое место внизу. Так сказано в великом законе сообщающихся сосудов!» Но сахар не умеет говорить. Он молчит и покорно тает. А жидкость ползет все вверх, подчиняясь какому-то другому закону природы. Но какому же?
Чтобы понять, в чем здесь дело, присмотрись к поверхности воды, налитой в чистый стакан. Ты не видишь ничего особенного? И все же кое-что интересное там есть.
Смотри-ка, у стенок стакана поверхность воды загибается вверх. Это выглядит так, словно вода хочет всползти по стенкам стакана. Хочет – и не может. Ей удалось сделать только один, совсем маленький шажок.
И все же раз этот шажок сделан, значит, есть какая-то сила, которая тянет воду вверх. Только сила эта мала, а воды в стакане много.
Ну, а если бы стакан был поуже?
Возьми узкую трубочку, аптечную пипетку. Сними с нее резиновый мешочек и опусти трубочку в стакан широким концом. Сначала опусти поглубже, а потом немного вытяни.
Ты увидишь, что уровень воды в пипетке выше, чем в стакане, миллиметра на два. Это уже кое-что!
Ну, а если опустить пипетку узким концом? Опускаем поглубже… Вытягиваем… Стоп! Смотри, уровень воды здесь выше, чем в стакане, уже почти на целый сантиметр! Теперь ясно: чем тоньше трубочка, тем выше всползает по ней вода.
Ты спросишь, есть ли трубочки в промокашке и в куске сахара? Да, они там есть. Но их можно разглядеть только под микроскопом. Это крошечные промежутки между отдельными волоконцами промокашки. Это совсем узенькие щелочки между отдельными кристалликами сахара. Совсем узенькие? Да ведь это как раз то, что нужно! Потому-то вода и поднимается так хорошо, потому-то она и не подчиняется закону сообщающихся сосудов!
Это свойство жидкостей, эта их способность подниматься по тоненьким, как волосок, трубочкам называется волосностью. Или еще капиллярностью, от латинского слова «капилларис» – «волосной».
А если пипетка жирная?
Но может быть, опыт с пипеткой у тебя не получился? Это бывает, если трубочка загрязнена чем-нибудь жирным. Если, скажем, пипеткой раньше брали вазелиновое масло, или камфарное масло, или еще что-нибудь в этом роде. Тогда закон сообщающихся сосудов все равно нарушается, но только уже в обратную сторону. Уровень воды в жирной трубочке будет ниже, чем в стакане!
Этот опыт стоит проделать специально. Приглядись внимательно к поверхности воды в трубочке жирной пипетки. Теперь ты уже знаешь, на что нужно обращать внимание. Поверхность в трубочке не вогнута, она выпукла, вода словно отталкивается от жирных стенок!
Выходит, что капиллярность поднимает жидкость вверх только в том случае, если эта жидкость смачивает стенки трубочки.
Значит, все дело здесь в смачивании! Если жидкость смачивает стенки, если она к ним прилипает, это и создает силу, которая тянет жидкость вверх. Ну, а если не смачивает, если отталкивается, возникает сила, отжимающая жидкость вниз.
Ты, может быть, слышал, что существуют дождевые плащи из водоотталкивающей ткани. Она не сплошная, она не имеет непроницаемой пленки из резины или пластмассы. Но каждое волоконце этой ткани покрыто особым веществом, к которому вода не пристает, не смачивает. И поэтому вода не впитывается в ткань. Наоборот, она отталкивается!
Такие плащи гораздо приятнее носить, чем обычные. Ведь они пропускают воздух, не мешают коже дышать, (Ты, конечно, знаешь, что человек дышит не только легкими, но и кожей, всей поверхностью тела.) Но стирать эти плащи не рекомендуется. Ведь, отстирывая грязь, можно и водоотталкивающий состав отстирать, И тогда ткань начнет промокать, как и любая другая!
Если есть у тебя плащ или куртка из водоотталкивающей ткани, носи их аккуратно, старайся не пачкать.
Дело не только в плащах
Если бы единственным применением капиллярности были водоотталкивающие плащи, не стоило бы так много о ней говорить. Можно прожить и без плаща!
Ну, а без хлеба? Без круп, без овощей и картофеля, без травы и деревьев? Без мяса животных, которым тоже нечем было бы питаться? Ты спросишь: при чем здесь капиллярность? Да при том, что это она поднимает питательные соки из почвы до самых верхушек растений. Поднимает по тончайшим, микроскопическим каналам в коре деревьев и кустарников, в стеблях травянистых растений. Поднимает иной раз на многие десятки метров– ведь есть же деревья огромной высоты! Но стоит у такого великана содрать кольцо коры, и он засохнет выше этого места, лишившись притока влаги. Надеюсь, что этот опыт ты делать не станешь.
Очень важны капилляры и в почве. Если вспаханным полям грозит засуха, землю надо разрыхлить. Капилляры разрушатся, влага не будет подниматься из глубин и сохранится в почве.
Вот какая это важнейшая вещь – капиллярность.
Капиллярность и спичка
Прежде чем расстаться с капиллярностью, проделаем еще два забавных опыта с палочками.
Положи на горлышко молочной бутылки надломленную палочку, а на нее – гривенник. Попробуй-ка сбрось этот гривенник в бутылку, не дотрагиваясь ни до него, ни до бутылки, ни до палочки. Не знаешь, как это сделать?
А ведь решение такое простое! Окуни палец в воду и на то место палочки, где она надломлена, урони одну-две капли. Сгиб палочки намок… Концы расходятся, все больше и больше.
Дзинь – и гривенник на дне бутылки!
Для второго опыта понадобятся пять спичек. Надломи их все посредине, согни под острым углом и положи на блюдце так, как показано на рисунке слева.
Как сделать из этих спичек пятиконечную звезду, не прикасаясь к ним?
Думаю, что теперь ты уже и сам догадаешься. Конечно же, нужно уронить несколько капель воды на сгибы спичек! Постепенно спички начнут расправляться и образуют звезду.
Причина в обоих опытах одна и та же. Волокна дерева впитывают влагу. Она ползет все дальше по капиллярам. Дерево набухает. Его уцелевшие волокна «толстеют». Став толстяками, они уже не могут так сильно сгибаться и распрямляются.
Глава двенадцатая. О ПЛАВАЮЩИХ И ТОНУЩИХ
Три шарика
Возьми три шарика одинаковой величины. Один подбери стальной, от шарикоподшипника. Другой слепи из парафина (он продается в аптеке) или из стеарина от свечки. Третий вырежь из пробки, пенопласта, из бузинной мякоти или другого легкого материала. Вымой баночку из-под майонеза или горчицы и налей в нее воды примерно до половины. Опусти туда все три шарика. Что с ними станет?
Ясно, что стальной шарик утонет, упадет на дно: сталь ведь тяжелее воды. А парафиновый и пробочный будут плавать.
Долей баночку керосином. (Теперь ты понимаешь, почему я советую взять баночку, а не стакан. Баночку можно потом выкинуть, а за наливание керосина в стакан тебя не похвалят!) Керосин легче воды и расположится сверху. Поверхность раздела будет хорошо видна. И на этой поверхности окажется шарик из парафина. Нижняя часть его будет в воде, верхняя – в керосине. Почему же парафиновый шарик не всплывет на самый верх?
Потому, что парафин хотя и легче воды, но тяжелее керосина. А вот пробковый шарик и в керосине плавает. Так что теперь три шарика займут три разных «этажа».
Яйцо в соленой воде
Возьми две полулитровые стеклянные банки и одну из них наполни чистой водой. Опусти в нее сырое яйцо. Оно утонет, пойдет ко дну.
Во вторую банку налей крепкого раствора поваренной соли. На пол-литра воды достаточно двух столовых ложек соли, чтобы яйцо плавало. Ты, конечно, понимаешь, почему так получается. Ведь соленая вода тяжелее. Недаром в море легче плавать, чем в реке.
Для опыта нужна еще третья банка, литровая. Переложи в нее яйцо и подливай по очереди воду из обеих маленьких банок. Тебе удастся получить такой раствор, в котором яйцо не будет всплывать на поверхность, но и ко дну не пойдет. Оно будет держаться посреди раствора, как подвешенное!
Теперь можешь показать товарищам фокус. Подлей в банку немножко пресной воды – яйцо утонет… Подлей соленой – оно всплывет! Это покажется тем более удивительным, что на вид соленая вода ничем не отличается от пресной.
Этот опыт можно делать и с сырой картофелиной, только соли придется растворить побольше. Картофелина тяжелее яйца, ее труднее заставить всплыть.
Невесомость и растительное масло
Ты, конечно, знаешь, что в кабине космического корабля во время свободного полета все предметы теряют вес. Карандаши, блокноты плавают в воздухе, словно воздушные шарики. Да что карандаши – утюги и те плавали бы, если бы только их брали в космический полет!
Ну, а жидкости в условиях невесомости «не хотят» заполнять стаканы, кастрюли и другую посуду. Они «не желают» покорно принимать форму сосуда, в который налиты. Нет, жидкости порхают в воздухе, собравшись в аккуратные шаровые капли! Вот почему космонавтам нельзя пить из стаканов и есть суп из тарелок. Им приходится выдавливать жидкость прямо себе в рот из тубы, похожей на тюбик с зубной пастой, только побольше.
Хочешь наблюдать жидкость в условиях невесомости? Нет, пока еще не в космическом корабле, а у себя дома, на кухне. Это вполне возможно, хотя опыт трудный.
Для опыта нужны три жидкости: вода, растительное масло и денатурированный спирт (его часто называют «денатурат»). Масло легче воды, и, если подлить его в банку с водой, оно соберется слоем на поверхности. А если налить это же масло в спирт, оно соберется слоем на дне. Значит, спирт еще легче, чем масло.
Если в стакан с водой долить денатурата, то масло, добавленное в эту смесь, утонет в спирте, но не утонет в воде. Оно должно плавать на границе воды и спирта, как плавал парафиновый шарик на границе керосина и воды. Но с керосином и водой было проще: они не смешивались. А спирт хорошо растворяется в воде.
Трудность нашего опыта как раз и заключается в том, что надо очень аккуратно, очень осторожно прилить спирт в стакан с водой, чтобы эти жидкости не перемешались. Для этого сначала налей воды до половины, а потом потихоньку сливай денатурат по стенке стакана.
Долив стакан почти доверху, осторожно влей в него чайную ложечку растительного масла.
Ты, может быть, ожидал, что оно растечется слоем на границе спирта и воды? Ничего похожего! Масло ведь оказалось в состоянии невесомости.
Оно как бы «парит» на границе раздела. И, словно в кабине космического корабля, это «невесомое» масло соберется в шар, совершенно ровный и гладкий! Разве только приплюснутый, если вода и спирт на границе все-таки немного смешались.
Простейшая подводная лодка
После опытов с яйцом в соленой воде и с шаром из растительного масла, этот опыт с подводной лодкой покажется легким.
Вырежь из дерева модель подводной лодочки, длиной всего 5–6 см. Корпус вытянутый, как сигара, и немного сдавленный с боков. Посередине выступает рубка… Готово? Спускай ее на воду, в стеклянную банку.
Плохо только, что лодка не погружается, а спокойно плавает на поверхности, словно забыв о том, что она лодка не простая, а подводная.
Ну ничего, сейчас мы ей напомним.
Возьми несколько коротких гвоздиков с большой шляпкой (так называемых обойных) и вбей их цепочкой вдоль дна лодочки. Теперь она сидит в воде гораздо глубже, да к тому же не валится набок. Распредели гвоздики так, чтобы лодка, как говорят подводники, «стояла на ровном киле», то есть не клевала ни носом, ни кормой.
Теперь надо добавить еще совсем небольшой груз, чтобы лодка погрузилась полностью. Обмотай ее нетолстой медной проволокой, лучше голой или в эмалевой изоляции. Лодка будет тонуть, ложиться на дно. Постепенно сматывая проволоку и отрезая по кусочку, добейся, чтобы лодка «висела» между дном и поверхностью воды. Вот теперь она действительно подводная!
А как же настоящая лодка!
Наша простейшая модель подводной лодки висит между поверхностью и дном. Но ни всплыть, ни погрузиться глубже она не может. А ведь настоящую лодку никто не будет вынимать из воды, чтобы смотать или домотать кусочек проволоки. Как же маневрирует подводная лодка? Как она всплывает, как ложится на дно?
Простейшим примером такого «маневрирующего» подводного судна служит… виноградина в газированной воде!
Ты, конечно, знаешь, что газированная вода, а также ситро, лимонад и все минеральные воды, которые продаются в бутылках, насыщены газом под давлением. Но вот бутылка открыта, вода налита в стакан. Газ выходит в пене и брызгах. Но часть его еще осталась. Эта часть продолжает постепенно выделяться, оседая пузырьками на стенках стакана.
В такой вот стакан со свеженалитой газированной водой брось виноградину. Она чуть тяжелее воды и опустится на дно. Но на нее тут же начнут садиться пузырьки газа. Словно маленькие воздушные шарики! Вскоре их станет так много, что виноградина всплывет.
Но на поверхности пузырьки полопаются, и газ улетит. Отяжелевшая виноградина вновь опустится на дно. Здесь она снова «обрастет» пузырьками газа и снова всплывет. Так будет повторяться несколько раз, пока вода не «выдохнется».
Ты спросишь, при чем здесь подводная лодка? Да при том, что она всплывает и погружается очень похожим способом. Только у лодки пузыри газа не снаружи. Она ведь не в лимонаде плавает! У лодки есть внутри специальные цистерны. Называются они балластными, потому что в них набирают балласт – груз, который тянет лодку вниз. Этим грузом служит забортная вода.
Командир приказывает погрузиться. Цистерны открывают, и в них устремляется вода. Она вытесняет воздух. Спешат, бурлят воздушные пузыри. Они расстаются с лодкой, как пузырьки газа со всплывшей виноградиной. И лодка, словно виноградина, тяжелеет и опускается в глубину.
Надо снова всплыть? «Продуть балластные!» – приказывает командир. И цистерны снова открываются, но теперь в них устремляется сжатый воздух из специальных баллонов. Он вытесняет, выгоняет воду, он сам заполняет цистерны. Внутри лодки словно образуются большие воздушные пузыри. И облегченная лодка всплывает!
Живая рыба и игрушечная рыбка
Рыба тоже всплывает и погружается с помощью пузыря. Того самого плавательного пузыря, который ты, конечно, не раз видел, когда потрошили рыбу. Но рыбий пузырь не сообщается с водой. Он спрятан внутри, в середине рыбьего тела. Как же удается маневрировать с таким пузырем?
Рыба делает это очень просто. У нее нет ни клапанов, ни баллонов со сжатым воздухом. Физику рыба тоже не изучала. Но она живая, у нее есть мускулы. И вот, когда надо погрузиться, мускулы сжимают, сдавливают пузырь. Его объем уменьшается, рыба становится тяжелее и идет вниз. А надо подняться – мускулы расслабляются, распускают пузырь. Он увеличивается, и рыба всплывает.
Вот почему уснувшая или оглушенная рыба всплывает на поверхность. Ведь ее мускулы больше не работают, они расслаблены, и пузырь раздут до предела! Ты, может быть, спросишь, почему же в этом случае рыба обычно опрокидывается набок? Да потому, что пузырь расположен в центре тяжести тела. Живая рыба всегда шевелит грудными и брюшными плавниками, поддерживает правильное положение тела. А перестанут работать мускулы, и плавники остановятся, рыба валится набок и так всплывает.
«Изучив опыт» живой рыбы, мы с тобой можем сделать игрушечную рыбку. Она тоже будет всплывать и погружаться, изменяя объем воздуха в пузыре.
Проколи яйцо с двух концов и выдуй его содержимое. Дырочку в остром конце залепи сургучом или бумажкой с клеем БФ-2, другую оставь открытой. Нарисуй на скорлупе два больших глаза. Конечно, рисуй не акварельными красками и не гуашью. Здесь придется взять краски масляные, либо восковой карандаш, которым пишут по стеклу.
Из двух лоскутков бумазеи сшей мешочек в форме рыбы. Возьмешь зеленую или серую бумазею – будет рыбка простая, возьмешь красную или желтую – будет золотая!
Мешочек натяни до половины на яйцо и приклей клеем БФ-2. В хвостовую часть мешочка насыпь свинцовой дроби столько, чтобы рыбка еще плавала у поверхности, но при малейшем толчке опускалась в глубину. Дробь удобна потому, что свинец в воде не ржавеет.
Пусти игрушечную рыбку в банку с водой. Сверху затяни эту банку резиновой перепонкой (хотя бы от лопнувшего воздушного шарика или от старой волейбольной камеры) и плотно обвяжи ниткой. Игрушка готова!
Голова рыбки – пустое яйцо – играет роль плавательного пузыря. Но яйцо ведь жесткое, да и рыбка неживая, без мускулов. Как менять объем воздуха в пузыре? А очень просто. Нет мускулов у рыбки, зато есть у тебя. Вот и нажми рукой на резиновую перепонку. Воздух под перепонкой сожмется и нажмет на воду. От этого несколько капель воды вдавится через отверстие в яйцо. Объем воздуха в яйце уменьшится, рыбка станет тяжелее и нырнет. Расслабишь мускулы, отпустишь перепонку– рыбка всплывет. Если груз подобран хорошо, рыбка будет нырять при самом слабом нажиме!
Плавает ли железо?
Что за вопрос? Брось в воду гвоздик, винтик, шарик от подшипника – все они тут же утонут. Ко дну пойдет и квадратик, вырезанный из жести от консервной банки. Он плавает ничуть не лучше, чем топор или утюг.
Но попробуй этот же квадратик согнуть в коробочку. Смотри-ка, плавает!
Теперь можешь в эту коробочку положить и гвоздик, и винтик, и шарик, она только глубже осядет, но ко дну не пойдет. А в большой железной коробке смогут путешествовать по воде и топор с утюгом. Плавают же по морю стальные корабли со стальными пушками, стальными машинами, стальными якорями на тяжелых стальных цепях!
Ты, конечно, понимаешь, почему так получается. В стальных кораблях есть воздух. Он занимает много места. Словно огромный плавательный пузырь! Если вместо воздуха впустить туда воду, корабль немедленно утонет. Можешь устроить «кораблекрушение» со своей жестяной коробочкой. Пробей ее дно гвоздем, и ты увидишь как тонет корабль, получивший пробоину!
Водяной подсвечник
Брось в воду стеариновую свечу. Она будет плавать, лежа на боку. Так свечу не зажжешь. Надо нижний конец нагрузить гвоздем. Только не пытайся воткнуть этот гвоздь силой: стеарин раскрошится. Гвоздь надо нагреть, тогда он войдет, как в масло, и будет хорошо держаться.
Подбери такой гвоздь, чтобы почти вся свеча погрузилась в воду. Только фитиль и самый краешек стеарина должны остаться над поверхностью. Стакан с водой, в котором плавает эта свеча, окажется неплохим подсвечником. Зажги фитиль, и свеча будет гореть, пока не выгорит до конца.
Но почему же? Ведь она вот-вот догорит до воды и погаснет? Но этого не происходит. Вода охлаждает стеарин снаружи. Поэтому края свечи будут таять медленнее и вокруг фитиля образуется глубокая воронка. Свеча превратится в стеариновый кораблик, она будет постепенно всплывать. И хотя стеарина остается все меньше, даже маленький огарок, нагруженный гвоздем, не пойдет ко дну. Свеча выгорит почти до самого конца.
Кстати, наш подсвечник имеет одно важное преимущество. Догоревшая свеча здесь никогда не наделает пожара: фитиль будет погашен водой.